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Abstract

Invasive species present a worldwide concern as competition and pathogen reservoirs

for native species. Specifically, the invasive social wasp, Vespula pensylvanica, is native

to western North America and has become naturalized in Hawaii, where it exerts pres-

sures on native arthropod communities as a competitor and predator. As invasive spe-

cies may alter the microbial and disease ecology of their introduced ranges, there is a

need to understand the microbiomes and virology of social wasps. We used 16S rRNA

gene sequencing to characterize the microbiome of V. pensylvanica samples pooled by

colony across two geographically distinct ranges and found that wasps generally associ-

ate with taxa within the bacterial genera Fructobacillus, Fructilactobacillus, Lactococcus,

Leuconostoc, and Zymobacter, and likely associate with environmentally-acquired bac-

teria. Furthermore, V. pensylvanica harbors—and in some cases were dominated by—

many endosymbionts including Wolbachia, Sodalis, Arsenophonus, and Rickettsia, and

were found to contain bee-associated taxa, likely due to scavenging on or predation

upon honey bees. Next, we used reverse-transcriptase quantitative PCR to assay col-

ony-level infection intensity for Moku virus (family: Iflaviridae), a recently-described dis-

ease that is known to infect multiple Hymenopteran species. While Moku virus was

prevalent and in high titer, it did not associate with microbial diversity, indicating that the

microbiome may not directly interact with Moku virus in V. pensylvanica in meaningful

ways. Collectively, our results suggest that the invasive social wasp V. pensylvanica

associates with a simple microbiome, may be infected with putative endosymbionts,

likely acquires bacterial taxa from the environment and diet, and is often infected with

Moku virus. Our results suggest that V. pensylvanica, like other invasive social insects,

has the potential to act as a reservoir for bacteria pathogenic to other pollinators, though

this requires experimental demonstration.
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Introduction

Social insects present some of the most widespread and damaging examples of invasive species

worldwide [1]. Invasive ants, bees, and wasps exert outsized effects on the ecosystems they are

introduced to—either by predation of, or competition with, native fauna [2–5]. Several species

of yellowjacket wasps in the genus Vespula are particularly problematic in this respect [5]. Dur-

ing the 20th century, members of the genus Vespula have become invasive in South America,

New Zealand, Australia, South Africa, and a variety of islands where native arthropods have not

coevolved with predatory vespines [6]. Given that these species are generalist predators, oppor-

tunistic scavengers, and often reach extreme densities in new environments, the effects on

native arthropod communities have been profound. One example occurs in the Hawaiian

Islands, where Vespula pensylvanica became widespread in the 1970s, introduced from its native

range of western North America [7, 8]. Throughout most of the native range on the mainland,

V. pensylvanica typically exhibits the annual life cycle common to most temperate social wasps

and bees: colonies are founded by solitary queens in the spring, grow through the summer, and

produce many dispersing males and daughter queens in the fall before dying [9]. Only hibernat-

ing new queens survive the winter. However, occasionally in the native range [10] and more

commonly in subtropical Hawaii [7, 11], colonies survive the winter and attain tremendous

sizes through a second or third season of growth [7]. These perennial colonies have an outsized

effect on arthropod communities, collecting much more prey than typical annual colonies, and

also exerting predation pressure throughout the year [11]. A prerequisite for extended colony

lifespan is likely the adoption of multiple secondary queens, which is common in Hawaii [7,

12]. Foreign queen adoption may be facilitated by weak nestmate recognition in V. pensylvanica
and porous colony boundaries, apparent in both the native and introduced range [13]. Under-

standing the ecological, genetic and social factors that have facilitated the successful Hawaiian

invasion and the rise of the large and long-lived colony phenotype in Hawaii will be essential in

mitigating the effects of the invasion and avoiding similar invasions elsewhere.

Invasive species potentially alter microbes present in their introduced environment [14], or

the microbiomes of native species [15], and may harbor symbionts that allow these invasive spe-

cies to exploit new resources [16]. Hymenoptera are often exposed to microbes through environ-

mental contact [17–19], vertical transmission [20], or social transfer between nestmates [21, 22].

Within hymenopterans, there exists an interesting continuum of sociality [23] that allows for

studies into the effects of lifestyle and host-microbe interactions. For example, social bees have a

defined and consistent gut microbiome [21, 24], and some social ants (e.g., Cephalotes spp.) and

wasps (Vespa and Vespula spp.) seem to have simple core microbiomes, although it is unknown

how ubiquitous the taxa are between colonies [25–28]. Conversely, solitary Hymenoptera, gen-

erally associate with environmentally-acquired bacteria [17–19, 29–31], although there is evi-

dence of megachilid, halictid, and apid solitary bees harboring some microbial taxa more than

would likely be expected from solely environmental transmission [32, 33]. Furthermore, hyme-

nopterans often associate with a variety of endosymbiotic bacteria that alter fitness, such as Rick-
ettsia, Arsenophonus, andWolbachia [20, 34–36], along with symbioses whose effects are

unknown, such as that of Sodalis [37, 38]. Given that previous studies have found sequences cor-

responding to consumed prey bee-associated bacterial symbionts in other vespids [25], and that

V. pensylvanica is native to the Western United States and is invasive to Hawaii [11], V. pensylva-
nica represents an excellent model species to understand the microbial ecology of isolated popu-

lations of invasive social wasps and possible mechanisms of microbial transmission.

Viral infections are widespread concerns for social Hymenoptera, and have been studied

extensively in honey bees and Vespula spp. For example, honey bees harbor several debilitating

viral diseases such as Deformed Wing Virus (DWV), Slow Bee Paralysis Virus (SBPV),
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Sacbrood Virus (SBV), Black Queen Cell Virus (BQCV), Kashmir Bee Virus (KBV), and others

known to contribute to colony loss and impaired fitness (reviewed in [39]). While these are

often thought of as “honey bee viruses,” infections in social wasps have been identified indicat-

ing the potential for cross-infection between insect species [28, 40–44]. Invasive species such

as V. pensylvanicamay spread diseases to new ranges and novel hosts, or conversely, be

infected by endemic diseases that are commonly found in newly sympatric hosts [28, 40, 44].

In order to study the effects of emerging infectious diseases on insect populations, we surveyed

V. pensylvanica colonies for Moku virus—a recently-described single-stranded positive-sense

RNA virus (family: Iflaviridae) originally described in wasp colonies in Hawaii [45]. Aside

from Hawaii, Moku virus has been found in Vespula spp. from several geographical locations,

and has been found in honey bees and their associated Varroamites [28, 45, 46]. While Moku

virus is apparently widespread and may infect multiple insect species, the transmission poten-

tial, virulence, and effects on insect populations of Moku infections are currently unknown,

although it is hypothesized that Vespula spp. are the natural reservoirs of this disease [45]. Pre-

vious work in our study population of V. pensylvanica suggests that Moku virus loads are

strongly bimodal at the colony level, that colonies with high loads have reduced longevity in

some years, and colonies that are at higher densities have higher Moku loads [47].

As the microbial ecology and effects of Moku virus on V. pensylvanica are largely unknown,

we conducted an exploratory study using 16S rRNA gene sequencing and RT-qPCR on these

invasive social wasps at the colony level. We investigated three lines of inquiry to better under-

stand the microbial communities of our study organism: First, does V. pensylvanica associate

with a defined microbiome, is there any evidence of environmental transmission of microbes,

and are their microbiomes similar in the native and invasive range? Second, does this wasp

species associate with endosymbiotic bacteria? Third, are there associations between Moku

virus and the wasp microbiome?

Materials and methods

Field sites and collections

Fieldwork was conducted under a permit from the National Park Service (HAVO-2016-SCI-

0050). We collected adult worker wasps from the entrances of colonies found along Hilina Pali

Road and at Kipuka Kahali’i in Hawaii Volcanoes National Park (HAVO) on the Big Island of

Hawaii and the campus of the University of California, Riverside (UCR) in Riverside, CA. Col-

onies were discovered by following foragers back to the nest site, or by noticing characteristic

foraging traffic at the colony entrance. We collected between 20 and 40 adult worker wasps

from each of 40 colonies at HAVO between August 25–27, 2017, as well as from 13 colonies at

UCR between October 6–26, 2017 (see S1 Table for nest site coordinates and sampling dates).

We collected V. pensylvanica workers from nest entrances using a net or a portable vacuum.

While collecting, we attempted not to disturb the colony and thus primarily collected foragers,

though in some cases we likely collected guard wasps as well. We flash-froze the collected

adults alive in a liquid nitrogen dry shipper, and then transferred to a -80˚C freezer upon

return to the lab until processing. Thirty-seven colonies sampled in Hawaii are included in a

companion study on colony longevity in V. pensylvanica [47]. Three of the Hawaii colonies

were likely perennial colonies that had survived from the previous year, given their size, and

none of the monitored colonies in Hawaii survived the next winter.

DNA extractions and library preparation

We extracted DNA by first pooling 20 wasps per colony (N = 53 colonies). We homogenized

the samples by adding still-frozen insects to 15 mL tubes with grinding balls using a Geno/
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Grinder (SPEX SamplePrep, Metuchen, NJ), with the block pre-chilled with liquid nitrogen.

We then quickly transferred the homogenate to new sample tubes and re-froze at -80˚C until

DNA or RNA extraction. Ultimately, we extracted DNA from a ~20 mg aliquot of thawed

homogenate using a Qiagen DNeasy kit (Qiagen, Valencia, CA) by following the manufactur-

er’s protocol plus an overnight incubation at 55˚C.

We prepared paired-end 16S rRNA gene libraries for samples (N = 53) using a protocol

based on Engel et al. [48], Rothman et al. 2018 [49] and 2020 [50], and McFrederick and

Rehan 2016 [51]. Briefly, we generated libraries with a universal 16S primer sequence corre-

sponding to the region 799–1115 (799F-mod3: CMGGATTAGATACCCKGG and 1115R: AGG
GTTGCGCTCGTTG) chosen to avoid plant plastid contamination [52, 53], a unique barcode

sequence, and Illumina adapter sequence through two rounds of PCR. We normalized the

resulting libraries with a SequalPrep Normalization kit (ThermoFisher, Waltham, MA), then

pooled the libraries and performed a final cleanup with a PureLink PCR Purification kit (Invi-

trogen, Carlsbad, CA). Finally, we sequenced the libraries with a V3 Reagent Kit with 2 X 300

cycles on an Illumina MiSeq Sequencer in the UC Riverside Institute for Integrated Genome

Biology. We also ran blank samples to control for reagent contamination that we prepared and

sequenced in the same way as regular samples. Raw sequence data are available on the NCBI

Sequence Read Archive under accession number PRJNA707052.

Quantification of Moku viral titer

We used data reported in another study on Moku Virus and colony longevity [47] and repeat

the methods here for clarity. Briefly, we quantified Moku virus titer using reverse-transcription

quantitative PCR (RT-qPCR) of viral RNA. For each colony, we extracted RNA from a ~20 mg

aliquot of re-frozen wasp homogenate from 20 pooled workers (the homogenization proce-

dure is described above) using 1 ml of TRIsure (Bioline Inc., Taunton, MA) following the

manufacturer’s protocols. We then quantified RNA for each sample using a Qubit spectropho-

tometer (ThermoFisher Scientific, Waltham, MA), and normalized RNA concentration to

2ng/ul. We then amplified Moku virus RNA using the primers MVF and MVR [46], and

amplified Vespula eIF3 [54] as a reference gene. We used a BioRad CFX Real Time PCR

machine (BioRad, Hercules, CA), and Luna OneStep RT-qPCR kits (New England Biolabs,

Ipswich, MA) according to manufacturer instructions, with 10ul reaction volumes, 10ng of

RNA per reaction, and an annealing temperature of 60˚C. Melt curves were checked to verify a

single PCR product. We quantified reaction efficiencies alongside samples, and always

obtained efficiencies between 95 and 105% for the 10-fold dilution series spanning the range

of observed sample Cq values. We ran all samples in duplicate, and averaged Cq values. We

calculated relative Moku Virus titer as–(Cqmoku-CqeIF3) for each sample, resulting in an index

with higher values corresponding to greater viral titer on a log scale. Because colony virus titer

was strongly bimodal in a larger dataset including two years of data [47], we used a titer of 7 as

a threshold and classified colonies as either high-titer or low-titer.

Bioinformatics and statistics

We processed the 16S rRNA gene libraries with the QIIME2 pipeline (v2019.7) [55] by first

trimming adapters, sequencing primers, and low-quality ends from the reads, then used

DADA2 [56] to quality filter the reads, remove singletons, and bin sequences into Amplicon

Sequence Variants (ASVs; 100% identical sequence reads) using the default parameters, fol-

lowed by reagent contamination removal with the R package “decontam” [57]. We used the

QIIME2 q2-feature classifier [58] to assign taxonomy to the ASVs with the SILVA database

trained to the 799–1115 region of the 16S rRNA gene [59] (as well as local BLAST searches
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against the NCBI 16S Microbial database), and generated sequence alignments with MAFFT

[60], then tabulated ASV counts in a table. We used this table to calculate diversity metrics,

and tested the statistical significance of alpha diversity (Shannon Diversity Index) with Krus-

kal-Wallis tests in QIIME2, and beta diversity (Bray-Curtis dissimilarities) through Adonis

PERMANOVA (999 permutations) with the R package “vegan” [61] in R v. 3.5.1 [62]. We

visualized the Shannon diversities through boxplots, proportional abundance of bacterial taxa

as a stacked bar plot, and beta diversity through Non-metric Multidimensional Scaling

(NMDS) with the R package “ggplot2” [63]. We indicated shared and unique ASVs through

Venn diagrams with the BEG Venn Diagram tool (http://bioinformatics.psb.ugent.be), and

plotted heatmaps with “pheatmap” [64]. We used ANCOM [65] to test for differentially abun-

dant taxa between locations, and used mantel tests in “vegan” to test for correlations between

bacterial diversity and Moku virus titer.

Results

We obtained 1,033,410 quality-filtered (average quality score Q38) 16S rRNA gene sequences

with an average of 19,498 reads per sample from two separate populations (Total N = 53; “Riv-

erside” N = 13; “Hawaii” N = 40) that clustered into 2,943 unique ASVs (S1 File). Through rar-

efaction analyses, we determined that we had acceptable ASV coverage at a read depth of 2,232

reads (S1 Fig), which left us with N = 45 samples (Riverside, CA [N = 12], Volcanoes, HI

[N = 33]). We compared the Shannon diversity of our samples, but did not find a significant

difference in alpha diversity between the two populations (H = 2.62, P = 0.11, Fig 1). Most of

the ASVs were unique to each population, with 872 (29.6% of ASVs, 12.0% of reads) only

found in Riverside samples, 1,930 (65.6% of ASVs, 40.3% of reads) only found in Hawaiian

samples, and 141 (4.8% of ASVs, 47.7% of reads) found in both populations (Fig 1).

After removing likely reagent contamination identified in our control blanks (generally

Pseudomonas spp, Shewanella spp.,Halomonas spp.,Micrococcus spp., Cutibacterium acnes,
Streptococcus oralis, and Rhizobia), the top 10 most abundant bacterial families and their rela-

tive abundances in our samples were as follows: Leuconostocaceae (32.8%), Enterobacteriaceae

(17.1%), Microbacteriaceae (9.9%), Streptococcaceae (3.6%), Lactobacillaceae (3.6%), Halomo-

nadacae (3.1%), Rhizobiaceae (2.9%), Acetobacteraceae (2.6%), Rickettsiaceae (2.4%), and

Moraxellaceae (1.9%), while all other families combined comprised an average of 20.2% of the

proportional abundance of taxa (Fig 2). Likewise, while our samples contained many individ-

ual ASVs, they were dominated by relatively few. The top 10 most abundant ASVs were: a Fri-
goribacterium faeni ASV (9.7%), four Fructobacillus ASVs (F. fructosus [7.8%], F. fructosus
[7.1%], and two unknown Fructobacillus spp. [6.3% and 2.5%]), an Arsenophonus sp. ASV

(6.3%), a Leuconostoc sp. ASV (3.7%), an ASV of Lactococcus lactis (2.9%), a Rhizobium sp.

ASV (2.7%), and a Zymobacter palmae ASV (2.5%), which cumulatively comprise 51.6% of the

wasp microbial communities (Fig 2). Lastly, seven individual ASVs were both in greater than

50% of total samples and in both Riverside and Hawaiian populations, indicating at least some

commonality between two geographically distinct populations of wasps: Two ASVs of F. fruc-
tosus, an ASV of Zymobacter palmae, an ASV of Lactococcus lactis, an ASV of Fructilactobacil-
lus vespulae, and an unknown Leuconostoc ASV (Fig 3). We also found several bacterial genera

associated with wasp symbiosis, and plot the relative abundances of Arsenophonus, Rickettsia,

Sodalis, andWolbachia in Fig 3.

We used Adonis PERMANOVA to investigate the effects of geographical location on the

beta diversity of V. pensylvanica. We saw a significant difference in the diversity of bacteria in

wasps collected from Riverside versus Hawaii (F = 5.9, R2 = 0.12, P< 0.001; Fig 4), then used

ANCOM to test for differentially abundant bacterial ASVs at greater than 0.5% relative
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abundance between the two locations (Wald > 25; we note that several of the differentially

abundant ASVs were found only in one site, Fig 5).

We compared the microbiomes of wasp colonies with low Moku virus titer (N = 7) or high

Moku virus titer (N = 26) in our Hawaiian samples (we did not detect Moku virus in any Riv-

erside samples). We found no significant effect of viral titer on either the alpha (H = 2.95,

P = 0.09) or beta diversity (F = 0.99, R2 = 0.03, P = 0.45) in our samples, and did not find any

significantly differentially abundant ASVs between high-titer and low-titer colonies. We also

ran mantel tests using Spearman correlations to test relationships between wasps’ alpha (Shan-

non diversity index) and beta (Bray-Curtis dissimilarities) microbial diversity with Moku virus

titer, but Moku virus titer was not significantly correlated with microbial alpha or beta diver-

sity in our samples (alpha: ρ = -0.20, P = 0.32; beta: ρ = 0.07, P = 0.41).

Discussion

Our results suggest that the invasive wasp V. pensylvanica associates with a simple microbiome

consisting largely of lactic acid bacteria and Zymobacter, along with significant associations of

endosymbiotic bacteria. Notably, by comparing wasp colonies from two geographically-dis-

tinct locations, we also show that social wasp-associated microbial communities may contain

environmentally-associated microbes similar to other Hymenoptera [17, 18, 29, 50], and as

Fig 1. A) Boxplot of the Shannon diversities of wasp microbial communities from Riverside or Hawaii, which were not shown to be significantly different (H = 2.62,

P = 0.11). B) Venn diagram showing the number of bacterial ASVs shared or unique between Hawaii and Riverside samples. C) Stacked barplot indicating the

proportion of total reads shared or unique between Hawaii and Riverside samples.

https://doi.org/10.1371/journal.pone.0255463.g001
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mentioned above, wasp colonies appear to harbor some identical microbial taxa across their

range. Similar to our findings, previous work has shown that some social Vespa species also

possess simple microbiomes and associate with prey bees’ bacterial symbionts [25]. In our

small-scale study, we found that the microbiomes of V. pensylvanica colonies are unaffected by

Moku infection, and a larger sample size would be useful to confirm this result. Coupled with

the fact that Moku virus is transmissible to honey bees [45, 46], multispecies infection interac-

tions may occur between wasps and other insects. More research is needed to understand how

ecological invasions affect insect populations and their associated microbes.

Fig 2. Stacked bar plot of the top ten overall most proportionally abundant bacterial A) families and B) Amplicon Sequence Variants (ASVs) in our samples. The

letters “H” or “R” denotes Hawaiian or Riverside sampling locations.

https://doi.org/10.1371/journal.pone.0255463.g002
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The microbial communities of wasp colonies in our study were somewhat different based

on their geographical location, suggesting that environmental exposure affects which bacteria

they associate with. For example, Fructobacillus spp. and Leuconostoc spp.–taxa known to

Fig 3. Heatmap of the proportional abundances of Amplicon Sequence Variants (ASVs) identified in at least 50% of our samples and in both locations, and

genera that have been identified in other studies as potential insect symbionts. Rows are individual ASVs or genera, columns are individual samples, and heat color

represents proportional abundance of these taxa. Final panel is the mean proportional abundance of each taxon in either Hawaiian or Riverside samples.

https://doi.org/10.1371/journal.pone.0255463.g003

Fig 4. Non-metric multidimensional scaling (NMDS) plot of the Bray-Curtis dissimilarities of samples between Riverside and

Hawaiian locations. Sampling location significantly affected the wasp microbiome (F = 5.9, R2 = 0.12, P< 0.001).

https://doi.org/10.1371/journal.pone.0255463.g004
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associate with hymenopterans and flowers [17, 51, 66]—were significantly different between

Hawaii and Riverside samples, and may be potential symbionts for insects or plants. Our

results may also be affected by uneven sampling, which may have caused us to find more total

ASVs in wasps from Hawaii simply due to a greater number of these samples. Interestingly,

while environment apparently plays a significant role in bacterial inoculation, the wasps seem

to associate with taxa conserved across geographic distances, consisting largely of members of

the Lactobacillaceae family along with an ASV of Zymobacter palmae. While we are unable to

conclude that this microbiome is maintained through generations, previous work has shown

that other social wasps consistently harbored Z. palmae, and seemed to possess a small micro-

bial community [25], although we recognize that we sequenced a different region of the 16S

rRNA gene, potentially limiting direct comparisons with other amplicon studies. Likewise, as

we analyzed pooled, whole wasps, we may be detecting bacteria present on the wasps and only

reflect their surroundings, not a potential symbiosis. Similarly, we found taxa corresponding

to honey bee gut microbiota suggesting that wasps were preying upon honey bees and were

exposed to their bacteria, confirming previous results [25]. While this agrees with previous

studies, the honey bee core bacteria were not seen ubiquitously throughout our samples, sug-

gesting that the bacteria are not colonizing the wasps and are likely being detected only as

DNA presence, not live cells. This result was not entirely surprising, as many members of the

honey bee core gut bacteria are coevolved, specialized taxa that are unlikely to colonize other

species [67]. As there is interest in the ability of wasps to vector diseases, assaying the specific

anatomical locations and viability of wasp- and bee-associated bacteria present in V. pensylva-
nica would help uncover more interactions between invasive and native wasps.

Wasps in our study harbored a variety of putatively endosymbiotic bacteria—especially

those collected in Hawaii. These endosymbionts included bacteria in the genera Arsenophonus,
Rickettsia, Sodalis, andWolbachia, which have been found in other wasp species [44, 68, 69],

but to the best of our knowledge, we are the first to find Rickettsia and Sodalis spp. in Vespula
species. Interestingly, several of our samples’ microbiomes were dominated by either Arseno-
phonus or Rickettsia implying that these bacteria are likely able to either outcompete other

environmentally-acquired taxa or conserved microbes or reach such high densities that they

Fig 5. Boxplots showing the relative abundances of bacterial ASVs at greater than 0.5% overall relative abundance that were differentially abundant between

Riverside and Hawaiian locations as tested with ANCOM.

https://doi.org/10.1371/journal.pone.0255463.g005
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dominate the sequencing results. While our results are promising, we are unable to rule out

sampling/sequencing error as a source of the peculiarly high proportion of endosymbionts,

and as our samples were pooled, we may simply be detecting a colony-wide infection rather

than individual wasps’ microbes. We are also unable to track the transmission mode of the

endosymbionts, especially as some are known to have complex epidemiology [70]. Addition-

ally, in other samples, endosymbiont infections were either not detected or in lower propor-

tional abundance as part of a more complex microbial community, especially when comparing

the much lower levels in wasps collected in Riverside versus Hawaii. These two apparently con-

flicting results suggest that endosymbionts are not ubiquitous in V. pensylvanica colonies, and

as the wasp colonies otherwise appeared normal, may not be virulent or beneficial to colonies.

As our data are compositional, we are unable to assess the bacterial load of the endosymbionts

at this time, as infection titer is likely important in understanding infection dynamics [71].

Suggestively, colony-level Arsenophonus titer (quantified with qPCR) was correlated with the

proximity of wasp colonies to honey bee hives at the Hawaii field site [47], which could imply

spillover from honey bees, although this remains to be tested. We suggest that manipulation

studies be conducted with endosymbiotic bacteria to probe deeper into both individual- and

colony-level effects on wasps in multiple generations.

Neither Moku virus presence nor titer affected the wasps’ microbiomes. Moku virus is a

recently-discovered virus that is known to infect V. pensylvanica and honey bees, and has been

previously detected in Hawaii, the United Kingdom, and Belgium [45, 46]—although the viru-

lence, infectivity, and range of this virus is currently unknown. Moku virus titer predicted Ves-
pula colony longevity in 2016 at our Hawaii field site, but not in 2017 when the samples in this

study were collected, suggesting a variable role of this virus in wasp colony dynamics [47].

Moku virus presence and titer were not associated with microbiome diversity, indicating that

there may not be cross-talk between the microbiome and this particular viral infection in social

wasps. Likewise, as a non-phage virus, Moku likely does not directly infect bacteria [45]. Many

other non-viral hymenopteran diseases are known to interact with the microbiome [72, 73],

and in bees the gut microbiome is heavily involved in immune function and defense against

parasites [73–76]. Even though Moku virus did not affect the microbiome, this virus can still

infect honey bees, which indicates the potential for introduced wasps to transmit disease to

nontarget hosts [44, 77].

In summary, our data suggest that the social wasp V. pensylvanica possesses a simple micro-

biome mainly composed of lactic acid bacteria and putatively environmentally-acquired taxa

along with several species of endosymbionts. Furthermore, we show that these invasive wasps

likely maintain some of these core bacteria across geographically distinct regions, indicating

potential symbioses. We also found that wasp colony microbiomes are not affected by Moku

virus presence, despite high titers, which supports the hypothesis of V. pensylvanica being a

natural reservoir for this disease, along with a potential vector to other insects. We suggest that

future studies examine the physiological effects of Moku virus on wasps and other Hymenop-

tera, and the potential for invasive wasps to change the microbial and viral ecology of their

introduced ranges. We are also interested in assaying the contributions of wasps’ microbes to

colony fitness and nutrition and subsequent work should be conducted to understand the

microbial ecology of social wasps.
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