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ABSTRACT
Regulation of gene transcription is a complex process controlled by many factors,
including the conformation of chromatin in the nucleus. Insights into chromatin
conformation on both local and global scales can be provided by the Hi-C (high-
throughput chromosomes conformation capture) method. One of the drawbacks of
Hi-C analysis and interpretation is the presence of systematic biases, such as different
accessibility to enzymes, amplification, and mappability of DNA regions, which all
result in different visibility of the regions. Iterative correction (IC) is one of the
most popular techniques developed for the elimination of these systematic biases.
IC is based on the assumption that all chromatin regions have an equal number
of observed contacts in Hi-C. In other words, the IC procedure is equalizing the
experimental visibility approximated by the cumulative contact frequency (CCF) for
all genomic regions. However, the differences in experimental visibility might be
explained by biological factors such as chromatin openness, which is characteristic
of distinct chromatin states. Here we show that CCF is positively correlated with active
transcription. It is associated with compartment organization, since compartment A
demonstrates higher CCF and gene expression levels than compartment B. Notably, this
observation holds for a wide range of species, including human,mouse, andDrosophila.
Moreover, we track the CCF state for syntenic blocks between human and mouse and
conclude that active state assessed by CCF is an intrinsic property of the DNA region,
which is independent of local genomic and epigenomic context. Our findings establish
a missing link between Hi-C normalization procedures removing CCF from the data
and poorly investigated and possibly relevant biological factors contributing to CCF.

Subjects Bioinformatics, Cell Biology, Computational Biology, Genomics, Molecular Biology
Keywords Hi-C, Chromatin, Compartments, Conformation capture

INTRODUCTION
The conformation of chromatin in the nucleus plays an important role in many
cellular processes, including the regulation of gene transcription and DNA replication
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(Cremer et al., 2006; Sexton et al., 2007; Bickmore, 2013; Armstrong et al., 2018; Fulco et al.,
2019). The regulation of gene expression often involves long-range chromatin interactions
between regulatory elements. Therefore, the spatial organization of chromatin could
provide insight into these complex regulatory processes.

Hi-C is a method for genome-wide chromosome conformation capture, which enables
the interrogation of all loci at once by combining DNA proximity ligation with high-
throughput sequencing (Lieberman-Aiden & Van Berkum, 2009). However, data obtained
by Hi-C have both technical and experiment-induced biases. Because of that, different
regions of the genome may have different visibility in the experiment, yielding systematic
errors in data interpretation. To correct for this bias, several approaches exist, reviewed
in Lajoie, Dekker & Kaplan (2014) and Schmitt, Hu and Ren (2016). Some recent advances
in the Hi-C data analysis allow for various modifications of the correction procedure, such
as probabilistic modeling (Yaffe & Tanay, 2011), Vanilla-Coverage (Lieberman-Aiden &
Van Berkum, 2009), binless normalization (Spill et al., 2019) and other. One of the most
commonly used methods for the elimination of systematic biases is the iterative correction
(IC) (Imakaev et al., 2012). In particular, it is used as a gold standard in the Hi-C data
processing package cooler (Abdennur & Mirny, 2019).

While IC is based on the assumption that all loci have equal visibility (observed
number of contacts), the differences in experimental visibility may be explained not
only by technical or experimental biases but also by biological factors. Notably, local
chromatin conformation correlates with functional characteristics of the genome, such as
individual histone modifications (Khrameeva et al., 2012) or their combinatorial patterns
that establish certain functionality for each region, chromatin states (Ernst et al., 2011).
Therefore, elimination of the differences in the visibility of chromatin regions could lead
to the loss of a biologically meaningful signal.

Features such as TADs, enriched contacts, and compartments are usually called in
normalized Hi-C interaction maps (Forcato et al., 2017). Experimental visibility is treated
as a purely methodological artifact that is assumed not to affect the detection of these
features. Other studies (Chandradoss, Guthikonda & Kethavath, 2020; Beagrie et al., 2017),
have previously highlighted the importance of experimental visibility of DNA regions in
Hi-C. However, to our knowledge, the relation of this genomic characteristic to expression
and chromatin states has not been analyzed. Here, we establish a relation between visibility
of DNA in Hi-C, assessed by the cumulative contact frequency (CCF), and chromatin
states in a range of species.

METHODS
Analysis of Hi-C data
Processing of Hi-C data
We analyzed Hi-C maps for human cell lines HMEC, HUVEC, and K562, mouse cell line
CH12-LX (Rao et al., 2014), and fruit fly (Ulianov et al., 2015) Schneider-2 (S2) cells (GEO
database, accession numbers GSE63525 and GSE69013, respectively). We downloaded
the processed Hi-C maps in the hic format from (Rao et al., 2014) and in the txt format
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from (Ulianov et al., 2015). TheHi-Cmaps were converted to thematrix format and binned
at the 1 Mb resolution. The main results were obtained for the human cell line HMEC and,
where possible, for other cell lines and species to demonstrate the generalizability of our
findings (see Supplemental Information).

To eliminate possible technical artifacts of Hi-C, such as single-sided reads and their
subsets, mirror reads (Galitsyna et al., 2017), even though the coverage profile for these
reads might be well-correlated with the coverage profile of double-sided reads (Imakaev et
al., 2012), we removed the diagonal 1-Mb elements of theHi-Cmaps. Additionally, for CCF
calculations, we removed the secondary diagonal corresponding to regions immediately
adjacent to each other and all contacts at the distance up to 5 Mb in order to remove the
area of high contact frequencies that could hinder subsequent analysis. Genomic regions
corresponding to rows and columns of Hi-C maps, which contained no values, were also
removed from all analyses.

We calculated the cumulative contact frequency (CCF) as the sum of contact frequencies
of each locus. To make CCF comparable between different cell lines and resolutions,
we further report it as the percentage from the maximum CCF in the Hi-C map. We
considered two types of CCF: whole-genome and inter-chromosomal (calculated for
inter-chromosomal Hi-C maps). Inter-chromosomal CCF was analyzed separately to
demonstrate that intra-chromosomal contacts do not drive our observations.

TAD and compartment calling
We used the Armatus algorithm (Filippova et al., 2014), as implemented in the Lavaburst
package (accessed 01-12-18, modularity scoring function and gamma parameter
1.0 (Abdennur, 2018)), for TAD calling in human Hi-C maps at the 1 Mb resolution.
We considered all segments smaller than three bins as interTAD regions. This allowed us
to classify the genomic bins into two categories: TAD and interTAD bins. We then used
these bins separately for the correlation analysis of CCF at TAD and interTAD genomic
regions.

In order to identify chromatin compartments, we performed computational analysis
as in Lieberman-Aiden & Van Berkum (2009). For that, we normalized the whole-genome
contact matrix by the expected contact frequency matrix, generated by averaging contact
probabilities for loci at each genomic distance. We then calculated the Pearson correlation
coefficients for each row/column pair of each element of the normalized matrix to obtain
the correlation matrix. The resulting correlation matrix was then used for the principal
component analysis (PCA). We used the first principal component of the resulting
correlation matrix as a compartment annotation for the genome.

Notably, the first principal component for human and mouse datasets demonstrated the
highest proportion of variance explained (PVE of the first component ranging from 0.60
for HMEC and HUVEC cells to 0.80 for K562 cells) and had a characteristic checkerboard
pattern in accordance with previous findings (Lieberman-Aiden & Van Berkum, 2009; Rao
et al., 2014). We were unable to detect compartments in the analyzed Drosophila dataset
(PVE for the first component of S2 cells is 0.11), probably due toDrosophila compartments
being much smaller than the selected dataset resolution (1 Mb).
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Functional characteristics
We estimated the functional characteristics of genomic regions by combinatorial patterns
of chromatin marks, or chromatin states, for human (Ernst et al., 2011), mouse (Yue
et al., 2014), and Drosophila (Kharchenko et al., 2011). These chromatin states were
originally derived from a set of ChIP-seq experiments for various chromatin factors by
Hidden Markov Models, and represented distinct states with specific ChIP-seq signatures.
Chromatin states are better for the assessment of functional properties of genomic regions
than individual marks from two perspectives. First, they represent an integrated view of
the region’s expression and functional characteristics; the experimental noise of individual
ChIP-seq experiments is smoothed out. Second, the analysis of chromatin states is simpler,
compared to a set of marks.

We retrieved fifteen states from Ernst et al. (2011) for the human genome, seven states for
themouse genome (Yue et al., 2014), andnine states for theDrosophila genome (Kharchenko
et al., 2011). The original datasets were downloaded in the format of a non-intersecting
set of genomic regions, with a unique chromatin state assigned to each region. In order to
match the Hi-C data uniform grid, we segmented the genome into non-overlapping 1-Mb
genomic windows, or bins, starting from the first position of each chromosome. For each
genomic bin, we then computed the fraction of coverage of each chromatin state. If the
initial chromatin state segment spanned the bin boundary, it was split into two parts by
the bin boundary and counted as contributing to both bins that it overlaps, proportionally
to the resulting fragments sizes. Thus, for each bin and chromatin state, we obtained a
single number from 0 to 1, reflecting the coverage of this bin by the chromatin state. Bins
containing no annotation of chromatin states were removed from further analysis.

The chromatin states for the human genome from Ernst et al. (2011) are named by
the principal function of the respective regions. We separated them into two groups
by functional activity. The first group is active chromatin: Active Promoter, Weak
Promoter, Inactive/poised Promoter, Strong Enhancer (2), Weak/poised Enhancer (2),
Weak Transcription, Transcriptional Elongation, Transcriptional Transition. The second
group is inactive chromatin: Repetitive/CNV (2), Heterochromatin.

Chromatin states for mouse from Yue et al. (2014) are named by the histone
modifications prevalent in the corresponding state. The active marks are represented
by: H3K4me3, H3K4me1/3, H3K4me1, H3K4me1+H3K36me3, and H3K36me3. Only
one state, H3K27me3, represents inactive chromatin, and one state is comprised of all
unmarked genomic regions.

The states for theDrosophila genome are called ’’colors’’ with functional load described in
the original publication (Kharchenko et al., 2011). Based on that, we separated Drosophila
states into two groups, active chromatin, comprized of RED (1) and MAGENTA (2)
colors, and inactive/repressed chromatin, comprized of DARKGRAY (6), DARKBLUE (7),
LIGHTBLUE (8), LIGHTGRAY (9).

Correlation analysis
To characterize correlation patterns, we used two approaches. First, we calculated
the Pearson correlation coefficients between CCF and chromatin state proportions
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in each region of the whole genome. To further validate the findings, we used
Stereogene (Stavrovskaya et al., 2017), a tool for the genome-wide feature correlation
analysis. We explored the relationship between pairs of characteristics of the genome,
such as CCF, GC-content, and proportion of each chromatin state. Stereogene divides
the input data into a series of fixed-length windows (adjustable parameter that was set
to 10 Mb), and the independent correlation is calculated for each set. The distribution
of these correlations allows one to observe the variation in the correlation coefficient
across the genome and to identify regions with non-typically high positive or negative
correlation. These distributions are compared against a randomized control derived from
the data (Stavrovskaya et al., 2017), and p-values are calculated for the observed correlations
in the real data.

Analysis of syntenic regions
Syntenic regions (size 2Mb and larger) were obtained from theMouse Genome Informatics
database (MGI) (Finger et al., 2011). The regions of homology with the human genome
(size 1Mb) were established using the LiftOver tool (Hinrichs, 2006). The contact frequency
for ambiguously mapped regions was split proportionally to the lengths of the mapped
fragments. For this analysis, we defined large chromosomes as chromosomes 1–9, and small
chromosomes as chromosomes 14–22. The Pearson correlation coefficient was calculated
between the human and mouse CCF.

RESULTS
Increased CCF is associated with active transcription
As active transcription requires binding of RNA polymerase and a variety of transcription
factors, increased gene expression is intuitively associatedwith loose packaging of chromatin
and thus better accessibility to the Hi-C reaction and higher CCF. At the same time, active
chromatin is involved in a larger number of interactions, including distant regulatory
ones. Thus, one might expect regions with high CCF to show high gene expression levels
and regions with low CCF to exhibit low gene expression. To validate this hypothesis, we
constructed a whole-genome Hi-C map combined with the functional state plot showing
the distributions of chromatin state proportions for each genomic region (Figs. 1A–1C).
Indeed, for all analyzed human cell lines (HMEC, HUVEC, and K562), the regions with
high CCF tend to be enriched in chromatin states corresponding to active transcription,
while regions showing low CCF are enriched in heterochromatin and repeats (Fig. 1C,
Fig. S1).

Chromosomes are known to segregate into two mutually exclusive types of chromatin,
referred to as ‘‘A’’ and ‘‘B’’ compartments (Lieberman-Aiden & Van Berkum, 2009). Active
chromatin corresponds to the A compartment, while repressed chromatin is enriched
within the B compartment. Using correlation analysis of normalized Hi-C maps and PCA,
we segregated the genome into two types of chromosomal regions. We observe that human
compartment A has high levels of CCF in HMEC and other human cell lines (Fig. 1D,
Fig. S2).

Samborskaia et al. (2020), PeerJ, DOI 10.7717/peerj.9566 5/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.9566#supp-1
http://dx.doi.org/10.7717/peerj.9566#supp-1
http://dx.doi.org/10.7717/peerj.9566


Figure 1 Cumulative contact frequency (CCF) is positively correlated with active transcription. (A)
Schematic representation of inter-chromosomal (blue line) and total (orange line) CCF. (B) Cell lines and
organisms analyzed in this study. (C) Hi-C map combined with a plot of chromatin state proportions. Red
lines on the Hi-C map show regions of anomalously high CCF. Green lines separate individual chromo-
somes. Proportions of each chromatin state for each genomic region are displayed above the Hi-C map.
An enlarged fragment of the Hi-C map for chromosome 1 is shown below. (D) Dependency of CCF on
the first principal component. (E) Dependency of chromatin state proportions on CCF. (F-H) Correla-
tion patterns between chromatin states and CCF exhibit different features for large and small chromo-
somes. First 15 rows in the matrix correspond to the 15 chromatin states, rows 16-17 exhibit total and
inter-chromosomal CCF. Colors demonstrate the Pearson correlation coefficients. Whole-genome corre-
lation patterns (F), correlation patterns for chromosome 2 (G) and chromosome 22 (H) are shown. Hu-
man cell line HMEC.

Full-size DOI: 10.7717/peerj.9566/fig-1

CCF is linked to active chromatin states
To get a more precise estimate of dependencies between CCF and chromatin states, we
visualized the growth of chromatin state percentages at increasing CCF (Fig. 1E, HMEC
cells). We observe the growth of percentages of the chromatin states corresponding to
active transcription (Weak Transcription, Transcriptional Elongation, and Transcriptional
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Transition, in particular) with larger CCF. This result does not depend on the Hi-C data
resolution, as proved by the same analysis repeated for 1 Mb, 500 Kb, 250 Kb, 100 Kb, and
50 Kb resolutions (Fig. S3).

To further validate the result, we calculated the correlations between each of the
chromatin states and CCF (Fig. 1F) enabling comparative analysis of different genomic
regions. CCF is positively correlated with active chromatin state proportions in HMEC
cells (correlation coefficient 0.53). The same result is obtained for other human cell lines
(Fig. S1): HUVEC (correlation coefficient 0.47) and K562 (correlation coefficient 0.35).
As an additional proof of concept, the homogeneity of correlations across the genome was
confirmed for the cell line HMEC (Fig. S4) with the Stereogene tool (Stavrovskaya et al.,
2017). Notably, the correlation patterns are similar for large chromosomes but different
for smaller ones (Fig. 1F, Fig. S5).

To show that the dependencies between CCF and chromatin states are not specific to
humans, we additionally analyzed the Drosophila cell line S2 and mouse cell line CH12-LX.
ForDrosophila and mouse, the chromatin state annotations (Kharchenko et al., 2011) differ
from that in human. In particular, there are fewer chromatin states, and their functional
characteristics are different. However, for Drosophila, we observe a positive correlation of
CCF with chromatin states RED (1) and MAGENTA (2) (Fig. S6), which are representative
of active chromatin with expressed genes. For mouse, we observe a positive correlation of
CCF with all chromatin states but the one characterized by absence of chromatin marks
(Fig. S7).

TADs and interTAD regions demonstrate different patterns for the human genome
(Fig. S8). TAD CCF is correlated with active chromatin and anti-correlated with inactive
chromatin, while interTAD CCF is correlated with heterochromatin and insulator
chromatin states. The latter fact might be related to the interTAD insulator property. By
contrast to humans, TADs and interTAD regions have only slight differences in Drosophila
(Fig. S9), where both TAD and interTAD CCF demonstrate a positive correlation with
active chromatin states and a negative correlation with inactive chromatin states.

CCF association with active chromatin is not driven by GC-content
The observed correlation between CCF and chromatin states is not necessarily direct and
causative, as there might exist other genetic or epigenetic factors underlying both CCF
and active chromatin state. If there is such a confounding factor, then accounting for its
influence would diminish the observed correlations.

One possible type of confounders are GC-content and chromosome length. Our initial
analysis demonstrates that GC-content and chromosome length are indeed both correlated
with contact frequency, and the dependencies are linear or nearly linear (Fig. S10–Fig. S11).
Inter-chromosomal CCF decreases with chromosome length, which indicates that small
chromosomes tend to make more inter-chromosomal contacts than large chromosomes,
in line with previous studies showing that small chromosomes are gene-rich and tend to
interact with each other (Fig. S11A) (Lieberman-Aiden & Van Berkum, 2009). In particular,
the correlation between the chromosome length and an average inter-chromosomal CCF
is -0.42 for the cell line HMEC.
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To test whether CCF is correlated with active chromatin state in the absence of these
confounding factors, we performed a simple division of CCF by these factors and re-
calculated the correlation plots. CCF normalized by the chromosome length or by the GC-
content demonstrated the same correlation patterns as non-normalized CCF (Figs. S10B,
S11B). To further validate this observation, we applied linear regression to predict CCF
from the GC-content. The correlation patterns are weakened, but still the same as for
non-normalized CCF (Fig. S10B). Further, normalization of CCF by the chromosome
length and subsequent removal of the GC-content effect shows that, even combined, the
chromosome length and GC-content cannot explain the observed correlation patterns
(Figs. S10B, S11B).

CCF for different chromosomes reveals hidden variability in
correlation patterns
Each chromosome has its own unique properties, which cannot be detected while
considering the correlation pattern for the whole genome. Since each chromosome
differs in contact frequency preferences, the correlation patterns calculated for separate
chromosomes may also differ. Indeed, while the first nine chromosomes show a correlation
pattern similar to that of thewhole genome, smaller chromosomes exhibit individual unique
correlation patterns (Figs. 1G–1H, Fig. S5).

One possibility is that we have observed a statistical artifact, caused simply by differences
in the sample size, as, naturally, more fragments are considered for large chromosomes
than for small ones. However, downsampling large chromosomes to the size of small
chromosomes demonstrates that correlations of small chromosomes still are outliers
(Figs. 2A–2B, Fig. S12). It suggests that the observed effects for small chromosomes are not
due to the small sample size.

We have noticed that another important factor might be the size of centromeres, which
might have different sizes hence forming different fractions of chromosomes. We have
excluded the centromere regions and demonstrated that the observed correlation patterns
are not related to differences in the centromere size (Fig. S13).

Notably, for individual chromosomes of theDrosophila genome, the correlation patterns
are more similar (Fig. S6). However, a direct comparison with the results for human is
impossible due to differences in chromatin state annotations between the human and
Drosophila datasets.

Comparison of CCF in syntenic blocks between mouse and human
Small chromosomes might show unique correlation patterns due to the impact of specific
evolutionary conserved regions, such as syntenic blocks. To test this hypothesis, we
annotated syntenic regions and calculated CCF for them in the human and mouse datasets.

Indeed, syntenic regions of short chromosomes demonstrate correlations between
contact frequency and chromatin states that are not characteristic of syntenic blocks in
long chromosomes (Figs. 2A–2B, note the difference between real correlations (red line)
and controls (blue bars)). Moreover, syntenic regions have similar preferences in contact
frequencies between two species (Figs. 2C–2E).
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Figure 2 CCF is a position-independent inherent property of chromatin regions conserved in syntenic
transitions. (A–B) Distribution of correlations between CCF and active promoter state (A) or heterochro-
matin state (B) for random fragments of chromosome 2 (blue bars) is compared with the real correlation
for chromosome 22 (red line). Human cell line HMEC. (C) Schematic representation of a syntenic region
between two chromosomes of the human and mouse genomes. Human cell line HMEC and mouse cell
line CH12-LX. All syntenic regions of size 1 Mb are obtained by mapping the mouse genome to the hu-
man genome using the Liftover tool. (D–G) CCF in human versus CCF in mouse for syntenic regions in
large human chromosomes and large mouse chromosomes (D), small human chromosomes and small
mouse chromosomes (E), large human chromosomes and small mouse chromosomes (F), small human
chromosomes and large mouse chromosomes (G). Each dot represents a syntenic region (size 1 Mb).

Full-size DOI: 10.7717/peerj.9566/fig-2
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To understand how syntenic regions inherit the properties during genomic
rearrangements in evolution, we identified syntenic blocks located in small chromosomes
of the human genome, but in large chromosomes of the mouse genome, and visa versa.
Notably, these regions exhibit similar CCF in the human andmouse genomes (Figs. 2F–2G,
the correlation between the contact frequencies in the human and mouse genomes ranges
from 0.82 to 0.83). Thus, the observed correlation preferences are intrinsic properties of
syntenic blocks as they do not depend on the location of the region in the genome and are
inherited despite evolutionary rearrangements between chromosomes (Fig. 2, Fig. S14–Fig.
S15).

DISCUSSION
Data normalization is a typical step of Hi-C data processing that corrects hidden biases
of the interaction signal (Lyu, Liu & Wu, 2019; Calandrelli et al., 2018; Sauria et al., 2015).
One of the most widely used normalization methods is the iterative correction (IC),
which assumes equal visibility of each genomic region in the experiment. Various features
of Hi-C maps, such as TADs, enriched contacts and compartments, are called after the
step of normalization. However, the equal visibility assumption might result in removal
of biologically relevant information obtained from Hi-C. We sought to dissociate the
technical and biological signal that is removed by IC.

Here, we introduce cumulative contact frequency (CCF) for a genomic region as the
number of contacts for a region in a non-normalized Hi-C map. We then analyze CCF
properties, including correlation with biologically meaningful signals such as chromatin
compartments, transcriptional activity, and chromatin states.

We observe that for human cells, large CCF is predictive of active chromatin and
compartment A. This result holds for multiple resolutions of the Hi-C data and several
human cell types. We also have used the Stereogene approach (Stavrovskaya et al., 2017) to
demonstrate that the correlations are reproduced for the subsets of genomic regions.

Moreover, positive correlation of CCF with active chromatin states holds for Drosophila
and mouse, suggesting broad generalizability of our conclusions. Notably, we use human
and mouse Hi-C that were mapped by Rao et al. (2014) and Drosophila Hi-C that was
mapped byUlianov et al. (2015)with different data processing pipelines. We find it striking
that the general correlations of CCF are independent of the details of the upstream data
processing, which is supportive of the biological importance of CCF. Parallel analysis of
CCF properties in multiple cell types demonstrates robustness of the observed correlations,
suggests a general similarity between cell types, and further supports the proposed relevance
of the CCF signal.

To further separate the biologically relevant signal of CCF from possible technical
artifacts, we have considered confounding factors that might affect our analysis. GC-
content is a well-known source of variability in the genomic coverage for sequencing
experiments, Hi-C, in particular (Yaffe & Tanay, 2011). We have demonstrated that CCF
is predictive of active chromatin even after the removal of this confounding factor.

One of the first observations obtained using Hi-C method was the tendency
of small chromosomes to interact with each other while being more active
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(Lieberman-Aiden & Van Berkum, 2009). Thus, CCF might be different for chromosomes
of different sizes. In order to control for that, we have used CCF normalized by the
chromosome size and demonstrated reproducibility of the observed correlation patterns.

Surprisingly, we have observed that CCF of small and large chromosomes differs. We
suggest that this difference might happen not because of the chromosome size, but because
of the intrinsic properties of the regions. First, we have confirmed it by downsampling
large chromosomes to the size of small ones. Second, we have compared CCF in syntenic
regions between the human and mouse genomes and observed that CCF does not change
after translocation between large and small chromosomes.

There are still some other possible technical confounding factors that might contribute
to the CCF properties, such as the density of restriction fragments in a genomic bin,
mappability of the region, chromatin openness as assessed by DNase-seq or ATAC-seq
(Yaffe & Tanay, 2011). These factors remain out of scope of the present research.

Importantly, all these observations do not allow us to introduce a causative link between
chromatin activity and CCF. We also do not account for the evolutionary history and
sequence conservation of corresponding regions, which might reveal the reasons for our
cross-species observations. Extensive further research is required to shed the light on these
problems.

Nevertheless, our results allow to suggest that removal of CCF in the IC procedure is
currently understudied. CCF contains biologically relevant information that is not affected
by GC-content and chromosome size. Currently, the effect of removal of this information
on calling of Hi-C features, such as TADs, enriched contacts, and compartments, has not
been studied. We propose to take the Hi-C normalization step with caution and interpret
Hi-C features that are robust to the removal of CCF and present in both non-normalized
and normalized maps.

CONCLUSIONS
In this work, we dissociate the technical and biological signal that is removed by the iterative
correction (IC), one of the most widely used methods of Hi-C data normalization. For
that, we study cumulative contact frequency (CCF) defined as the number of contacts for a
genomic region in a non-normalized Hi-C map. We demonstrate that CCF has significant
biological properties, such as correlation with chromatin compartments, transcriptional
activity, and active chromatin states. These properties are independent of GC-content
and chromosome sizes. They can be generalized to a broad range of species (human,
mouse, andDrosophila). Surprisingly, these properties are inherited and preserved between
syntenic regions of human and mouse genomes. We conclude that the importance of CCF
is underestimated, and it should be removed from Hi-C maps with caution.
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