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Abstract: The function of transdermal drug delivery (TDD) systems is complex due to the multiple
layers necessary for controlling the rate of drug release and the interaction with the patient’s skin. In
this work, we study a particular aspect of a TDD system, that is, the parameters that describe the
drug permeation through the skin layers. Studies of the diffusion of two compounds were carried
out and supported by tape stripping and numerical modeling. The experimental studies are carried
out for porcine skin in a Franz diffusion cell and tape stripping is used to quantify the concentration
of drug in the stratum corneum. A multi-layered numerical model, based on Fickian diffusion, is
used to determine the unknown parameters that define the skin’s permeability, such as the partition
between layers and the mass transfer coefficients due to the surface barrier. A significant correlation
was found between the numerical modeling and experimental results, indicating that the partition
and mass transfer effects at the interlayer boundary are accurately represented in the numerical
model. We find that numerical modeling is essential to fully describe the diffusion characteristics.

Keywords: transdermal; diffusion; numerical model; partition; mass transfer; tape stripping

1. Introduction

Transdermal drug delivery (TDD) systems, such as patches are increasingly replacing
traditional drug delivery methods [1]. Examples of drugs administered through trans-
dermal patches include scopolamine for motion sickness, nicotine for smoking cessation
aid, estrogen for menopause and to prevent osteoporosis after menopause, rivastigmine
or acetylcholine inhibitor, used for the improvement of behavioral, and psychological
symptoms of dementia [2–5]. The function of TDD systems is complex due to the multiple
layers necessary for controlling the rate of drug release and the interaction of the patch
with the patient’s skin. Furthermore, the skin layer itself is composed of multiple layers,
each with different permeability qualities. There are three main layers of skin: epidermis,
living dermis, and subcutaneous tissues or hypodermis. Each of these layers performs a
significant role in protecting the body and maintaining overall health [6–8].

Skin, the largest and most easily accessible organ of the human body, is an attractive
target for therapeutic applications over other drug administration routes, offering a safe,
convenient and painless way for drug administration. Topical application of drugs provides
a relatively constant drug-release rate over long periods of time; it enables instant termi-
nation of drug input, minimizes the risk of undesirable side effects, etc., [9–11]. However,
topical and TDD systems do have some disadvantages. The low permeability of the skin,
due in large part to the Stratum Corneum (SC), the outermost layer of the epidermis, re-
mains the greatest challenge in the delivery of topically applied active ingredients. Effective
skin permeation is therefore limited to small, lipophilic, potent molecules with a relatively
low melting point (<200 ◦C) [3,12–15].

Tape stripping (TS) is a widely used method in transdermal drug delivery to quantify
the drug that is retained in the SC at the end of an experiment [16]. Thus, it can be used
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to determine the partition coefficient between the donor compartment and the skin by
finding the ratio of drug concentration between the two [17]. The TS technique is minimally
invasive where the SC’s cell layers are peeled from the same skin area, using sticky sheets
after topical application and penetration of formulations [16,18].

Mathematical modeling has been used in the design of drug delivery systems for
over 50 years [19]. Mathematical models for TDD are generally based on Fickian diffusion
and solved numerically for given boundary conditions [20–23]. Important aspects of such
models include the appropriate interface conditions to account for partition effects and
possible surface barriers that lead to discontinuities in drug concentration across interfaces.

In this study, we focus on the diffusion of the drug through the skin layers and the
quantification of the drug in different layers of the skin, using the tape stripping technique
and numerical modeling. The nonsteroidal anti-inflammatory drug diclofenac and the
chemical compound caffeine are chosen for the study. Permeation studies are carried
out for porcine skin in a Franz diffusion cell and tape stripping is used to measure the
effectiveness of the local drug permeation. A multi-layered numerical model is developed,
based on Fickian diffusion, which accounts for both partitions between the system’s layers
and the mass transfer effects, due to the surface barriers. The model is an extension of the
numerical model employed by Gudnason et al. [24], based on additional and more accurate
experimental results achieved using the tape stripping technique.

2. Materials and Methods
2.1. Materials

Acetic acid, diclofenac sodium salt, caffeine, and sodium chloride were purchased
from Sigma-Aldrich. Acetonitrile (HPLC grade), methanol (HPLC grade), tetrahydrofuran
(HPLC grade), and potassium phosphate monobasic were purchased from Riedel-de Haen.

2.2. HPLC Analysis

HPLC quantification was carried out using an Ultimate 3000 from Dionex, methods
settings are presented in Table 1. The column used was 150 × 4.6 mm, 5 µm, C-8 from YMC.

Table 1. Method settings for HPLC analysis.

Settings Mobile Phase Flow Rate
mL/min

UV Signal
nm

Retention Time
min

Diclofenac Acetonitrile: 1% acetic acid (40:60) 1.5 281 2.2
Caffeine Methanol: MilliQ water (40:60) 0.8 272 4.1

2.3. Release Studies by In Vitro Experiments

Due to ethical reasons, porcine ear skin was chosen for the experimentation. Porcine
skin is considered to be the most human-relevant animal model used for dermal/transdermal
research [25–27]. Porcine ears were obtained from freshly killed animals (6-month-old)
from a local abattoir Stjörnugrís (since the ear is often a by-product in their production).
During the transportation, the ears were stored in ice. Immediately after receipt in the lab,
the ears were washed with cold distilled water and dried using soft tissue. Skin was further
prepared by removing the whole skin carefully from the underlying cartilage. The initial
thickness of the skin membranes was 1.6 mm ± 2 mm. Skin membranes were stored on
aluminum foil at −20 ◦C until used. Just before the experiment began, skin samples were
thawed at room temperature and dermatomed to nominal thickness (ca. ≥ 1 mm), using
the manual dermatome or sterile scalpel blades [28]. The experimentally obtained thickness
was determined using a digital caliper. All prepared skin samples were punched to 1.5 cm
disks and analyzed using optical microscopy in order to exclude damaged skin samples.

In vitro percutaneous permeation studies were carried out using unjacketed Franz
diffusion cells; see Figure 1, with an orifice diameter of 0.9 cm (area of exposure 0.64 cm2),
a donor chamber volume of 1 mL, and a receptor chamber volume of 12 mL.
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Figure 1. Schematic illustration of unjacketed Franz diffusion cell.

PBS was prepared accordingly to the guidance of European Pharmacopoeia, from
buffer solution preparations [29]. Dermatomed skin membrane discs were immersed in
PBS until further processing, four replicates per experiment. Degassed PBS (pH 7.4) was
used as the receptor phase. Subsequently, pre-prepared discs were carefully placed at the
interface between the donor and receptor compartments so that the epidermal side was
facing the donor compartment. Franz diffusion cells were mounted on a magnetic stirrer
plate at 400 rpm [11] and equilibrated for 30 min. The diffusion cells remained in an oven
at a constant temperature of 32 ± 1 ◦C. At time zero, 1 mL of test substances of known
concentration 5 mg/mL, were applied directly into the donor compartment and sealed
with paraffin film to prevent evaporation of the solutions. At predetermined time intervals,
receptor fluid was sampled via sampling arm, 200 µL each time, using a disposable syringe.
Samples were taken at pre-determined time intervals: 1, 2, 3, 4.5, 6, 8, 10, 12, 23, 26, 29, 32,
35 and 48 h. Removed volume was replaced with an equivalent volume of fresh receptor
fluid. Samples were analyzed by HPLC.

2.4. Tape Stripping In Vitro

Following the sampling period, each skin sample was removed from the Franz cell
and rinsed with 2 mL of PBS. The sample of the skin surface was dried with cotton wool
prior to tape stripping. The adhesive tape strips were prepared in advance. Further, the
SC was removed by employing the TS method. Application of the adhesive tape was
followed by uniform, gentle pressure (2 kg) rolling the tape twice onto the skin surface. SC
was sequentially removed from the same skin area by repeated tape strip application and
taken off by sharp upward movement. Tape strip removal was performed with relatively
constant velocity. Each skin sample was stripped 70 times. The thickness of each tape strip
is 0.5–1 µm, and hence 70 strips stripped away a total thickness of 0.0035–0.0070 cm. The
tape strips, as well as the rest of the skin and subcutaneous fat, were placed into the 1.5 mL
microtubes (2 tapes per tube, rest of the skin and subcutaneous fat placed separately), with
1 mL of methanol. Samples were sonicated for 15 min for extraction and then centrifuged
for 10 min at 10,000 rpm. Extract aliquots were analyzed and quantified by HPLC.

2.5. Numerical Simulations

The transportation of drugs through the skin may be described by the Fickian diffusion
equation, where the key parameter is the diffusion coefficient. Other key parameters that
define the skin permeability are the partition coefficient, due to the difference in solubility be-
tween layers, and the mass transfer coefficient, due to surface barriers between layers. Both
parameters lead to a discontinuous jump in concentration at the interlayer boundary [30].

The mathematical model simulates a Franz diffusion cell system. A one-dimensional,
three-layer model was created, comprised of the donor chamber (DC), the skin, and the
receptor chamber (RC), as shown in Figure 2. The drug is loaded in the DC, which can
represent a patch, then travels through the skin and enters the RC. Within each layer i,
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where i = (1,2,3) for a three-layer model, the diffusion in the x-direction is governed by
Fick´s equation:

∂Ci(x, t)
∂t

=
∂

∂x

(
Di

∂Ci(x, t)
∂x

)
(1)

where
Ci(x, t) is the concentration of dissolved drug within i-th layer (mg/cm3) and
Di is the diffusion coefficient of dissolved drug within i-th layer (cm2/h).
Within each layer, the initial condition is:

Ci(x, 0) = Ci,0. (2)

Interlayer boundary conditions are defined between layers that describe the combined
mechanisms of partition and mass transfer rate. The interlayer conditions for i = [1,2] are:

Ji = −Di
∂Ci(x, t)

∂x

∣∣∣∣
x=xi−

= −Di+1
∂Ci+1(x, t)

∂x

∣∣∣∣
x=xi+

= Ki(Ci(xi, t)− PiCi+1(xi, t)) (3)

where
Ki is the mass transfer coefficient of dissolved drug between layers i and i + 1 (cm/h),
Pi is the partition coefficient of dissolved drug between layers i and i + 1 (-) and
Ji is the flux between layers i and i + 1 (mg/h-cm2).
The value of Pi gives the ratio between concentrations on each side of the boundary

at equilibrium and Ki is a rate coefficient, indicating how quickly equilibrium is reached.
A high Ki value means that there is no barrier at the boundary, whereas a small value

indicates the presence of a barrier.
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The mathematical model is solved numerically with the finite element method, in-
corporating the boundary conditions. An implicit Euler method is used for the time
integrations. For further details on the numerical model see Gudnason et al. [21].

The unknown partition and mass transfer coefficients are obtained such that the
simulated release curve in the RC matches the experimental results, and furthermore, that
the concentration of drug in the SC layer of the skin matches the tape stripping results. That
is, P1 is estimated from the ratio of the concentration in the SC layer of the skin and the
concentration in the DC. After obtaining a value for P1, the other parameters P2, K1, and K2
are obtained by matching the RC experimental results as closely as possible. The diffusion
coefficient in the skin is determined experimentally by using the lag time method [31].
However, the diffusion coefficients in the DC and the RC are kept large enough for uniform
distribution of the drug.
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3. Results

Experiments and numerical simulations were carried out for three cases: diclofenac
at room temperature (RT), diclofenac at 32 ◦C, and caffeine at 32 ◦C. For each case, the
results from tape stripping and permeation studies are shown, along with simulated release
curves and concentration profiles in the skin at different times. The estimated permeation
parameter values are given for each case. All experimental results are shown as mean
values of all repetitions, with error bars indicating standard deviation.

3.1. Case 1: Diclofenac Solution at Room Temperature

The drug concentrations in the SC, generated from the in vitro skin tape stripping
experiments, are shown in Figure 3a. By adding the amount of drug in all strips, the total
mean value of drug retained in the strips is estimated to be 0.032 mg. The experimental
results for drug concentration in the RC (marked with circles) are shown in Figure 3b,
along with the simulated release curve. The simulated curve fits all experimental data
points accurately, except for one point which is still within the margin of error. Figure 3d
demonstrates how the drug concentration changes with time through the different layers of
the skin. As the experiment was run for 47 h the simulation is also run for 47 h. To obtain
P1, we match the amount of drug in the simulation with the amount from the tape stripping
experiment. As each tape strip is 0.5 µm to 1 µm thick, the total thickness for 70 strips is
0.0035 cm to 0.0070 cm. Hence, to obtain the amount of drug, we compute the area under
the 47-h line (black line) in Figure 3c, from 0 to 0.0035 cm and from 0 to 0.0070 cm, and
multiply by the area of the membrane (0.636 cm2). Carrying out these calculations, we get
a total amount of drug of about 0.022 mg at a depth of 0.0035 cm and about 0.043 mg at a
depth of 0.0070 cm. The average of these two numbers gives 0.032 mg which matches the
experimental result obtained from Figure 3a.

After estimating P1, the rest of the parameters, P2, K1, and K2, are obtained by sim-
ulating the RC release curve. The estimated parameter values are given in Table 2, along
with a summary of data used in the experiments and simulations.

Table 2. Estimated parameter values for simulations of diclofenac at room temperature.

Starting Concentration C0 5.00 mg/mL

Experiment time 47 h

Skin thickness 0.07 cm

Diffusion coefficient 1.2 × 10−3 cm2/h

Partition coefficient P1 8

Partition coefficient P2 25

Mass transfer coefficient K1 0.08 cm/h

Mass transfer coefficient K2 0.04 cm/h

As the drug increases in the RC, it decreases in the DC and the amount is calculated
by the numerical model at each time. Figure 3d shows the discontinuity between layers
schematically and gives the drug concentration in the DC at the end of the simulation (47 h),
along with concentration values for the skin and the RC (same values as in Figure 3b,c) and
the amount of drug in each layer.
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3.2. Case 2: Dicofenac Solution at 32 ◦C

The concentration profiles generated from the in vitro skin tape stripping experiments
are shown in Figure 4a. Again, by adding up the magnitude in all the strips, the mean
total value of the drug retained in the strips is 0.014 mg. The experimental results for
drug concentration in the RC (marked with circles) are shown in Figure 4b, along with the
simulated release curve. Again, the simulated results fit well with experimental data.

Figure 4c shows the simulated drug concentration profiles in the skin at different
time values. This experiment ran for 51.5 h and hence we run the simulation for 51.5 h.
We use the same method as explained above to estimate the value of P1. In this case, the
simulated amount of drug is between 0.012 mg (at a depth of 0.0035 cm) and 0.024 mg (at a
depth of 0.0070 cm) which matches well with the experimental result of 0.014 mg. All the
estimated values of partition coefficients and mass transfer coefficients are given in Table 3,
along with a summary of data used in the experiments and simulations. Figure 4d gives
the drug concentration and the amount of drug in each layer at the end of the simulation
and shows the discontinuity between layers schematically. Furthermore, for this case, we
measured the amount of drug retained in the SC, the rest of the epidermis and dermis, and
hypodermis at the end of the experiment. The results are shown in Figure 4e and were
found to closely match the computed amount of drug as shown in Figure 4d.
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Figure 4. Diclofenac at 32 ◦C. (a) Tape stripping results (mean of all replicates ± standard deviation).
Microtube no. 1 represents tapes no. 1–2 in the top layer of SC and no. 35 represents tapes no. 69–70.
(b) Simulated release curve (solid line) and experimental results (marker). (c) Simulated concentration
profiles in the skin at different times. (d) The concentration and the amount of drug in each layer at
the end of the simulation, showing discontinuity between layers. (e) The measured amount of drug
in the stratum corneum, rest of epidermis and dermis, and hypodermis at the end of the experiment.
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Table 3. Estimated parameter values for simulations of diclofenac at 32 ◦C.

Starting Concentration C0 5.00 mg/mL

Experiment time 51.5 h

Skin thickness 0.1 cm

Diffusion coefficient 1.8 × 10−3 cm2/h

Partition coefficient P1 5

Partition coefficient P2 10

Mass transfer coefficient K1 0.12 cm/h

Mass transfer coefficient K2 0.10 cm/h

3.3. Case 3: Caffeine at 32 ◦C

The concentration profiles generated from the in vitro skin tape stripping experiments
are shown in Figure 5a. The mean value for the total amount of drug retained in the strips
is found to be 0.022 mg.
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Figure 5. Caffeine at 32 ◦C. (a) Tape stripping results (mean of all replicates ± standard deviation).
Microtube no. 1 represents tapes no. 1–2 in the top layer of SC and no. 35 represents tapes no. 69–70.
(b) Simulated release curve (solid line) and experimental results (marker). (c) Simulated concentration
profiles in the skin at different times. (d) The concentration and the amount of drug in each layer at
the end of the simulation, showing discontinuity between layers.

Figure 5b,c show the results from the permeation study (marked with circles), along
with the simulated release curve, and the simulated drug concentration profiles, respectively.
The same method, as explained previously, is used for estimating the value for P1. In this
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case, the simulated amount of drug is between 0.016 mg (at a depth of 0.0035 cm) and
0.032 mg (at a depth of 0.0070 cm), which matches well with the experimental result of
0.022 mg.

The values estimated for partition coefficients and mass transfer coefficients are given
in Table 4, along with a summary of data used in the experiments and simulations. Figure 5d
gives the drug concentration and the magnitude of the drug in each layer at the end of the
simulation and shows the discontinuity between layers schematically.

Table 4. Estimated parameter values for simulations of caffeine at 32 ◦C.

Starting Concentration C0 5.00 mg/mL

Experiment time 53 h

Skin thickness 0.1 cm

Diffusion coefficient 5.0 × 10−3 cm2/h

Partition coefficient P1 8

Partition coefficient P2 23

Mass transfer coefficient K1 0.11 cm/h

Mass transfer coefficient K2 0.08 cm/h

4. Discussion

The transdermal studies were carried out for approximately 48 h, as full-thickness
porcine skin was used. The integrity of the skin may start to deteriorate after 24 h [25]. For
the full thickness, porcine skin used preliminary studies suggested that the skin would
be expected to maintain integrity for up to 48 h. The integrity was assessed by visual
examination via microscope.

There are a number of factors that affect transdermal drug delivery. The degree of
ionization of the drug molecule at a particular pH is very important for the extent of
penetration, and unionized molecules pass barriers of the skin much better than those
that are ionic [12,32,33]. Partition coefficient (log P) is also considered to be an important
and frequently used physicochemical property for predicting skin permeability. Therefore,
both diclofenac and caffeine were chosen as model drugs. The current permeation results
suggest that the physicochemical properties of the compounds are interconnected with their
permeation through the skin in the current research. SC is considered to be the primary
rate-limiting step to transdermal drug absorption. Therefore, the penetrant concentration
in the outermost layer of the skin may apparently be related to the drug concentrations
in deeper tissues. The drug amount retained in SC was identified using the TS technique.
Sink conditions can affect the transdermal drug delivery and in this study, no additives
were added to the receptor media to avoid any enhancing effect of such additives, removed
samples were replaced with fresh PBS but alone cannot assure full sink condition. In this
study not adding any excipients allows us to test the mathematical model and compare the
two model drugs before we enhance our model to account for excipients.

As may be noticed in Figures 3a, 4a and 5a, the amount of penetrant decreases with
increased depth into the skin. The reason for this may be due to increased cohesion of cells,
which increases with SC depth. The TS results suggest that the physicochemical properties
of the compounds are interconnected with the drug amounts retained in the SC. The given
values are interconnected with those values obtained during Franz cell diffusion studies,
e.g., a relationship with the diffusion coefficient of the drug was observed.

This study showed that skin permeation of caffeine and diclofenac at different tem-
peratures were in proportion with their physicochemical properties, and the flux of the
compounds increased with decreasing molecular mass and partition coefficient. It was
observed that a lower partition coefficient showed better permeation, which can be related
to the hydration of the skin. The data obtained during Franz diffusion was within the
expected range.
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Current TS results suggest that the physicochemical properties of the compounds
are as well in proportion with the drug amounts retained in the SC. The amount of drug
retained in the skin increased with decreasing partition coefficient or molecular mass. The
data obtained during the TS experiment was within the expected range.

Drug amounts in the lower layers of the skin were examined as well. It was found that
caffeine and diclofenac had a higher tendency to linger into the epidermis/dermis rather
than the subcutaneous layer or fat.

The modeling results fit the experimental data closely, as shown in Figures 3b, 4b and 5b.
The coefficients computed are shown in Tables 2–4 and demonstrate similar characteristics
in all three cases.

As the results in Tables 2–4 show, both mass transfer coefficients, K1 and K2, have
low values in all three cases. A low value for K1 demonstrates the resistance of the SC
to the drug uptake, whereas a low value of K2 demonstrates the barrier at the boundary
between the skin and the RC. The value of K determines the rate of transition from the
initial stage to equilibrium. Hence, a high value of K means that equilibrium is reached
almost instantaneously, whereas a low value of K means it takes longer for the system to
reach equilibrium. The low K values cause the behavior shown in Figures 3c, 4c and 5c
in which the concentration at the top of the skin increases up to a certain point before
decreasing again as the system approaches equilibrium.

Looking at Figure 3c (case 1), for example. At a time of 15 min the calculated DC
concentration is 4.94 mg/cm3 and if there were no barrier effect the concentration at the
top of the skin should be 39.52 mg/cm3. The fact that it is only 5.72 mg/cm3 is due to the
barrier effect causing a negative jump in concentration between DC and skin. However,
this barrier effect decreases as time passes and we get closer to equilibrium, causing an
increase in concentration at the top of the skin. However, this increase is counteracted by
the decreasing concentration in DC which eventually starts to dominate at approximately
5 h. At 47 h, when we are approaching equilibrium, the calculated DC concentration is
1.71 mg/cm3 whereas the concentration at the top of the skin is 9.82 mg/cm3. The ratio of
these two values is in agreement with the partition coefficient being P1 = 8.

The behavior caused by the low K values is also present at the boundary between the
skin and the RC. Again, consider Figure 3c as an example. Early on, the concentration in the
bottom layer of the skin is minuscule but increases with time. Looking at the discontinuity
between the skin and the RC, we see that the values are greater than the value of P2 for
all time values. Again, the low K value causes a negative jump in the RC value and hence
adds to the discontinuity caused by the partition. Similar behavior is observed in the other
two cases.

When equilibrium is reached, the difference in concentration in the layers is caused
by the partition coefficient alone; the mass transfer coefficient has no effect at this stage.
None of our cases have completely reached equilibrium, but the caffeine trials (case 3)
are the one that is closest. This is shown by the almost flat line in Figure 5c for a time of
53 h. Saturation due to lack of sink condition is possible, but the mathematical model can
adjust to that. Furthermore, Figure 5d shows that the ratio of the concentration values
across the DC/skin boundary, that is, 7.31 mg/cm3/1.01 mg/cm3 approaches the value
of P1 = 8, and the ratio of the concentration values across the skin/RC boundary, that is,
6.98 mg/cm3/0.29 mg/cm3 is close to the value of P2 = 23; see Table 4. It is noted that in
all three cases studied, the values for P2 are higher than values for P1; see Tables 2–4. This
means that there is a greater discontinuity between the RC and the skin than between the
DC and the skin.

5. Conclusions

Drug permeation experiments using porcine skin in a Franz diffusion cell were carried
out, supported by tape stripping and numerical modeling. The tape stripping method
proved to be a valuable addition to the permeation experiments in this study and was used
to quantify the drug in different layers of the skin, as well as determine the partition between
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layers. The numerical simulations were determined to be essential to fully characterize the
diffusion characteristics of a layered system, such as porcine skin, accurately representing
the combined partition and mass transfer effects at the interlayer boundaries. A close
correlation was found between the experimental diffusion studies, tape stripping, and
the numerical model, indicating that the characteristics are accurately represented by the
mathematical modeling.
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