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Arrhythmia Risk and Stratification

The health benefits of exercise are well established and extend beyond 
the cardiovascular system.1 These benefits accrue from the modulation 
of traditional risk factors for atherosclerotic cardiovascular disease, as 
well as through an anti-inflammatory effect on the vascular endothelium 
and changes in autonomic regulation.2 A meta-analysis in almost 
900,000 individuals demonstrated that the physically active group had 
a 35% reduction in the risk of cardiovascular death and 33% reduction in 
all‑cause mortality.3

The WHO recommends a minimum of 150 minutes of moderate-intensity 
exercise or 75 minutes of vigorous-intensity exercise per week. 4 A cohort 
of nearly 650,000 individuals participating in physical activity at half these 
recommended levels, at the recommended levels and at three times the 
recommended levels, gained 1.8, 3.4 and 4.3 years of life, respectively.5 
Higher cardiorespiratory fitness levels correlate with greater benefit, with 
a mortality risk reduction of 13% for each additional metabolic equivalent 
(MET) increase in exercise capacity.6,7 These data suggest that, at the 
population level, a greater volume of exercise results in greater 
cardiovascular benefit. A more cautious approach is necessary in 
individuals with established heart disease, where the volume and intensity 
of exercise may need to be moderated.8

Endurance athletes routinely exercise far beyond the WHO 
recommendations.9,10 The sustained elevation of cardiac pressure and 
volume loads associated with regular exercise promote a series of 
electrical, structural and functional adaptations, collectively termed 
‘athlete’s heart’. The nature and magnitude of changes vary by sporting 

discipline, ethnicity, age and sex, and can overlap with mild phenotypes of 
conditions associated with arrhythmias and sudden cardiac death (SCD).11 
Extreme cavity dilatation, left ventricular (LV) hypertrophy, elevated 
coronary artery calcium (CAC) scores, acute cardiac biomarker release, 
myocardial fibrosis and cardiac arrhythmias have all been reported, 
raising concern of a reverse U-shaped relationship between the volume 
of exercise and cardiovascular health, with diminishing cardiovascular 
benefit and potential harm.12–15 Therefore, there is ongoing debate as to 
whether there is a threshold that constitutes ‘excess of exercise’, which 
may induce harm. To separate myth from reality, this review reports on the 
evidence supporting the notion of ‘too much exercise’ and the proposed 
mechanisms of exercise-induced cardiac arrhythmias in ostensibly healthy 
athletes.

AF
AF is the most common sustained arrhythmia in the general population; it 
is a major cause of ischaemic stroke, heart failure and impairment in 
cognition and quality of life, and increases the risk of death.16–18 The 
incidence of AF increases with age, given that age in itself is a determinant 
of AF. Moreover, advanced age is associated with cardiovascular risk 
factors, heart failure, structural heart disease, coronary artery disease and 
chronic kidney disease, all of which are linked with an increased risk of 
AF.19 It is well established that exercise mitigates such risk factors and, as 
such, regular exercise can prevent AF onset, as well as also improve 
symptoms, morbidity and mortality in those with established AF.20–22 A 
study of 6,000 veterans with a mean age of 56.8 years undergoing a 
symptom-limited exercise tolerance test found exercise capacity to be 
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inversely related to the incidence of AF during a median follow-up of 
8  years. The fittest individuals were found to have the lowest risk of 
developing AF, with a 21% decrease for each MET increase in exercise 
capacity.20 The Cardiovascular Health Study of 5,446 adults aged 
>65  years identified greater leisure time activity and walking as being 
associated with a lower incidence of AF, with progressively lower risk with 
greater activity levels, and a 44% risk reduction in those undertaking 
moderate physical activity.23 Importantly, however, risk reduction 
diminished in those undertaking high-intensity exercise (>6 METs).23

An emerging body of evidence has since supported a link between long-
term intense endurance exercise and AF in an ‘exercise paradox’ (Figure 1). 
Larger epidemiological studies and several meta-analyses have 
demonstrated that the incidence of AF is two- to fivefold greater in 
endurance athletes than in non-athletes.24–29 The elevated risk in the 
athletic group dissipates with increasing age (>55 years) and the presence 
of cardiovascular risk factors. There is evidence to support the notion that 
exercise intensity, duration and type of sport affect the onset of AF. In a 
study of 52,755 cross-country skiers participating in a 90 km cross-country 
skiing race, the participants who completed more than five races were at 
highest risk of AF, and were more likely to develop AF than those who 
undertook one race (HR 1.29).24 Similar findings have been observed 
among healthy, middle-aged male physicians, with those participating in 
higher-intensity jogging having a 53% higher risk of AF compared with 
men who did not exercise.30 This would suggest that the association 
between exercise and AF is not restricted to elite athletes, and is also 
observed in the general population. However, the exact dose of exercise 
that confers risk of AF remains unclear, with high-quality prospective 
studies with well-defined study populations still lacking. A figure of around 
1,500–2,000 lifetime exercise hours has been suggested as the threshold 
at which AF risk increases, with a peak age of onset at >40 years.31 AF in 
younger athletes is unusual and should prompt evaluation for underlying 
heart disease.32,33

Most studies investigating the relationship between AF and exercise 
have focused on male elite athletes, who historically dominated the 
landscape of elite sports. The link between exercise and AF in female 
athletes is less clear. In a large cohort of more than 140,000 male and 
160,000 female athletes, increasing levels of physical activity were 
associated with AF in male, but not female, participants.34 A meta-
analysis of 22 studies identified an increased risk of AF in men 
undertaking intense exercise but, conversely, intense exercise was 
protective in women.25 Similarly, a more recent meta-analysis also 
concluded that the general risk of AF is lower in female than male 
athletes.27 However, there remains a lack of data on high-level female 

endurance athletes, who would surpass the level of exercise undertaken 
by the female participants of these studies.

The mechanism of AF in athletes is not well understood, with much of 
our knowledge based on animal models. Vagal tone, which is chronically 
elevated in athletes, is thought to be one of the most important 
contributors to the development of AF.35 In addition, atrial remodelling, in 
the form of atrial dilatation and fibrosis, is increasingly being recognised 
as an important factor. Atrial remodelling in athletes is considered to 
be a physiological response to exercise, because the overall reservoir 
function appears to be preserved with atrial dilatation; however, given 
that atrial dilatation in pathological conditions contributes to the 
development of AF, it remains to be seen how distinct atrial remodelling 
in athletes is from that seen in pathological states.36,37 AF episodes are 
most common during states of increased parasympathetic tone (rest, 
sleep), but sympathetic stimulation during exercise may also trigger AF, 
in association with atrial wall stretch and inflammatory cytokines.15 In 
a study of rat models of chronic endurance exercise, AF was induced 
after 16 weeks of training with identifiable atrial dilatation, fibrosis in the 
atria and right ventricle (RV) and autonomic changes, which did not fully 
resolve with detraining.14

Bradyarrhythmias
Sinus bradycardia and sinus pauses are common in endurance athletes. 
In a study of 62 former professional male cyclists, compared with 62 well-
matched controls (male golfers), the former endurance athletes 
demonstrated more frequent sinus bradycardia, sinus node dysfunction 
and pacemaker implantation for bradyarrhythmias relative to the control 
group.38 This is widely believed to be a consequence of high vagal tone, 
although, because these findings can persist despite detraining, adverse 
remodelling and fibrosis of the conduction system are also thought to be 
contributing factors.38 More recently, evidence suggests significant 
electrical remodelling within the sinus node, with downregulation of 
potassium/sodium hyperpolarisation activated cyclic nucleotide-gated 
channel 4 (HCN-4).39,40 A possible dose–response relationship has also 
been suggested, with a study of cross-country skiers demonstrating that 
those who participated in more races had a higher risk of sinus node 
disease or third-degree atrioventricular block.24

Ventricular Arrythmias
Premature Ventricular Beats
Premature ventricular beats (PVB) are fairly common in athletes and are 
usually benign. However, they may be the only sign of heart disease, 
often leading to comprehensive evaluation. It is well established that 
PVBs may reflect the broader phenotype of cardiomyopathies and help 

Figure 1: Characteristics of AF in Masters Athletes (Age >40 years)
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differentiate pathology from physiological adaptation to exercise, 
particularly in athletes with mild phenotypic expression, often referred to 
as the ‘grey zone’.

Data supporting the notion that PVBs are more frequent in athletes 
and may represent a feature of athletic adaptation are contrasted by 
studies that show similar burden of ectopy in athletic and non-athletic 
individuals.41–43 Comparisons between studies are challenging due to 
differences in methodologies to record and report PVBs, as well as the 
absence of a standardised protocol guiding further investigation. PVBs 
have been reported in up to 14% of young athletes and 26% of veteran 
athletes, with no convincing association between sporting discipline, 
volume or intensity of exercise, years of sports participation and burden or 
complexity of PVBs.42–44 Furthermore, the overall burden of PVBs increases 
with age. These findings do not support the hypothesis that endurance 
sports activity increases the burden of ventricular arrhythmias.42–44

The PVB characteristics that imply association with disease are evolving 
(Figure 2). Traditionally, a frequency in excess of 2,000 PVBs/24 hours has 
been considered a red flag.41 Recently, however, evaluation of the 
morphology of PVBs, as a surrogate of ventricular origin, has emerged as 
the key factor in differentiating benign from potentially sinister PVBs.44–46 
Frequent PVBs as a result of focal automaticity, emerging from the outflow 
tracts or from the fascicles of the left bundle branches, are relatively 
common and, in the absence of structural heart disease, should be 
considered benign.42,43 Other morphologies, such as PVBs with left or 
wide right bundle branch block or with intermediate or superior axis, are 
relatively uncommon and should be investigated further.46–48 Similarly, 
short coupling intervals, increasing PVB frequency during exercise and 
multifocal ectopy should prompt further evaluation. In particular, exercise-
induced PVBs with multiple and/or alternating morphologies (bidirectional) 
may raise suspicion of underlying catecholaminergic polymorphic 
ventricular tachycardia.49

Effects on Ion Channels
Regular exercise exerts a significant effect on the expression and function of 
cardiac ion channels. Athletes exhibit longer QT intervals than sedentary 
individuals, with corrected QT intervals of 470 ms in male athletes and 
480 ms in female athletes accepted as the upper limits of normal.8 Exercise-
induced QT prolongation may confer an increased risk in individuals with 
underlying long QT syndrome (LQTS) because adrenergic surges and 
emotional stress may trigger arrhythmias in LQT1 and LQT2, respectively.50–53 
Moreover, exercise-induced prolongation of the QT interval may pose 

considerable challenges in differentiating physiological adaptation from 
congenital LQTS, and potentially offering false reassurance to athletes at 
risk. A recent study demonstrated an exercise-induced QT prolongation 
phenotype, mimicking congenital LQTS, which reverts back to normal after 
a period of detraining.54 Although no arrhythmic events were recorded, 
more data are needed to fully understand the arrhythmic risk in individuals 
with acquired QT prolongation.54

Similarly, repolarisation patterns on the athlete’s ECG may overlap with 
the Brugada phenotype, causing a diagnostic conundrum.55 Although 
there are no clear data supporting a relationship between exercise and 
SCD in patients with Brugada syndrome, enhanced vagal tone at rest and 
in early recovery following exercise has been postulated as a precipitant 
of arrhythmia in athletes with Brugada syndrome.56

The Left Ventricle
Elevations in cardiac preload and afterload with chronic exercise are 
associated with cardiac chamber enlargement, with a 10–20% increase in 
wall thickness and 10–15% increase in ventricular cavity dimensions. 
Consequently, differentiation between athletic adaptation to exercise and 
a mild phenotype of primary cardiomyopathies may be challenging even 
for the most experienced of sports cardiologists. Male endurance athletes 
are typically observed with the largest cavity dimensions, with up to 14% 
exceeding 60 mm, a threshold that typically raises suspicion of a primary 
dilated cardiomyopathy.57 Ethnicity is important to consider in the 
evaluation of LV wall thickness. For example, an LV wall thickness of 
>13  mm is rare among white athletes, whereas it is more prevalent in 
black athletes (2% versus 12%, respectively).55,58 Crucially, regardless of 
ethnicity, a maximum wall thickness exceeding 16 mm is uncommon and 
should prompt consideration and further evaluation for hypertrophic 
cardiomyopathy. In addition, LV cavity dilatation and hypertrophy may 
persist in up to 20% of athletes, despite detraining, suggesting that 
extremes of cardiovascular adaptation to exercise may be irreversible.59 
In a study by Finocchiaro et al., none of the first-degree relatives of 
decedents with unexplained LV hypertrophy (30% competitive athletes) 
were diagnosed with hypertrophic cardiomyopathy, suggesting that 
extreme LV hypertrophy may be a source of arrhythmias.60

The Right Ventricle
At rest, the RV functions against a very low resistance and high compliance 
pulmonary circulation. However, during exercise, RV wall stress increases 
30-fold, reflecting a minimal reduction in pulmonary vascular resistance 
and a significant rise in pulmonary artery systolic pressures. This raises the 

Figure 2: Predictors of Malignant Ventricular Premature Beats in Athletes
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possibility that repetitive intense exercise can induce structural changes 
and arrhythmias overlapping with arrhythmogenic right ventricular 
cardiomyopathy (ARVC), referred to as ‘exercise-induced ARVC’.61

Data from an animal model of endurance training demonstrated 
training-dependent RV fibrosis and tendency to arrhythmia following a 
16-week exercise regime, which reversed after 8 weeks of exercise 
cessation.62 In a study of more than 300 athletes, RV enlargement 
meeting criteria for ARVC was seen in up to 45% of black athletes and 
59% of white athletes, although none was diagnosed with ARVC.63 
Studies have also reported transient RV dysfunction following endurance 
exercise, with greater dysfunction associated with more prolonged 
intense exercise, such as ultra-endurance events. In most studies there 
was no associated LV dysfunction, but there was correlation between 
the degree of RV dysfunction and elevation of troponin levels.64–66 
Moreover, an evaluation of 46 endurance athletes presenting with 
arrhythmias by Heidbüchel et al. reported that 80% of arrhythmias were 
of RV origin and 89% of athletes fulfilled either definite (59%) or 
borderline/possible (30%) diagnostic criteria for ARVC.67 During a 
median follow-up of 5 years, 40% of athletes experienced major 
arrhythmic events defined as SCD, ICD shock or ventricular tachycardia. 

Subsequent genetic analysis of genes associated with ARVC, identified 
pathogenic variants in only 12.8% of athletes, compared with 30–50% 
expected in ARVC.68 Although these studies support the notion of 
exercise-induced ARVC, it is important to note that they included a 
highly selected cohort of athletes presenting with ventricular 
arrhythmias, and the genetic yield in ARVC may be far lower than 50% 
in the context of sporadic rather than familial disease. Moreover, other 
studies in elite Olympic athletes competing over many years have failed 
to demonstrate significant pathological RV remodelling, suggesting that 
this may be applicable to the very extremes of endurance training in 
individuals with some genetic predisposition, although it may not 
represent the classic ARVC genotype.69

By the same token, repetitive exercise in those with an established 
diagnosis of ARVC is well recognised to increase the risk of SCD through 
the acceleration of RV dysfunction and induction of ventricular 
arrhythmias.70,71 A North American multidisciplinary study reported that 
patients engaging in competitive sports were at a twofold increased risk 
of ventricular tachyarrhythmias or death and earlier presentation of 
symptoms than patients who participated in recreational sports and 
sedentary individuals.72 Similar results have been confirmed in 

Figure 3: Proposed Mechanisms of Adverse Cardiac Remodelling that 
May Predispose to Arrhythmias in Endurance Athletes
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desmosomal mutation carriers with no phenotypic expression, 
underscoring the impact of exercise on the RV.73 Further studies and 
longitudinal data are required to better understand the interplay between 
exercise and the RV in health and disease states.

Myocardial Fibrosis
In patient populations, the presence of late gadolinium enhancement 
(LGE) is an established adverse risk factor for malignant arrhythmia, and in 
athletes has been associated with a risk of complex VA.47,48,74,75

A small number of studies have demonstrated myocardial fibrosis in 
ostensibly fit male masters athletes engaging in endurance exercise. In a 
study of 102 middle-aged marathon runners, 12% demonstrated 
myocardial fibrosis (compared with 4% of controls), of which 42% 
demonstrated a pattern consistent with MI predominantly in the territory 
of the left anterior descending artery.15 Furthermore, there was suggestion 
of a dose–response relationship because participation in a greater 
number of marathons was an independent predictor for the presence of 
LGE.76 Similarly, in a study of 106 male masters endurance athletes, 14% 
demonstrated myocardial fibrosis, with almost half demonstrating a 
pattern consistent with a previous MI.13 Of those with evidence of MI, only 
half demonstrated coronary stenosis in the relevant coronary artery, 
raising the possibility of subclinical infarction, due to demand ischaemia, 
coronary spasm or plaque rupture.13

In a study of 83 asymptomatic middle-aged triathletes, participation in 
longer swimming distances and cycling races was an independent 
predictor for the presence of non-ischaemic LGE, affecting 17% of male 
athletes but none of the female athletes.77 A recent meta-analysis 
concluded that the incidence of LGE was almost sevenfold higher in 
middle-aged endurance athletes compared with non-athletes, with 
most of this due to mid-myocardial or subepicardial LGE, with the next 
most common pattern being insertion point fibrosis.78 Further 
longitudinal studies are required to better understand the temporal 
association of non-ischaemic fibrosis with acquired risk factors, such as 
an episode of myocarditis, and its clinical relevance in masters athletes. 
This is relevant in the era of the COVID-19 pandemic, which has ignited 
interest about the prevalence and potential implications of asymptomatic 
(subclinical) myocardial inflammation in elite athletes. A recent registry 
of 1,597 competitive collegiate athletes infected with COVID-19 reported 
symptomatic (clinical) myocarditis in five athletes (0.3%).79 The routine 
use of cardiac MRI (CMR) in all athletes increased the diagnostic yield of 
myocarditis by 7.4-fold to 2.3%.79 Importantly, follow-up CMR in 27 of the 
37 athletes diagnosed with myocarditis (73.0%) demonstrated resolution 
of myocardial oedema (T2 elevation) in all, and LGE indicative of 
myocardial fibrosis in 11 (41%).79 Similarly, in a cohort of more than 3,000 
athletes with COVID-19 infection, myocarditis was identified in 0.5% of 
those who underwent clinically indicated CMR following clinical 
assessment, but in 3% of the cohort of 198 athletes who underwent 
screening CMR.80

Coronary Artery Disease
Exercise is well established to reduce traditional risk factors for coronary 
artery disease, although masters athletes have been demonstrated to 
show elevated CAC scores, which is a powerful adjunctive predictor of 
future cardiovascular events in non-athletes.13,76,81 In a study of 152 
masters endurance athletes with low Framingham risk scores (mean 
age 54 years), 19% of male athletes had a CAC score ≥100 Agatston 
units, compared with 4% among the controls, and 11% of athletes had a 
CAC score >300 Agatston units, compared with none among the 

controls.13 Furthermore, male athletes demonstrated twice as many 
atherosclerotic plaques (44% versus 22%), and 7.5% of male athletes 
demonstrated a luminal stenosis >50%, compared with none of the 
controls.13 Importantly, the significance of the elevated CAC scores may 
be mitigated by the plaque composition among athletes, which 
demonstrate a greater proportion of calcified plaques, which are 
considered more stable and less prone to rupture. In a study of 284 
athletes, divided by lifelong exercise volume (<1,000, 1,000–2,000 and 
>2,000 MET-min/week), Aengevaeren et al. demonstrated that the most 
active athletes had a higher CAC score and more atherosclerotic plaque, 
but also a higher prevalence of calcified plaque.82 The longer-term 
longitudinal outcomes of endurance athletes remain unknown and 
further studies are warranted. In the Cooper Centre Longitudinal Study 
of more than 20,000 male participants, those performing >3,000 MET-
min of exercise per week were more likely to have CAC, without 
increased all-cause or cardiovascular mortality after a decade of follow-
up.83 Another study reported on 8,425 men who underwent an 
assessment of cardiorespiratory fitness and CAC and, over a 8.4-year 
follow-up, identified that each additional MET of fitness corresponded 
to a 14% lower risk of cardiovascular death in an adjusted model and 
attenuated the risk associated with higher CAC levels.84

Conclusion
Exercise remains one of the most potent, cost-effective treatments 
against cardiovascular disease and cardiovascular mortality. Currently, 
evidence suggests that even high-intensity, high-volume exercise, and 
the associated lifestyle of elite endurance athletes, confers significant 
benefits, with athletes gaining an average of 5–7 years of life compared 
with sedentary individuals.85 Life-threatening arrhythmias remain 
overwhelmingly low, and mostly reflect underlying hereditary or congenital 
cardiac disease. Nevertheless, extremes of exercise may pose detrimental 
effects in an ‘exercise paradox’, with several routes of enquiry that require 
further study (Figure 3). Life-long endurance athletes seem to be at 
increased risk of AF in their 40s and a small number who participate in the 
most extreme of endurance sports may be predisposed to RV-related 
arrhythmias. More research is needed in better-defined cohorts with long-
term follow-up. 

Clinical Perspective
•	 The incidence of life-threatening arrhythmias in endurance 

athletes is low, and commonly reflects hereditary or congenital 
cardiac disease.

•	 Extremes of exercise may pose a detrimental effect; the 
proposed mechanisms are complex, with several routes of 
further enquiry ongoing.

•	 Athletes are at a higher risk of developing AF than non-athletes, 
particularly in their 40s, with both mixed and endurance sports 
conferring risk.

•	 Premature ventricular beats are common in athletes and are 
usually benign. Although ventricular arrhythmias have been 
associated with an exercise-induced arrhythmogenic phenotype, 
this seems to be applicable to the very extremes of endurance 
training in individuals with genetic predisposition.

•	 Further research is needed to ascertain the long-term 
significance of autonomic regulation and ion channel expression 
in endurance athletes, including extreme structural adaptations, 
coronary calcification, myocardial fibrosis and acute biomarker 
release.
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