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Abstract

Fatty acids, as key components of cellular membranes and complex lipids, may play a cen-

tral role in endocrine signalling and the function of adipose tissue and liver. Thus, the lipid

fatty acid composition may play a role in health status in the equine. This study aimed to

investigate the fatty acid composition of different tissues and liver lipid classes by comparing

Warmblood horses and Shetland ponies under defined conditions. We hypothesized that

ponies show different lipid patterns than horses in adipose tissue, liver and plasma. Six

Warmblood horses and six Shetland ponies were housed and fed under identical conditions.

Tissue and blood sampling were performed following a standardized protocol. A one-step

lipid extraction, methylation and trans-esterification method with subsequent gas chroma-

tography was used to analyse the total lipid content and fatty acid profile of retroperitoneal,

mesocolon and subcutaneous adipose tissue, liver and plasma. Fatty acids were grouped

according to their degree of saturation and their conjugated double bond into the respective

lipid classes. In the adipose tissues, saturated fatty acids (SFAs) and n-9 monounsaturated

fatty acids (n-9 MUFAs) were most present in ponies and horses. N-6 polyunsaturated fatty

acids (n-6 PUFAs), followed by SFAs, were most frequently found in liver tissue and plasma

in all animals. Horses, in comparison to ponies, had significantly higher n-6 PUFA levels in

all tissues and plasma. In liver tissue, horses had significantly lower hepatic iso-branched-

chain fatty acids (iso-BCFAs) than ponies. The hepatic fatty acid composition of selected

lipid classes was different between horses and ponies. In the polar PL fraction, horses had

low n-9 MUFA and n-3 PUFA contents but higher n-6 PUFA contents than ponies. Further-

more, iso-BCFAs are absent in several hepatic lipid fractions of horses but not ponies. The

differences in fatty acid lipid classes between horses and ponies provide key information on

the species- and location-specific regulation of FA metabolism, thus affecting health status

such as inflammatory responses.
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Introduction

The physiological fundamentals of the lipid metabolism of equids are poorly understood. Sev-

eral studies have shown that lipid and lipoprotein statuses differ among horse breeds [1–5].

Ponies have higher plasma lipoprotein contents than horses and seem to be more susceptible

to developing hyperlipidaemia under a negative energy balance [2,5,6]. However, little is

known about the impact of fatty acid (FA) profiles on lipid metabolism and homeostasis in dif-

ferent horse breeds. FAs are integral parts of cellular membranes and complex lipids such as

triacylglycerides (TAGs) and phospholipids (PLs). They are involved in various general and

specific biological processes that act to regulate cell and tissue metabolism, function and cellu-

lar signalling, thus affecting health, welfare and disease risk [7,8]. Specifically, polyunsaturated

FAs (PUFAs) of the n-3 and n-6 FA family seem to be metabolically related to health condi-

tions and inflammation. PUFAs of the n-3 series rather than n-6 PUFAs have commonly been

shown to exert molecular actions that result in an improved risk factor profile in relation to

metabolic and inflammatory dysregulations [9–11]. It is further speculated that the health

impact of n-3 PUFAs on whole body homeostasis is mediated by resetting the adipose tissue

(AT) function [12]. AT is no longer considered a simple fat storing tissue but rather contrib-

utes as an integrative key regulator in energy homeostasis and systemic metabolism [12,13].

AT can influence and communicate with many other tissues, including the brain, heart, vascu-

lature, muscle and liver, on different molecular levels by releasing pro- and anti-inflammatory

mediators such as interleukin 1 beta (IL-1β), interleukin 6 (IL-6), tumour necrosis factor alpha

(TNF-α) and other adipokines [13,14]. In equids, a close link between AT function and health

conditions is postulated [15]. Controversial studies about whether visceral fat or subcutaneous

fat depots have a greater modulating impact on inflammation exist [16,17]. Thus, it is impor-

tant to address how tissues vary with respect to FA composition in horses and ponies.

The aim of the current study was to compare the FA contents and profiles of different ATs,

liver, plasma, and hepatic lipid classes between Shetland ponies and Warmblood horses. Con-

sidering the differences in the lipoprotein metabolism of horses and ponies, it was hypothe-

sized that the FA profiles, with a special focus on the n-6 and n-3 PUFA dynamics, were

different between equine breeds.

Materials and methods

Animals and preselection criteria

Six Shetland ponies (geldings) with a mean age (± SD) of 6 ± 3 years and six Warmblood

horses (geldings) with a mean age (± SD) of 10 ± 3 years, with a median body condition score

of (25th /75th percentile) 3.7 (2.2/4.4) for ponies and 3.6 (3.1/4.2) for horses on a scale of 1 to 6

[18] and a mean body weight (BW) (± SD) of 118 ± 29 kg (ponies) and 589 ± 58 kg (horses),

were included in the study. All animals were in the possession of the Institute of Animal Nutri-

tion, Nutrition Diseases and Dietetics. Animals were individually housed in box stalls and bed-

ded on straw. All animals had turnout onto a sand paddock for at least 5 h a day. During a

two-week acclimatization period to the experimental procedure, animals were fed daily 2 kg

meadow hay/100 kg BW, which was divided into two equal portions, one offered in the morn-

ing and one offered in the evening.

The animals had free access to water at all times. All animals were assessed for plasma adre-

nocorticotropic hormone (ACTH) to rule out pituitary pars intermedia dysfunction (PPID).

Insulin dysregulation was excluded for all animals, as fasting serum insulin values were under

the threshold of< 20 μU/ml after the combined glucose-insulin test (CGIT) performed

according to Eiler et al. [19]. The project was approved by the ethics committee for animal
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rights protection of the Leipzig district government, in accordance with German legislation for

animal rights and welfare (No. TVV 32/15). The study was part of a larger project on the con-

sequences of increasing BW gain in horses and ponies.

Blood collection

Aliquots of blood samples were collected by jugular vein puncture into tubes coated with

sodium fluoride (10 mL) or a coagulation activator (10 mL) after an 8 h overnight fast to deter-

mine plasma glucose, serum insulin and plasma lipid FA composition. Samples were allowed

to clot for 30–60 min before centrifugation. Plasma and serum were removed and stored at

-80˚C until analysis.

Animals were individually housed in box stalls and bedded on straw. All animals had turn-

out onto a sand paddock for at least 5 h a day. During a two-week acclimatization period to

the experimental procedure, animals were fed daily 2 kg meadow hay/100 kg BW, which was

divided into two equal portions, one offered in the morning and one offered in the evening.

The animals had free access to water at all times. All animals were assessed for plasma adre-

nocorticotropic hormone (ACTH) to rule out pituitary pars intermedia dysfunction (PPID).

Insulin dysregulation was excluded for all animals, as fasting serum insulin values were under

the threshold of< 20 μU/ml after the combined glucose-insulin test (CGIT) performed

according to Eiler et al. [19]. The project was approved by the ethics committee for animal

rights protection of the Leipzig district government, in accordance with German legislation for

animal rights and welfare (No. TVV 32/15). The study was part of a larger project on the con-

sequences of increasing BW gain in horses and ponies.

Blood collection

Aliquots of blood samples were collected by jugular vein puncture into tubes coated with

sodium fluoride or a coagulation activator after an 8 h overnight fast to determine plasma glu-

cose, serum insulin and plasma lipid FA composition. Samples were allowed to clot for 30–60

min before centrifugation. Plasma and serum were removed and stored at -80˚C until analysis.

Adipose and liver tissue collection

For tissue collection, animals were sedated with romifidine (0.04 mg/kg BW, Sedivet) and

butorphanol (0.03 mg/kg BW, Alvegesic). General anaesthesia was induced with 0.08 mg/kg

BW diazepam (Diazepam-Lipuro) and ketamine (3 mg/kg BW, Ursotamin). Animals were

orotracheally intubated, and anaesthesia was maintained with isoflurane (Isofluran CP). Ani-

mals were placed in dorsal recumbency on a padded surgical table. After aseptic preparation, a

20 cm ventral midline incision was performed from cranial to the umbilicus. AT (~5 g at each

location) was collected from the margins of incision (retroperitoneal (RPN)) and the mesoco-

lon (MSC) of the descending colon (= visceral fat). Liver tissue (~2 g) was collected by biopsy

forceps. After the abdomen was closed, the animals were repositioned in lateral recumbency.

After aseptic skin preparation, incisions (~4 cm) were performed lateral to the tail head and in

the middle of the neck at the nuchal crest. Approximately 5 g AT (subcutaneous (SC)) was col-

lected from each location. A portion of each tissue biopsy specimen was stored in formalin,

and the remainder was immediately flash frozen and stored in liquid nitrogen until analysis.

After the procedure, horses and ponies were placed in a well-padded box to recover from gen-

eral anaesthesia. All animals were treated with 1.1 mg/kg BW flunixin-meglumine (Flunidol

RPS 50 mg/ml) for three days.
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Plasma glucose and serum insulin

Plasma glucose concentrations were determined using the glucose oxidase (GOD)/peroxidase

(POD) method [20]. Serum insulin was analysed by an immunoradiometric assay (IRMA)

(125I) kit for human insulin (0–500 μIU/ml (0–17.5 ng/ml) (Demeditec Diagnostics GmbH,

Kiel, Germany).

Total FA profile and lipid class FA composition

Thin-layer chromatography. The liver (0.1 g) and fat samples (0.5 g) were cut into small

pieces and put into 10 ml glass tubes containing a solvent mixture of chloroform and methanol

(1:1 v/v). The final dilution was 1:50 for fat and 1:10 for liver tissues (1 g wet material corre-

sponds to 1 ml). Tissue samples were homogenized, and total lipids were extracted for FA

analysis.

Total lipids of the homogenized liver samples were extracted using a mixture of water, chlo-

roform and methanol (0.8:0.5:1.5 v/v/v) [21]. Next, 0.2% butylated hydroxytoluene (BHT) in

methanol was added to increase the oxidative stability of lipids during the extraction proce-

dure. Following intensive shaking, two phases were generated by the addition of a chloroform/

water solution (1:1 v/v). After centrifugation at 4,500 rpm for 10 min at 15˚C, the lower layer

(chloroform phase) was collected, chloroform was evaporated under a gentle nitrogen stream,

and the lipids were solved in a chloroform/methanol (1:1 v/v) mixture.

The different lipid classes were separated by preparative thin-layer chromatography on 0.5

mm silica PSC plates (5 cm×5 cm, Merck, Darmstadt, Germany). The diluted samples, con-

taining approximately 2.5 mg lipid, and a standard mixture consisting entirely of 1 mg/mol

TAG, non-esterified FAs (NEFAs), cholesterol (C), cholesterol ester (CE) and PLs were spotted

on pre-washed PSC plates. In the second step, plates were incubated in a solvent system con-

taining chloroform and methanol (95:5 v/v) for band visualization. Single bands correspond-

ing to the different lipid classes were identified via the authentic standards after primuline

staining, scraped off and subsequently extracted and esterified for analysing FA profiles with

internal standards.

A one-step lipid extraction, methylation and trans-esterification method with subsequent

gas chromatography (GC) [22] was used to determine the total FA content and lipid class FA

compositions of the various ATs and liver tissues, with L-phosphadidylcholin-C17:0 (0.8 mg/

ml) as an internal standard.

Fatty acid methyl esters (FAMEs) were separated on a Varian CP 3800 gas chromatograph

(GC, Varian, Darmstadt, Germany) equipped with a 30 m Omegawax 320 capillary column

(0.32-mm ID, 0.2 μm df) (Supelco, Bellefonte, PA, USA). The GC oven temperature was set at

200˚C, and helium was used as a carrier gas with a flow rate of 1 ml/min. Chromatographic

peaks were integrated by the Star 5.0 software (Varian) using the internal standard 1,2-Dihep-

tadecanoyl-sn-glycero-3-phosphorylcholin (Matreya LLC, PA, USA). Quantitative FAME

standard mixtures (FIM-FAME-6 mix, Matreya LLC; C20:5n3 FAME, Supelco; C22:5n3

FAME, Supelco; C13-C18 iso- and anteiso-BCFA-ME, Larodan Fine Chemicals) were used to

quantify most fatty acids. Qualitative FAME mixtures (OmegaWax Column Test Mix, Supelco;

PUFA-1 Cod Liver Oil, Supelco; PUFA-2 Animal Source, Supelco) were used to identify

unknown FAs and quantified assuming a direct relationship between peak area and FAME

weight.

Total FA was expressed as μmol/g tissue or μmol/ml, and FA composition was expressed as

percent of total FA content. Blank values were subtracted in case of unavoidable contamina-

tion of reagents and solvents with some FAs (C10:0, C14:0, C16:1n7, C18:0, C22:2n6, C24:1n9)

[22].
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FA classes were grouped according to their carbon chain (saturated, BCFA), the degree of

unsaturation and the belonging to a fatty acid family (n-3, n-6, n-7, n-9, n-11).

Desaturase and elongase activity indices

Desaturase and elongase activity indices were calculated using the product/precursor ratio of

the percentages of individual FAs according to the following notation: C16:1n-7/C16:0 =

Δ9-desaturase (SCD16), C18:1n-9/C18:0 = Δ9-desaturase (SCD18), C18:3n-6/C18:2n-6 =

Δ6-desaturase (D6D), and C20:4n-6/C20:3n-6 = Δ5-desaturase (D5D) and C18:0/

C16:0 = elongase (Elo).

Statistical analysis

Statistical analyses were performed using a statistical software program (Statistica, StatSoft

GmbH, Hamburg, Germany). Data were tested for normality by the Shapiro-Wilk test.

Levene’s test was used to assess equality of variance. A non-parametric Mann-Whitney U-test

was applied to determine differences in the lipid FA composition and FA ratios between horses

and ponies. The Kruskal-Wallis ANOVA was used to compare different locations for FA dis-

tribution and FA ratios. A two-tailed Dunn’s test correcting for multiple comparisons was

done as a post hoc test. Differences were considered significant at P values lower than 0.05.

Data are presented as medians with 25th and 75th percentiles.

Results

FA composition of adipose tissue

The total lipid FA concentrations of RPN-, MSC- and SCfat were similar between horses and

ponies, but higher FA levels were found in the liver tissue of ponies than in those of horses

(Table 1). Saturated fatty acids (SFAs) and n-9 monounsaturated fatty acids (MUFAs) were

the most abundant FA groups in the RPN-, the MSC- and SCfat depots (Table 2) in both

horses and ponies. There were no significant differences in the percent composition of the

SFA, MUFA and iso-branched-chain FA (iso-BCFA) fractions between horses and ponies.

Horses had a significantly higher amount of n-6 PUFAs (P< 0.01) and a trend for lower n-3

PUFAs than ponies.

Table 1. FA concentrations of different ATs, liver (μmol/g tissue) and plasma (μmol/ ml) in horses (n = 6) and ponies (n = 6).

Adipose tissue Liver Plasma

RPNfat MSCfat SCfat tail

FA (μmol/g tissue) μmol/ml

Total

Pony 1,914a

(1277/2340)

2,057a

(1503/2881)

1,522a

(856/2234)

129c

(122/169)

6.39c

(5.87/6.77)

Horse 2,035a

(1653/2076)

1,740a

(1118/2275)

2,172a (1744/2650) 97.7c

(88.7/107)

6.02c

(5.52/6.53)

P-value 0.82 0.59 0.39 < 0.01 0.59

RPNfat: retroperitoneal fat, MSCfat: mesocolon fat; SCfat: subcutaneous fat; FA: fatty acid; SFA: saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA:

polyunsaturated fatty acid, iso-BCFA: iso-branched-chain fatty acid.

Data are presented as medians and 25th/75th percentiles in (parentheses). Lower-case superscripts within a row with different letters indicate significantly different

values (P� 0.05). Significant differences in FA content between horses and ponies are identified by P values� 0.05

https://doi.org/10.1371/journal.pone.0207568.t001
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Table 2. FA composition (% of total FA amounts) of the different ATs, liver and plasma in horses (n = 6) and ponies (n = 6).

Adipose tissue Liver Plasma

RPNfat MSCfat SCfat tail

FA (%) of total FA

SFA

Pony 37.9a

(36.0/41,3)

34.5ab

(32.8/35.1)

36.0ab

(32.3/38.2)

39.5a

(38.2/40.7)

31.1b

(30.6/31.5)

Horse 40.1a

(36.5/41.3)

37.1ab

(35.1/38.6)

35.9ab

(34.7/37.4)

43.1a

(39.9/47.8)

30.8b

(30.7/30.9)

P-value 0.48 0.09 0.94 0.13 0.67

MUFA

n-7

Pony 6.42abc

(6.08/10.0)

7.68ac

(6.58/10.0)

8.41a

(7.89/9.06)

3.06b

(2.67/3.94)

3.16bc

(2.42/4.09)

Horse 6.08abc

(5.34/6.98)

6.27ab

(5.75/7.05)

8.38a

(6.55/9.30)

2.49c

(2.34/2.64)

2.63bc

(2.47/2.66)

P-value 0.39 0.13 0.94 0.09 0.39

n-9

Pony 27.6ab

(25.5/32.3)

31.1a

26.9/34.3)

29.6a

(29.1/33.4)

13.7b

(12.7/17.5)

13.9b

(13.4/15.7)

Horse 28.4ab

(27.8/29.0)

30.4a

(29.9/31.1)

30.7a

(29.4/33.0)

11.7b

(10.9/11.7)

12.9b

(12.3/14.4)

P-value 0.59 0.70 0.70 0.03 0.18

n-11

Pony 0.07a

(0.06/0.09)

0.06a

(0.06/0.07)

0.07a

(0.06/0.07)

0.15b

(0.11/0.19)

0.10ab

(0.09/0.14)

Horse 0.07ab

(0.06/0.08)

0.08ab

(0.06/0.10)

0.06ab

(0.05/0.08)

0.02a

(0.02/0.02)

0.09 b

(0.09/0.11)

P-value 1.00 0.24 0.82 < 0.01 0.94

PUFA

n-3

Pony 17.0a

(13.2/19.0)

17.4a

(12.6/21.6)

16.8a

(11.1/19.4)

10.1ab

(7.38/11.9)

6.42b

(5.80/7.05)

Horse 12.3a

(10.8/15.0)

12.0a

(11.5/14.7)

12.0a

(10.3/15.0)

8.03ab

(7.07/8.9)

4.27b

(3.88/4.51)

P-value 0.09 0.13 0.24 0.24 0.02

n-6

Pony 6.77a

(6.34/7.82)

7.03a

(6.34/7.61)

6.71a

(5.93/7.77)

22.4ab

(21.4/23.1)

41.8b

(40.9/46.0)

Horse 10.9ab

(9.83/14.4)

10.6ab

(10.55/13.9)

9.12a

(8.70/12.4)

30.0bc

(27.8/37.1)

47.6c

(46.3/48.7)

P-value < 0.01 < 0.01 < 0.01 < 0.01 0.02

Iso-BCFA

Pony 0.47a

(0.30/0.73)

0.48a

(0.30/0.78)

0.53a

(0.35/0.75)

10.0b

(9.57/10.3)

0.66ab

(0.62/0.89)

Horse 0.51abc

(0.46/0.57)

0.50ab

(0.44/0.60)

0.50a

(0.42/0.55)

1.89c

(1.38/2.26)

0.71bc

(0.60/0.80)

P-value 0.70 1.00 0.82 < 0.00 0.82

n-6/n-3

Pony 0.40a

(0.33/0.59)

0.40a

(0.29/0.60)

0.40a

(0.31/0.69)

2.22ab

(1.80/3.13)

6.50b

(5.80/7.93)

Horse 0.89a

(0.66/1.33)

0.88a

(0.71/0.95)

0.76a

(0.58/1.20)

3.74ab

(3.12/5.25)

11.2b

(10.3/12.55)

(Continued)
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FA composition of the liver

In addition to SFAs, PUFAs of the n-6 FA family were the most dominant lipid FA in the liver

(Table 2). The hepatic n-3 PUFA content was not different between ponies and horses, but the

percentage of the hepatic n-6 PUFA fraction was significantly higher in horses than in ponies.

The n-6/n-3 ratios calculated for all tissues and plasma in horses were significantly lower than

those in ponies. Except for the total hepatic n-11 MUFA fraction in ponies, MUFA contents

were lower in the liver than in AT depots for both horses and ponies. The total n-11 MUFA

concentration in the liver of ponies was 5-fold higher than the corresponding MUFA content

in horses.

Ponies contained a 2-fold higher proportion of n-11 MUFAs in the liver than in the differ-

ent ATs. Liver iso-BCFA content (10.0%) was 5-fold higher in ponies than in horses.

FA composition of plasma

In horses and ponies, SFAs and PUFAs of the n-6 FA family represented the majority of

plasma lipids (Table 2).

Tissue comparison

A comparison of the different fat depots with liver tissue showed that horses and ponies have

inverted n-6/n-3 PUFA ratios and higher percentages of iso-BCFAs in the liver than in the AT

depots (Table 2).

Δ9-desaturase activity indices determined from the 16:1n7/16:0 ratio and 18:1n9/18:0 ratio

were significantly lower in the liver than in the ATs for both horses and ponies (Fig 1A and

1B). Increased Δ6- and Δ5-desaturase and elongase indices were found in the liver compared

to the AT depots in all animals (Fig 1C–1E). In this context, horses had a significantly higher

hepatic Δ5-desaturase index than ponies (Fig 1D).

Plasma FA lipid composition (Table 1B) and Δ9-, Δ6- and Δ5-desaturase and elongase indi-

ces corresponded more closely to the liver profile than to the AT profiles in both horses and

ponies (Fig 1A–1E).

In all animals, the majority of hepatic FAs accumulated in the polar PL fraction. Among the

neutral FA fractions, TAGs had the highest FA amount, followed by NEFAs and CEs

(Table 3). The absolute amounts of FAs in the PL fraction were significantly higher in ponies

than in horses (P = 0.004). In ponies, the FA levels in the hepatic NEFA fraction were 2-fold

higher (P = 0.03) and that of the CE fraction 3-fold higher (P = 0.004) than those in horses.

There were no significant differences in the FA levels of TAGs except for one pony that indi-

cated TAG FA values 10-fold higher than the average FA content measured in the TAG frac-

tions of the other animals.

Table 2. (Continued)

Adipose tissue Liver Plasma

RPNfat MSCfat SCfat tail

FA (%) of total FA

P-value < 0.01 < 0.01 0.02 < 0.01 0.02

RPNfat: retroperitoneal fat, MSCfat: mesocolon fat; SCfat: subcutaneous fat; FA: fatty acid; SFA: saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA:

polyunsaturated fatty acid, iso-BCFA: iso-branched-chain fatty acid.

Data are presented as medians and 25th/75th percentiles in (parentheses). Lower-case superscripts within a row with different letters indicate significantly different

values (P� 0.05). Significant differences in FA composition and FA ratio between horses and ponies are identified by P values� 0.05

https://doi.org/10.1371/journal.pone.0207568.t002

Lipid classes in adipose tissues and liver

PLOS ONE | https://doi.org/10.1371/journal.pone.0207568 March 21, 2019 7 / 18

https://doi.org/10.1371/journal.pone.0207568.t002
https://doi.org/10.1371/journal.pone.0207568


Fig 1. Calculated Desaturase and Elongase Activity Indices. Product/precursor ratio of the percentages of individual FAs represent desaturase and

elongase activity indices: (A) C16:1n-7/C16:0 = Δ9-desaturase (D9D16), (B) C18:1n-9/C18:0 = Δ9-desaturase (D9D18), (C) 18:3n-6/C18:2n-6 =

Δ6-desaturase (D6D), (D) C20:4n-6/C20:3n-6 = Δ5-desaturase (D5D) and (E) C18:0/C16:0 = elongase (Elo). Data are shown as whisker plots. Boxes

represent the interquartile range (IQR) between the 25th and 75th percentiles. Horizontal lines are medians. Error bars show the full range excluding

outliers (dots), which are defined as being more than 1.5 IQR outside the box. Lower-case superscripts with different letters indicate significant

differences in these values between equine species (P� 0.05).

https://doi.org/10.1371/journal.pone.0207568.g001
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N-6 PUFAs were the most abundant FAs in the PL fractions of horses and ponies, followed

by SFAs, n-9 MUFAs, n-3 PUFAs together with iso-BCFAs and, at last, n-7 and n-11 MUFAs

(Table 4). Compared to horses, ponies had significant higher n-9 MUFA and n-3 PUFA levels

but significant lower n-6 PUFA contents in the PL fraction, resulting in a lower n-6/n-3 ratio.

No significant differences in SFA and iso-BCFA levels were found in the hepatic PL fractions

between horses and ponies. Similar to the PL fraction, n-6 PUFA levels and calculated n-6/n-3

ratios in NEFAs, TAGs and CE were significantly higher in horses than in ponies. N-11

MUFAs and iso-BCFAs were absent from the hepatic NEFA fraction of horses. In ponies, the

hepatic CE fraction had significantly higher n-3 PUFA levels but lower SFA amounts than that

in horses. Ponies had the highest iso-BCFA levels and the lowest n-9 PUFA contents in the

hepatic CE fraction. These FAs were completely absent from the CE fraction of the horse liver.

Discussion

The current study aimed to compare lipid classes and selected FAs of ATs, liver and plasma

between lean Shetland ponies and lean Warmblood horses. For general background informa-

tion, healthy animals with a moderate body condition score (BCS) [18] and cresty neck score

(CNS) [23] were included in the ongoing study. Using standardized conditions, our study pro-

vides key information on the differences in FA class distribution of lipids in different tissues

by comparing lean ponies with lean horses under controlled feeding and management

conditions.

The regulating impact of ATs on lipid metabolism and tissue crosstalk seemed to be differ-

ent in horses and ponies [24]. Ex vivo studies on the lipolysis activity of equine adipocytes

highlighted a disturbed NEFA release from TAG fat stores as a cause for hyperlipidaemia in

ponies but not in horses under negative energy intake [24]. However, little is known about the

function of the FA lipid profile in AT metabolism in equids, although FAs are known to act as

regulatory key players in various physiological, metabolic and inflammatory processes [7,25].

In equids, most studies on the AT lipid pattern have mainly focused on the intramuscular

fat depots [26–30]. To our knowledge, this study is the first to investigate differences in the

lipid classes and selected FAs of various visceral and subcutaneous fat depots between horses

and ponies. The lipid FA composition and lipid metabolism of tissues is substantially influ-

enced by the diet [28,31,32]. To minimize dietary effects, feeding protocols were standardized

in animals by feeding them meadow hay for several weeks. In the present study, no significant

Table 3. FA content (μmol/g) of the separated hepatic lipid classes in horses (n = 6) and in ponies (n = 6).

PL NEFA TAG CE

FA (μmol/g tissue)

Total

Ponies 94.0a

(88.6/100)

5.06bc

(3.52/6.72)

27.9ab

(18.9/58.7)

2.45c

(1.83/2.46)

Horses 68.2a

(61.4/70.7)

2.62bc

(2.04/2.94)

26.2ab

(24.5/30.2)

0.61c

(0.51/0.83)

P-value < 0.01 0.03 0.82 < 0.01

PL: phospholipid; NEFA: non-esterified free fatty acid; TAG: triacylglyceride; CE: cholesterol ester; RPNfat:

retroperitoneal fat, MSCfat: mesocolon fat; SCfat: subcutaneous fat; FA: fatty acid; SFA: saturated fatty acid; MUFA:

monounsaturated fatty acid; PUFA: polyunsaturated fatty acid, iso-BCFA iso-branched-chain fatty acid.

Lower-case superscripts within a row with different letters indicate significantly different values (P� 0.05).

Significant differences in FA content between horses and ponies are identified by P values� 0.05.

https://doi.org/10.1371/journal.pone.0207568.t003
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Table 4. FA composition (% of total FA amounts) of the separated hepatic lipid classes in horses (n = 6) and in ponies (n = 6).

PL NEFA TAG CE

FA (%) of total FA content

SFA

Ponies 34.7ac

(34.4/35.9)

54.8b

(47.3/56.0)

37.3abc

(34.3/38.8)

30.2c

(28.8/32.9)

Horses 36.6a

(35.9/36.9)

53.47a

(49.6/56.51)

36.3a

(35.9/38.7)

49.9a

(31.7/60.94)

P-value 0.09 0.82 1.00 0.04

MUFA

n-7

Ponies 2.16ab

(1.64/2.92)

3.03b

(2.63/4.24)

5.58b

(4.94/8.63)

0.99a

(0.84/1.06)

Horses 1.79ac

(1.75/1.90)

2.47ab

(2.26/2.85)

5.46b

(5.34/5.51)

0.37 c

(0.00/0.98)

P-value 0.59 0.18 1.00 0.13

n-9

Pony 14.7ab

(13.4/15.2)

12.8ab

(11.0/24.2)

28.0b

(27.0/29.2)

1.18a

(1.16/1.54)

Horse 11.6a

(10.9/13.1)

11.0a

(8.62/12.4)

23.2ab

(22.5/25.5)

n.d.

P-value 0.02 0.39 0.06

n-11

Ponies 0.05a

(0.04/0.07)

0.50b

(0.33/0.58)

0.07ab

(0.06/0.09)

n.d.

Horses 0.04 a

(0.04/0.05)

n.d. 0.05a

0.04/0.06)

n.d.

P-value 0.70 0.09

PUFA

n-3

Ponies 4.40a

(3.44/5.12)

9.89ab

(9.01/12.00)

14.7b

(12.2/16.4)

8.70ab

(6.52/14.6)

Horses 2.94ac

(2.70/3.42)

12.6ab

(9.03/13.8)

13.8b

(12.6/16.2)

2.87c

(2.18/3.13)

P-value 0.03 0.31 0.94 0.00

n-6

Ponies 40.5a

(38.6/40.9)

11.6bc

10.0/13.9

7.71c

7.00/8.37

29.5ab

(25.4/32.5)

Horses 44.0a

(42.1/45.5)

21.8ab

20.6/25.9

13.27.b

12.1/14.5

45.9a

(34.9/65.6)

P-value < 0.01 < 0.01 < 0.01 0.06

Iso-BCFA

Ponies 3.20a

(2.11/3.35)

6.42ab

(5.54/6.70)

5.39a

(3.63/6.24)

23.2b

(22.0/26.4)

Horses 2.39a

(1.71/3.02)

n.d. 5.18ab

(3.78/5.74)

n.d.

P-value 0.48 0.82

n-6/n-3

Ponies 9,31ab

(7.53/11.2)

1,12c

(1.03/1.31)

0,57bc

(0.43/0.71)

3,37a

(2.01/5.63)>

Horses 14,6a

(12.3/16.9)

1,78ab

(1.66/2.32)

0,93b

(0.80/1.12)

17,8a

(12.55/21.2)

(Continued)
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differences in the total FA content and FA lipid profile between the distinct AT locations were

found in horses and ponies (Table 1).

Our results confirmed previous studies that highlighted n-3 PUFAs and, to a lesser extent,

n-6 PUFAs, as well as SFAs and n-9 MUFAs, as the main FA classes in ATs [28,29]. The pre-

dominance of PUFAs in ATs is well explained by the meadow hay intake [30] and the low bio-

hydrogenation activity in the gut, resulting in an efficient uptake and deposition of PUFAs

from grass species rich in n-3 and n-6 PUFAs into tissues [26,33].

In addition to ATs, the liver plays a major role in FA metabolism, which argues that

researchers should focus more closely on hepatic FAs and their metabolism [34]. However,

data on hepatic lipid composition and FA metabolism in equids are rare. As expected, the total

FA content in liver tissue was significantly lower than that in the different ATs. In the liver,

FAs mainly accumulate in the polar PL fraction, followed by the neutral fractions of TAGs,

NEFAs and CEs for both horses and ponies (Table 3). Interestingly, SFA levels were quite simi-

lar between ATs and liver, but significant differences were found in MUFA and essential n-6

PUFA levels (Table 2). FAs in adipocytes mainly result from dietary FAs, which enter the adi-

pocytes to form neutral TAGs for energy storage, thereby primary accumulating SFAs and

MUFAs [35]. Furthermore, the majority of de novo synthesis of non-essential FAs may occur

in the AT depots and not in the liver, as has been recently described for equids [36]. Data from

the present study, showing significantly higher 16:1n-7/16:0 and 18:1n9/18:0 ratios in the AT

depots than in liver tissue, supports these findings by reflecting a higher AT Δ9-desaturase

activity (Fig 1A and 1B). Following de novo lipogenesis of saturated palmitic acid (C16:0) and

stearic acid (C18:0) in the cell, Δ-9 desaturase catalyses the production of monounsaturated

palmitoleic acid (C16:1n-7) from the 16:0 precursor and of oleic acid (C18:1n-9) from its 18:0

precursor [37]. Thus, the accumulation of C16:1-n7 and 18:1n9 as the main products of lipo-

genesis could reflect high de novo lipogenesis activity in AT depots.

In the liver, essential FAs are used as precursors for other FAs, especially long-chain

PUFAs. In addition, FAs can be converted to biologically active FA-derived compounds such

as eicosanoids that regulate a variety of physiological processes [38].

The n-6 PUFA contents being higher in the liver than in the ATs might be explained by a

higher percentage of PLs being present in the membranes of the hepatocytes than in those

of adipocytes. Namely, n-6 PUFA arachidonic acid (AA) is an important component of the

membrane PLs. Hepatocytes preferably incorporate PUFAs, especially members of the n-6

PUFA family, in the polar PL structures of the cellular membranes [34] rather than in neu-

tral storage lipids such as TAGs. In adipocytes, high amounts of FAs accumulate in cytosolic

TAGs for energy storage, mainly including SFAs and MUFAs and smaller amounts of

PUFAs [35]. Higher n-6 PUFA levels resulted in reduced n-3 PUFA levels, explaining the

n-3/n-6 ratio being inverted between liver and ATs (Table 2).

Table 4. (Continued)

PL NEFA TAG CE

FA (%) of total FA content

P-value 0.03 < 0.01 < 0.01 < 0.01

PL: phospholipid; NEFA: non-esterified free fatty acid; TAG: triacylglyceride; CE: cholesterol ester; RPNfat: retroperitoneal fat, MSCfat: mesocolon fat; SCfat:

subcutaneous fat; FA: fatty acid; SFA: saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acid, iso-BCFA: iso-branched-chain fatty

acid.

Data are expressed as medians with 25th/75th percentiles in (parentheses). Lower-case superscripts within a row with different letters indicate significantly different

values (P� 0.05). Significant differences in FA composition and FA ratio between horses and ponies are identified by P values� 0.05.

https://doi.org/10.1371/journal.pone.0207568.t004
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Species-derived differences in the FA profile of selected ATs and liver were found for n-6

PUFAs. Horses had significantly higher n-6 PUFA contents in the ATs and liver compared to

ponies. As the diets were standardized between horses and ponies, the differences in n-6

PUFAs might be related to genetically or metabolically derived differences in the incorpo-

ration, utilization or storage of PUFAs. Studies in humans confirm that in addition to nutri-

tional influences, genetic background is highly important for PUFA composition in tissues

[39]. Genetic association studies on the FA composition of ATs, serum PLs and erythrocyte

membrane PLs in humans of different ethnic backgrounds revealed that polymorphisms

(SNPs) in the desaturase FADS gene clusters [40–43] determine the efficiency of n-3 and n-6

PUFA processing, thus affecting total PUFA status. Compared to major allele carriers, minor

allele carriers of the FADS SNPs had minor desaturase activities, indicating a high association

of genotype and absolute endogenous n-3 and n-6 PUFA levels [43]. The data from the current

study confirm significant differences in the desaturase and elongase activity indices between

horses and ponies for liver tissue and some ATs (Fig 1A, 1B, 1D and 1E). This result might

support the hypothesis of a variant genotype within the equids. In addition, genetic variations

of other candidate genes were evidenced affecting PUFA binding, translocation and transport

in human and animal tissues [39,42,44–46]. Furthermore, enzyme selectivity for specific FAs,

rates of FA uptake, FA mobilization and FA reuptake were assumed to affect the PUFA com-

position of ATs in humans and different animal models [44–47]. In this context, FA chain

length and degree of unsaturation are critical factors that might affect the individual FA supply

to tissues [48]. For n-3 PUFAs, slower uptake into ATs [31] and higher mobilization [49] in

relative to their values in other FAs have been observed in humans. Thus, differences in the n-

6 and n-3 PUFA tissue availability in the equine sub-species might be a result of nutrigenetic

interactions of dietary PUFAs and variations in genes encoding for PUFA enzymes and

transporters.

In horses, the higher n-6 PUFA levels seemed surprising. PUFAs of the n-6 FA family are

considered pro-inflammatory [9], which may predispose individuals to inflammatory

responses and metabolic dysregulation [38,50,51]. Among n-6 PUFAs, AA in particular has

signalling effects that may create a pro-inflammatory, pro-allergic and pro-tumour environ-

ment [7]. AA mainly acts as a precursor for eicosanoids and derived mediators that are associ-

ated with inflammatory diseases and immune responses. In addition, free AA may directly

promote inflammatory processes by activating the transcription factor Nuclear factor kappa B

(NFκB), which regulates the expression of genes associated with innate and adaptive immunity

[52]. The essential linoleic acid (LA) (18:2n6), as an integral part of cellular membrane cer-

amides, is important in skin and barrier function [53]. LA can be metabolized to AA by several

desaturase and elongase enzyme activities. Several in vitro studies on macrophages and in vivo
studies in humans have indicated that LA has only a limited effect on inflammation with

respect to a reduced release of pro-inflammatory cytokines such as IL-1β and IL-6 [54,55].

Considering the range of different biological effects of the two n-6 PUFAs, it seems no longer

relevant to describe the functional impacts of FA families or classes; rather, the activities of

individual FAs and their relevance to health and disease risk should be detailed [7]. In earlier

studies on the FA composition of serum PLs in equids, it was evidenced that ponies and horses

contained higher LA contents despite having less AA in serum lipids than other herbivores

[1,56,57]. The inverse relationship of the two n-6 PUFAs in serum might have particular rele-

vance in prostaglandin production. For example, human endothelial cells [58], skin fibroblasts

[59] or mouse macrophages [60] enriched with LA showed reduced AA contents in the cellular

PLs and reduced prostaglandin (PGI2) release. It is speculated that these two n-6 PUFAs also

have an inverse relationship in the hepatic lipid stores of equids. Further investigations of LA
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and AA metabolism in relation to prostaglandin syntheses and inflammatory tissue responses

in horses and ponies are needed.

Furthermore, the combined influences of n-3 and n-6 PUFAs on several regulatory and sig-

nalling systems [7,25,55] predisposes the n-6/n-3 ratio as an additional critical factor influenc-

ing health and diseases in humans and animals [50,61]. In the present study, both horses and

ponies had n-6/n-3 ratios < 1 in ATs and of 2 or 3 in the liver. Similar results have been

reported for subcutaneous ATs in healthy horses of different breeds [26]. Further investiga-

tions on the n-6/n-3 PUFA ratio in cases of metabolic dysregulation are important to deter-

mine optimal tissue and individual dietary ratios. The importance of the dietary n-6/n-3 ratio

in diverse chronic health conditions such as obesity-linked inflammation and insulin dysregu-

lation was evidenced in Sprague-Dawley rat models and human studies [50,61,62]. Reduction

in n-6 PUFAs in the diet to a n-3/n-6 PUFA ratio of 1:1 was evidenced to prevent excessive n-6

eicosanoid action and Toll-like receptor 4 (TLR4)-induced production of pro-inflammatory

cytokines via an effective blocking of corresponding signalling pathways by n-3 PUFA action.

This approach avoids metabolic disorders and is beneficial for health. Use of n-6 PUFA-domi-

nated dietary ratios of 1:4 failed to result in these changes [61,62]. However, it cannot be

excluded that the adaptation period to the same diet was too short to exclude any dietary influ-

ences on PUFAs in the present study.

Another interesting finding of the current study was the high iso-BCFA content in the liver

of horses and ponies compared to that in the ATs (Table 2). In mammals, BCFAs are found in

several tissues, including skin, brain, blood and cancer cells [63–66]. According to their struc-

ture and main metabolic origin, several types of BCFAs were differentiated. Iso- and anteiso-

BCFAs, also called terminal BCFAs, are the main components of bacterial membranes and are

synthesized from branched-chain amino acids and their corresponding branched-short-chain

carboxylic acids [67]. However, the non-terminal BCFAs were reported to be synthesized in

tissues [68]. Although the function and physiological roles of BCFAs are rarely understood,

their wide distribution in different tissues might suggest an important function in several met-

abolic processes. Studies in humans reported anti-inflammatory and insulin-synthesizing

effects of BCFAs [63,69]. It is speculated that BCFAs may affect metabolic genes and transcrip-

tion factors [64].

However, little information is available on the role of BCFAs in horses. Santos et al. [70]

found high levels of BCFAs in the equine hindgut, which might be related to bacterial and pro-

tozoan mass or bacterial and protozoan fermentation. It is well known from ruminants that

the bacterial BCFAs of the rumen can be absorbed and incorporated into TAG tissues, thus

increasing the terminal BCFA content in ATs and milk lipids [67]. Likewise, with regard to

our findings in ATs and plasma, Belaunzaran et al. [71] determined similar levels of BCFAs in

horse meat and ATs and assumed that BCFA absorption occurred from diet rather than by

absorption of fermentation products. Previous studies that confirm various iso- and anteiso-

BCFAs as major components in plant surface waxes [72] support the idea of dietary uptake of

BCFAs by tissues. Nevertheless, data on BCFA status in liver tissue were not obtained. In

accordance with our data, high BCFA levels, ranging from 2.1% to 2.5% of total FA content,

were found in the liver of ruminants [67]. The high hepatic BCFA amounts in bovines were

thought to be associated with TAG accumulation. This link was also confirmed in the current

study. However, the highest iso-BCFA contents were highlighted in the CE fraction of the

pony liver, in contrast to a complete lack of hepatic CE iso-BCFAs in horses. Clearly, there

exists species-derived differences in iso-BCFA metabolism that might be linked to cholesterol

metabolism in equids. We further speculate that different expression patterns of receptors and

enzymes are involved in intracellular degradation, turnover and transport of iso-BCFAs

through the plasma membranes in ponies and horses. Further research on the entire role and
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metabolism of iso-BCFAs in hepatic FA metabolism is required. In that context, it seems

appropriate to investigate the function of different iso-BCFAs in context with metabolic dysre-

gulation in horses and ponies.

Interestingly, horses rather than ponies lack some of the FA classes in different hepatic lipid

fractions. Studies by Yamamoto et al. [73] confirm the lack of hepatic n-9 and n-11 MUFAs in

the polar CE fraction and found comparable levels of SFAs in the CE (61.7% of total FA) and

neutral TAG fraction (44.1% of total FA) as we did. However, data on the long chain FA were

missing, which is partly offset by data from the current study.

FA levels and lipid profiles were similar between liver and plasma, suggesting plasma as a

potential biomarker for liver lipid content and FA lipid composition [74]. These findings are

further supported by the close relationship of the FA elongase and desaturase indices in the

liver and plasma, which were both different from those in the ATs (Fig 1A–1E).

Conclusion

The present results provide basic data on lipid classes in different ATs, liver and plasma in lean

horses and ponies under standard conditions. The higher n-6/n-3 ratios in the ATs, liver and

plasma of horses in comparison to ponies and differences in the desaturase and elongase indi-

ces may reflect breed-related differences in the acquisition (e.g., FA uptake and de novo lipo-

genesis), removal (i.e., mitochondrial FA oxidation and FA mobilization) and turnover of FA.

In liver tissue, horses also had lower hepatic iso-BCFA levels than ponies. As iso-BCFAs are

linked to anti-inflammatory and insulin-synthesizing effects, these findings need further

elucidation.
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