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Global mismatch between fishing dependency
and larval supply from marine reserves
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Marine reserves are viewed as flagship tools to protect exploited species and to contribute to
the effective management of coastal fisheries. Yet, the extent to which marine reserves are
globally interconnected and able to effectively seed areas, where fisheries are most critical for
food and livelihood security is largely unknown. Using a hydrodynamic model of larval dis-
persal, we predict that most marine reserves are not interconnected by currents and that their
potential benefits to fishing areas are presently limited, since countries with high dependency
on coastal fisheries receive very little larval supply from marine reserves. This global mis-
match could be reversed, however, by placing new marine reserves in areas sufficiently
remote to minimize social and economic costs but sufficiently connected through sea cur-
rents to seed the most exploited fisheries and endangered ecosystems.
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verexploitation of natural resources, climate change and

other anthropogenic stressors are threatening the integ-

rity of coastal marine ecosystems, their biodiversity and
associated services' ™. In many coastal areas, fisheries constitute a
primary source of food, income and labour and make large
contributions to nation’s gross domestic product (GDP)>~7. Thus,
the depletion of fish stocks may lead to social-ecological traps,
where some dependent human communities increase resource
use to alleviate poverty, with negative consequences for the state
of the resource base®.

Marine protected areas (MPAs), and specifically no-take
marine reserves (MRs), which are MPAs classified as strict
nature reserves or wilderness areas’, are widely recognized as
effective  conservation tools supporting greater species
biodiversity and biomass than nearby exploited areas!'®-13. MRs
are also promoted as potential tools to assist the management of
coastal fisheries by securing a portion of fish stocks and bufferin§
fluctuations of fish populations facing overexploitation!?,
Moreover, by hosting abundant populations of exploited
species, MRs could, through adult spillover and larval supply,
provide net benefits to neighbouring areas and contribute to
rebuilding overexploited fish stocks'>~1°.

While adult spillover is limited to few kilometres outside the
reserve'>16, larval dispersal can reach up to hundreds of
kilometres following prevalent sea currents?®?!, For instance,
larvae of coral reef groupers can disperse up to 200km and

effectively contribute to recruitment in distant exploited areas?!.

Larval connectivity can thus provide resilience to MPA networks
against species loss, improving the effectiveness of MPAs and
MRs networks for both biodiversity conservation and fisheries
management support?>?%, and deliver benefits to exploited areas
at large spatial and temporal scales'>?!. However, the extent to
which the global system of MPAs is interconnected and able to
seed areas where fisheries are the most critical for food and
livelihood security is unknown. This is partly because of the
inherent difficulty of tracking larval dispersal over long distances.

Larval dispersal can be estimated through various techniques
with different strengths and weaknesses®*. Parental genetic and
otolith chemical analyses have been successfully employed to
estimate larval dispersal between MPAs?*2!l. However, these
methods require the sampling of a large number of individuals as
well as costly and time-consuming analyses. Moreover, these
methods are only effective when differences in genetics or otolith
chemical elements are sufficiently contrasted between areas. As an
alternative, biophysical dispersal models allow the indirect stud
of connectivity patterns at large spatial and temporal scales?>2°.
The main disadvantage of such model-based estimation is the
dependence on model parameterization, among which the pelagic
larval duration (PLD) has the largest effect for estimating large
scale connectivity?’. While empirical validation of these models
remains challenging®®?’, the effects of parameter uncertainty can
be partly addressed using sensitivity analyses®C.
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Figure 1 | Global connectivity patterns among marine protected areas and no-take marine reserves based on larval dispersal patterns. (a) Regions with
the largest networks of marine protected areas (MPAs, circles) and marine reserves (MRs, triangles) are enlarged for readability. Networks of connected
MPAs and MRs are coloured according to their size. Unconnected MPAs and MRs are drawn with larger symbols. Histograms represent the distribution of
the number of outgoing (b,d) and incoming (c,e) connections per MPA. In (b) and (c), all MPAs are considered as donors while in (d) and (e) only MRs are

considered as donors.
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Here, we use a hydrodynamic biophysical model to provide
global-scale predictions of larval connectivity among MPAs and
larval supply from MRs to areas open to fishing, particularly in
regions with high economic and livelihood dependency on
fisheries. We show that most MPAs are not interconnected and
that the supply of larvae from MRs towards areas with high
dependency on coastal fisheries is very limited. On the other
hand, we reveal that strong oceanographic currents have the
potential to deliver unexpected long-distance conservation
benefits even to countries where MRs are currently absent. This
result demonstrates that, beyond national conservation efforts
and small-scale adult spill-overs, MRs can sustain transnational
benefits, provided that their location is planned by explicitly
considering marine connectivity patterns.

Results

Number and coverage of marine protected areas. The World
Database of Protected Areas (WDPA, downloaded in June
2013)3! identifies a total of 3,061 coastal MPAs of which 695
(23%) are MRs with a total coverage of 0.9% of the world coastal
areas (Supplementary Table 1). MPAs are considered marine
reserves (MRs) if they satisfy at least one of the following criteria:
they are fully no-take zones, they include a no-take zone or they
are classified as strict nature reserves or wilderness areas (that is,
TUCN categories Ia or Ib).

Connectivity between marine protected areas. To estimate the
probability of larval dispersal between pairs of MPAs, we simu-
lated the release of ten thousand virtual larvae from each MPA
four times a year for 6 years. Larvae were let to drift passively over
a period of 30 days, corresponding to the mean pelagic duration
(PLD) of most fish species’’. Connection probabilities are
estimated by recording the position of each individual larva at
the end of the PLD, and used to identify isolated and networked
MPAs. These simulations indicate that MPAs are globally weakly
connected, with only a few large networks that combine up to 582
MPAs in Northern Europe (Fig. la). The number of isolated
MPAs is remarkably high: 969 MPAs (32%) are not seeded by any
other MPA (zero incoming connections) and 61 (2%) are
completely isolated (zero incoming and outgoing connections,
larger symbols in Fig. 1a). On average, each MPA receives larvae
from six other MPAs (interquartile range: 0-23) and sends larvae
to 11 other MPAs (interquartile range: 5-21) (Fig. 1b,c). When
only MRs are considered as donors, the number of isolated MPAs
is even higher: 1,636 MPAs (53%) do not receive any larvae
(Fig. 1d,e).

In addition to direct connections, we also quantified the
connectivity within each network of MPAs using two metrics of
centrality. The betweenness centrality (BC) identifies the MPAs
acting as gateways of connectivity through multi-step connec-
tions, thus measuring their importance for multi-generational
connectivity and gene flow>’. The eigenvector centrality (EC), on
the other hand, predicts the effects of catastrophic events, as it
ranks single MPAs according to the reduction in metapopulation
size that would result from their local extinctions®?. The BC and
EC of MPAs are generally not correlated (Spearman’s p between
BC and EC <0.7 in 92% of networks), and are also uncorrelated
with the number of connections (p<0.7 in 65% and 84% of
networks for number of connections and BC and EC,
respectively). Thus, central MPAs (with high BC and/or high
EC) are not necessarily the ones with the highest numbers of
connections. More importantly, central MPAs are not better
protected than non-central ones since BC is not significantly
different between MPAs and MRs (Wilcoxon rank sum test,
W =770,810, P=0.95) while the ECs of MRs are lower than

those of MPAs (one-sided Wilcoxon rank sum test, W = 733,070,
P=0.04).

As connections with low probabilities may be too weak to
influence population dynamics across MPAs**3>, we assess the
sensitivity of network connectivity using different thresholds in
larval connection strength. When connectivity metrics are
recalculated considering only connections above the first or the
second tertile of the connectivity probability distribution, the
number of networks and isolated MPAs is higher, but the median
network size remains similar (Supplementary Fig. 1,
Supplementary Table 2).

Larval supply from marine reserves. Larval dispersal is not only
a mechanism to strengthen networks of MPAs through a spatial
insurance, but a potentially effective process to seed fishing areas
and thus to provide benefits to coastal fisheries. We defined the
coastal fishing area of each country as the portion of the coastal
Exclusive Economic Zone (EEZ) open to fishing. To account for
differences in fish biomass between MRs, which ultimately drives
the amount of released larvae, we predicted fish biomass per unit
of area in each MR using a statistical model fitted on a reduced
number of MRs with known values'® and a set of environmental
and socio-economic predictors (Supplementary Table 3 and
Sugplementary Data 1). Given the accuracy of the model
(R°=280%), the predicted fish biomass in all MRs was used to
weight the larval release potential of each MR and then to
calculate the number of larvae dispersing to each EEZ. At the
global scale, we observed that 37% of EEZs (n=109) do not
receive larvae from MRs (Fig. 2a). Many African countries are in
this category, particularly those bordering the Red Sea and the
Eastern Mediterranean (Egypt and Sudan), along the West
African coast, but also in South America (for example, Peru).
Many isolated coastal areas are also unseeded, notably the
Mascarene region, including Mauritius and La Réunion, in the
Indian Ocean, the Azores and Cape Verde in the Atlantic Ocean,
and many islands and archipelagos across the Pacific Ocean (for
example, the Marshall Islands, Kiribati and Vanuatu). Conversely,
the highest densities of larvae seeded from MRs are found in
coastal areas of Australia, some remote islands (South Georgia
and the South Sandwich Islands, Svalbard) and in the Caribbean
(Belize, Costa Rica and Honduras).

Global patterns of larval supply from MRs are driven by several
factors. First, the relative short pelagic larval duration (30 days)
results in many larvae remaining within country boundaries; the
median percentage of larvae recruiting in the EEZ where they
originate is 86% (mean: 70%), compared to 14% (mean: 30%)
dispersing to other EEZs (Supplementary Fig. 2 and
Supplementary Data 2). Second, some countries have fewer
and/or smaller MRs than others so a more limited seeding
capacity. For example, 175 EEZs (61%) have no MRs (Fig. 2b).
However, there is a weak relationship between the percentage of
coastal area covered by MRs and larval supply at the EEZ level
(Fig. 2c, linear regression on log-transformed values, P<0.001,
R*>=7%). Some EEZs receive very low larval densities despite
considerable conservation efforts within their boundaries (for
example, the Heard and McDonald Islands or the Line Group),
whereas some EEZs with a very limited coastal surface area in
MRs receive high densities of larvae (for example, Costa Rica).
Indeed, for many EEZs, larval supply can be provided entirely by
other countries (Supplementary Data 2), especially in regions
where EEZs are small and clustered. For example, in the
Caribbean, the Turks and Caicos Islands have no MRs but
receive larvae from the Silver banks MR located in the Dominican
Republic (Fig. 3a). In the Coral Triangle region, East Timor
receives all its larval supply from MRs located in other countries,
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Figure 2 | Larval supply from marine reserves to national exclusive
economic zones. (a) Global map of larval density (unit-free index bounded
between 0 and 100 reflecting the number of larvae received in a fishing area
relative to the surface of the fishing area) in each country’s exclusive
economic zone (EEZ), with darker green representing a higher density and
lighter green representing lower or zero densities. (b) EEZs are coloured
according to the per cent of coastal areas in MRs, with darker blue
representing a higher percentage and lighter blue representing a zero
percentage. (¢) Relationship between larval density and per cent area of
MRs in EEZs (n =289, R?2=7%); dots are coloured according to the food
security fisheries dependency in the country, with darker pink representing
higher dependency and lighter pink representing lower dependency, as in
Fig. 4c; countries without estimates of food security fisheries dependency
are in grey.

particularly Indonesia (Fig. 3b). Thus, beyond national conserva-
tion efforts and small-scale adult spill-over, oceanographic
processes have the potential to expand the benefits of MRs
through transnational source-sink dynamics.

Fisheries dependency. For a given country, the relative impor-
tance of larval supply from MRs can be assessed in relation to the
country’s dependency on coastal fisheries. The contribution of
coastal fisheries to national welfare and wellbeing is

multidimensional, with the provision of nutritious food,
employment and economic value being most explicitly high-
lighted in the literature">>3%37, We quantify this through three
indices of fisheries dependency using the economic value of
coastal catches relative to the countries’s GDP (economic), the
fraction of small-scale fishers out of the total active population
(employment) and the catch per capita as a relative index of food
security potential (food security)!. The countries with the highest
dependency on coastal fisheries are located in West Africa
(Guinea-Bissau, Sdo Tomé and Principe, Senegal, Sierra Leone
and Western Sahara) and in the equatorial Pacific (Kiribati,
Micronesia, Solomon Islands and Tuvalu) (Fig. 4a—c). Other
countries heavily dependent on coastal fisheries are Somalia,
Turks and Caicos Islands, Andaman and Nicobar Islands,
Maldives and Suriname.

Highly dependent countries have on average the same
percentage of coastal area covered by MRs as less dependent
countries (Fig. 4d-f; even if in absolute terms the surface area of
MRs is larger for less dependent countries; Supplementary
Table 4). However, as noted above, the percentage of coastal
area covered by MRs is weakly correlated with larval supply
owing to sea current patterns. Our dispersal model shows that
larval supply from MRs is disproportionately concentrated in
countries with low economic and nutritional dependency on
coastal fisheries for their economy (Fig. 4g) and food security
(Fig. 4i). Countries with a high nutritional dependency receive
significantly less larvae than less dependent countries. Among the
highly dependent countries, Guinea-Bissau, Kiribati, Sio Tomé
and Principe, Senegal and Sierra Leone do not receive any larvae
from MRs. Conversely, larval supply is not significantly different
among countries with different levels of fisheries dependency in
terms of employment (Fig. 4h).

Uncertainty analysis. Our results can be affected by model
parametrization and limitations, in particular larval behaviour
(orientation and vertical migration) and PLD?”. Due to a limited
knowledge of larval behaviour, we considered larvae to be passive
drifters, which can lead to an overestimation of dispersal
distances?*?°, We thus run another more conservative scenario
where we decreased PLD from 30 to 20 days (corresponding to
the first quartile of values for fishes®’; Supplementary Table 2 and
Supplementary Figs 2-5). Reducing the PLD has a marginal effect
on the average number of connections or isolated MPAs, but as
expected the larval supply to areas open to fishing decreases
(higher number of unseeded EEZs), and countries with high
fisheries dependence still receive significantly less larval supply
from MRs.

Discussion

Using a global hydrodynamic model of larval dispersal, we
demonstrate that many MPAs (32%) are not connected and those
that are the most important for network connectivity (high
centrality) are not necessarily better protected (that is, no-take
MRs) than less central MPAs. Connectivity confers resilience in
case of local extinction, because larval supply from undisturbed
sites can recolonize empty sites>®. Thus, in addition to prioritizin}g
new sites for protection on the basis of biodiversity needs!”,
spatial planning should ensure species persistence in case of
potential local extinctions by increasing connectivity®®. This
requires the current system of MPAs to be complemented with
new MPAs in zones that can cross-fertilize larvae with existing
MPAs. For MPAs located in remote sites with small reef areas, for
which external larval sources are minimal, the risk of catastrophic
disturbance can be reduced by strengthening local protection
through stronger restrictions and extensions of the protected area.
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Figure 3 | Examples of transnational larval supply from marine reserves to fishing areas. MRs providing larval supply to fishing areas in the Caribbean
(a) and the Coral Triangle (b) regions. Land areas are coloured in dark grey, coastal areas in light grey, coastal areas in MRs in red and lines indicate EEZ
boundaries. The red dots are the positions of fish larvae at the end of the larval dispersal phase (30 days).

These key features, when applying over long periods (> 10 years),
are known to efficiently promote fish abundance and diversity
and increase mean fish body size!’, which in turn improves the
resilience of local populations to environmental disturbances#:4!,

In addition to biodiversity conservation, MRs have the
potential to provide benefits to neighbouring fisheries even at
distances up to 200 km (refs 15,21). We have shown that larval
supply from MRs is unevenly distributed across fishing areas,
with many EEZs (37%) not benefiting from any larval supply
from MRs. In particular, many unseeded fished areas are located
in countries with high fisheries dependency (for example, West
Africa; Indo-Pacific region). Importantly, this is not a
consequence of the absence of MRs in these countries*>*3, but
rather because sea surface hydrodynamics export larvae offshore
or beyond the EEZ of the MRs.

The effects of ocean dynamics on the connectivity of MPAs
show the importance of placing such areas strategically in
response to conservation needs but also to the fishing needs of the
most dependent communities. We argue that MRs should be
created in areas with potential for larval transport towards fishing
areas*** to ensure species protection, maximise provision of
larval supply to neighbouring fisheries, while at the same time
minimize the costs of protection. Encouraging results show that
MRs could potentiallg help sustain small-scale fisheries in highly
dependent countries!”*4®. The key to MR success in these cases is
the collaborative partnership among local governments and their
communities, demonstrating the potential benefits of MRs. This
approach also presents MRs as a complementary tool to broader
fisheries management frameworks, which increases effectiveness
for both fisheries and biodiversity protection'447.

An alternative to creating new MRs in areas with high social
costs would also be to create new MRs in isolated or remote areas
where conflicts are limited*®. Such conservation efforts are
rapidly expanding to fulfil at low cost the Aichi Biodiversity
Target of 10% sea coverage but are coined as ‘residual’ reserves to
extractive uses*®#°, This is true inside MRs, given the limited net
benefit of protection when human impact is almost absent®’, but
potentially wrong when expanding the benefits at larger scale
given potential long-distance larval dispersal>!>!. Another option
is to place new MRs in the EEZs of countries with low fisheries
dependency, from where larval dispersal through marine currents

can seed critical fishing areas. Thus, adopting a transnational
strategy to rebuild coastal fisheries through MRs would
contribute to a more legitimate marine spatial planning, with
more attention to the winners and losers of management
intervention. This is even more important in the light of a
recent study showing that individual reserves should export 30%
or more of locally produced larvae to fishing grounds to sustain
and rebuild adjacent fisheries and that 20-30% of fished habitats
must be protected in 1-20km wide reserves®2. Unfortunately,
such targets remain ambitious in many regions and alternative or
complementary solutions must be found.

The importance of long-distance larval supply from MRs for
fish population dynamics depends on mortality of fish larvae in
open oceanic areas’* and on the intensity of exploitation and type
of regulations in the seeded EEZ!*!8, which will dictate whether
incoming larvae constitute a significant and persistent
contribution to recruitment. A few empirical studies support
the benefits of larval export from MRs to adjacent fisheries'>>3,
but evidence of long-distance benefits is still scarce and in need of
further work?!>!, Another challenge is to show that the incoming
species really contributes to biomass production and sustains
fisheries. Depending on the country, some species contribute
more to food security or economic incomes than others.
However, larval supply could be relevant even if species are not
consumed directly by humans. Sea currents will transport larvae
of prey (fishes and invertebrates) and habitat builders, like on
coral reefs, which altogether promote biodiversity and
productivity of higher trophic levels that are consumed®*!. Given
the high prevalence of diverse and non-selective fishing activities
in countries highly dependent on fisheries, we consider that larval
seeding from MRs could potentially benefit indirectly food
security and human livelihoods.

Alternatively or in complement to larval supply from MRs,
well-managed fisheries can be larval sources since (i) reductions
in fishing effort can have larger benefits than the expansion of
MRs*7 and (ii) some areas where human populations and use of
ecosystem resources is high can have surprisingly high fish
biomass>*. These ‘bright spots’ of management, able to be
important sources of larvae while being fished, are not included in
our model since (i) their extent is limited, (ii) their distribution
highly patchy and (iii) their probability of occurrence challenging
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to predict at the global scale®®. So, our study only focuses on
larval supply by MRs where high fish biomass are consistently
found while, for instance, more than a third of the fished reefs
across the Indian Ocean show a biomass lower than 25% of that
found in MPAs>>.

In conclusion, the limited surface area protected in the sea and
the unbalanced spatial design of MRs are failing to achieve the
potential of current global conservation efforts to sustain human
welfare and livelihoods. This global mismatch, given the target of
10% sea surface protected by 2020, could be reversed by the
strategic establishment of new MRs in areas sufficiently remote to
minimize social and economic costs and sufficiently connected
through sea currents to seed the most critical fisheries and
ecosystems.

Methods

Marine protected areas and marine reserves. The MPA database was down-
loaded from the World Database on Protected Areas®! in June 2013 and filtered
before downloading to only keep protected areas known as ‘marine’. From this first
set containing 9,600 MPAs, we retained only MPAs that passed the following
sequential filtering criteria. First, we removed MPAs located completely on land

using the land ecoregion of the world polygon (www.worldwildlife.org/biomes).
Second, we removed MPAs covering pelagic area totally or for most of their surface
using a depth limit of 200 m derived from the world bathymetric database
ETOPOL1 (ref. 56). Third, we deleted MPAs designated to protect species not
considered in this study (for example, birds) by inspecting the ‘Designation’ field of
the MPA shapefile. Fourth, in attempting to eliminate unreliable MPAs, we
removed features with IUCN categories ‘Not recorded” or ‘Not applicable’ (except
national parks). The final database includes 3,061 MPAs of which 185 are classified
as ‘fully no-take’ and 131 as ‘partly no-take’ (Supplementary Table 1). However, the
fully and partly no-take designations do not coincide with the IUCN category Ia.
We consider the 695 MPAs that are either in TUCN category Ia or Ib or designed at
least partially no-take as effective MPAs (marine reserves, MRs). This criterion is
less conservative than the one used in other studies finding a lower proportion of
MRS, such as the one by Costello and Ballantine® who considered only MPAs in
TUCN category Ia as MRs (360 MPAs), concluding that only 6% of coastal and
open sea MPAs are MRs.

Exclusive economic zones. Exclusive economic zones (EEZs) are sea zones pre-
scribed by the United Nations Convention on the Law of the Sea (1982) whereby a
coastal State assumes jurisdiction over the exploration and exploitation of marine
resources. EEZs extend from the coast to 200 nautical miles (370 km) off the coast.
Polygons including inland waters, territorial waters and EEZs (that is, all areas
where countries have exclusive rights and jurisdiction) were downloaded from the
maritime boundary geodatabase®”.
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These polygons were intersected with the 12 marine biogeographic realms®® to
obtain 289 biogeographic exclusive economic zones: these represent combination
of country and biogeographic data, so that for example, Australia has two
biogeographic exclusive economic zones (Central Indo-Pacific Australian region
and the Temperate Australasia Australian region).

Coastal fishing areas are defined as the portion of biogeographic exclusive
economic zones that are accessible by fishers since they are not protected: we
removed the 695 polygons of marine reserves from the 289 biogeographic exclusive
economic regions, using the ‘erase’ tool in ArcGIS 10.2. The resulting polygons,
called EEZs in this study, thus represent the exclusive fishing areas of each country.

Larval dispersal simulations. Sea surface current velocities are obtained by the
Mercator Ocean’s Global ocean physical reanalysis GLORYS2V1 (ref. 59). The
horizontal resolution of the model is 1/4° (~28km at the equator) and the
temporal resolution of stored data is one day. The surface layer is one metre deep.
The domain of the model is 180°W-180°E, 77°S-90°N. Data covered the period
from January 1st 2003 to December 31st 2008, the most recent ones available at the
time of this study.

Larval dispersal simulations were performed with Ichthyop 3.2 (ref. 60). Ten
thousand virtual larvae were released in the centroid of each MPA at the midpoint
of each season (that is, 2°¢ February, 51 May, 6" August and 11 November) in
each of 6 years between 2003-2008, for a total of 734,640,000 released larvae. The
time step of iteration was set to 3,600s (1h), which is sufficiently short for larvae
not to cross more than one boundary of hydrodynamic cells in a single time step.
Advection was simulated using a Runge-Kutta fourth order numerical scheme.
Horizontal diffusion was applied by a random walk for individual larvae to account
for sub-grid-scale hydrodynamics associated with coastal features (reefs, bays, gulfs,
and so on) following Peliz et al.%1, with a horizontal diffusion coefficient K = &!/3%/
3, where ¢ = 10 ~®m? s ~ 3 i the constant turbulent dissipation rate®? and I is length
of the grid cell.

Larvae were tracked for 30 days, corresponding to the mean PLD of fishes
reported by Luiz et al.>2. Using a single PLD value is in agreement with the most
recent studies, which failed to find a latitudinal pattern in PLD®. Larvae were
subject to passive dispersal only; this assumption has critical consequences on the
dispersal distances of larvae and the patterns of connectivity, as active dispersal
mechanisms such as swimming and orientation can increase local retention rates
and decrease dispersal distances?’. Integrating swimming larval traits, which are
unknown for most species, would be prohibitive. To account for the effects of larval
behaviour and to simultaneously evaluate the sensitivity of model results to the
PLD, we run the hydrodynamics simulations using a PLD = 20 days, as decreasing
the PLD has similar effects to introducing some larval behaviour in the model. This
is supported by results published in a previous study>’, where we showed that
simulating larval dispersal using vertical migration through current layers on 30
days is equivalent to dispersal on the top surface layers during 20 days.

Connectivity among MPAs. We calculated the connection probabilities between
all pairs of MPAs within the same marine biogeographic realm. The spatial posi-
tion of larvae relative to MPA polygons was assessed using the function ‘gContains’
in the R package rgeos 0.3-19 on the latitude and longitude of each larva. Only the
coastal portion of MPAs (shallower than 100 m, from ETOPO1) was considered

suitable for the recruitment of larvae. Connection probabilities were used to con-
struct a connectivity matrix among all MPAs.

Network metrics were used to characterize the global system of MPAs. In such a
system, single MPAs are the nodes and connection probabilities are the edges of the
network. Here, the word ‘network’ is used to denote a set of connected nodes (that
is, a connected component), identified using the ‘components’ function of the R
package igraph 1.0.1. Four network metrics were calculated for each node: the
number of incoming edges, the number of outgoing edges, the betweenness
centrality (BC) and the eigenvector centrality (EC). Since the global system of
MPAs is composed of several independent networks, BC and EC were calculated
separately for each network.

The number of incoming and outgoing edges were computed including
connections of a node with itself using the ‘degree’ function of igraph. In the context of
the present study, the number of incoming (respectively outgoing) edges measures the
number of MPAs acting as donors (respectively receivers) of larvae for the focal MPA.

The BC of a node measures the importance of the node for the connectivity of
the network. The BC of node i was calculated as the number of shortest paths
between any two nodes that go through node i. The normalized betweenness
centrality was calculated through the ‘betweenness’ function of igraph. In the
context of the present study, the BC measures the importance of central MPAs for
multi-step, multi-generational connectivity, which take advantage of single MPAs
acting as central nodes to spread genes and individuals between MPAs that are not
directly connected”.

The EC measures the influence of a node in a network. It is calculated as the left
eigenvector associated with the leading eigenvalue of the connectivity matrix.
Eigenvalues and eigenvectors were calculated using the ‘eigen’” function in R and
eigenvectors were normalized between 0 and 1 to provide a ranking of nodes. In the
context of the present study, a network of MPAs can be thought of as a network of
local demes constituting a metapopulation. It has been shown that the EC of a node
is proportional to the reduction in metapopulation size that would result from the

removal of that node from the network®3. The EC therefore measures the
consequences of random catastrophic events leading to the extinction of local
demes located in MPAs.

Theoretical studies show that external larval supply can regulate the
demography of a local population if the number of supplied individuals is larger
than the number of individuals removed from the local population (by death or
emigration)>3. If the number of incoming larvae cannot offset the number of
deaths and emigrants, then larval supply has no positive effects on local
demography. Therefore, a precise assessment of persistence in a set of connected
populations requires quantifying both the number of incoming larvae (dependent
on connection probabilities and source strengths) and local mortality (dependent
on local demography), but this is beyond the scope of this study. Nevertheless, it is
likely that the weakest connections do not deliver a sufficient number of larvae to
the receiving MPAs. We thus provided all estimates of connectivity using (i) all
connections, (ii) medium and strong connections only (second and third tertiles of
connection probabilities) and (iii) strong connections only (third tertile). This
analysis allows us to assess the robustness of our results to the removal of the
weakest connections (those that might not deliver a sufficient number of
immigrants).

Fish biomass per unit of area in marine reserves. To predict fish biomass per
unit area for the 695 MRs, a relationship was established between fish biomass
estimates per unit area obtained from field surveys and a set of 12 environmental
and socio-economic variables (Supplementary Table 3). Estimates of fish biomass
per unit area come from Edgar et al.!” for a set of 121 MPAs worldwide. The
environmental and socio-economic variables were collected from public
databases®®%°, The index of population pressure was calculated by fitting a
quadratic kernel density surface (‘heatmap’ plugin in QGis) to each settlement
point on a year 2000 world population density grid®.

The relationship between the log;, of fish biomass per unit area and the 12
predictors was modelled through a boosted regression tree (BRT) with an
explanatory power of R?=80% (Pearson correlation between observed and
predicted values r=0.90, t=22.46, d.f. =119, P<2.2 x 10~ ). The relative
influence of the predictors is listed in Supplementary Table 3. A simplified model
retaining only the first eight variables was used to predict fish biomass per unit area
for the 695 MRs of this study (Supplementary Data 1). The BRT analysis was
performed using the functions ‘gbm.step’, ‘gbm.simplify’ and ‘gbm.predict’ of the R
packages gbm 2.1.1 and dismo 1.1-1.

Larval supply from marine reserves. We calculated the connection probabilities
from the 695 MRs to the 289 EEZs of the same marine biogeographic realm. The
spatial position of larvae relative to EEZ polygons was assessed using the function
‘gContains’ in the R package ‘rgeos’ on the latitude and longitude of each larva.
Only the coastal portion of EEZs (shallower than 100 m, from ETOPOL1) was
considered suitable for the recruitment of larvae. Larval density (LD;) for a given
EEZ was calculated as:

LD, = > €iBiA; ’

A
where e;; is the fraction of larvae released in MR j that seed EEZ i, B; is the fish
biomass per unit of area in MR j, A; is the coastal surface area (areas shallower than
100 m, from ETOPOL1) of MR j and 4; is the coastal surface area of EEZ i. The
product BjA; is the predicted fish biomass in MR j and was used to account for
differential larval production among MRs. The LD; values were indexed by sub-
tracting the minimum from the raw values and dividing them by the maximum-
minimum deviation and multiplying them by 100, so as to obtain values bounded
between 0 and 100.

Differences in LD; among countries grouped by their level of fishery dependency
were tested using a Kruskal-Wallis test. Post hoc differences between pairs of groups
were tested using a Conover test; P values are adjusted using the Benjamini—
Hochberg method. The analyses are conducted with the R package PMCMR 4.1.

Fisheries dependency. The fisheries dependency assesses the importance of a
coastal country’s small-scale fisheries in terms of their contributions to a national
economy, employment and food security. These are the socio-economic indices
that are the most explicitly highlighted in the literature>3¢37. While additional
dimensions like recreation and tourism are important too®, we lack quantitative
assessment at the global scale and evidence that these dimensions are directly
related to larval seeding. We thus quantify fishery dependency following the
methodology proposed and applied by Barange et al.! and building on data
obtained from the Sea Around Us project®. We focused only on coastal small-scale
fisheries, because fisheries outside EEZs and in the high-seas are less likely to
benefit from coastal MRs.

The economic indicator was calculated as the ratio of landed value of small-scale
marine fishing (artisanal and subsistence fishing in the Sea Around Us database) to
the country’s gross domestic product. We average these data over five years and use
the most recent available values (2006-2010 in the Sea Around Us database).

The employment indicator was calculated as the ratio of the number of small-
scale marine fishers to the national economically active population. Contributions
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were obtained from statistics of the United Nations Food and Agriculture
Organization and International Labour Organization and from published
literature>®>7%, Data on small-scale fisheries provided by member countries
typically lead to an underestimation of employment®. The extrapolations made by
Teh and Sumaila® compensate for the underestimation of small-scale fisheries, but
occasionally appear to overestimate employment'. Therefore, we took the average
value of the extrapolated data of Teh and Sumaila® and the reported data from
available country-level studies®®7°.

The food security indicator was calculated as the ratio of the biomass of small-
scale marine fishing per capita (using the 2006-2010 average values form the Sea
Around Us) scaled to an indicator of national diet adequacy. The indicator of diet
adequacy is the ratio of national average animal protein intake per capita per day to
the required level of 36 g per capita per day'. In this way, a country is considered
highly dependent on marine fisheries in terms of food security if fish consumption
(derived from artisanal and subsistence fisheries) per capita is high and if total
animal protein consumption is low compared to a reference point (indicating an
overall inadequate diet).

The three indicators were indexed by subtracting the minimum from the raw
values and dividing them by the maximum-minimum deviation, and multiplying
them by 100, so as to obtain values bounded between 0 and 100.

The implicit assumption of the analysis of larval supply in relation to fisheries
dependency is that the extra influx of larvae can directly or indirectly contribute to
the fisheries. While some species may contribute more to food security and others
to economy, all larvae can affect the dynamics of fished ecosystem and thus
contribute to local fisheries. Thus, larval supply can be relevant even if species are
not consumed directly by the human communities.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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