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Abstract: Ultra-sensitive elements for nanoscale devices capable of detecting single molecules are
in demand for many important applications. It is generally accepted that the inevitable stochastic
disturbance of a sensing element by its surroundings will limit detection at the molecular level.
However, a phenomenon exists (stochastic resonance) in which the environmental noise acts
abnormally: it amplifies, rather than distorts, a weak signal. Stochastic resonance is inherent
in non-linear bistable systems with criticality at which the bistability emerges. Our computer
simulations have shown that the large-scale conformational dynamics of a short oligomeric fragment
of thermosrespective polymer, poly-N-isopropylmethacrylamid, resemble the mechanical movement
of nonlinear bistable systems. The oligomers we have studied demonstrate spontaneous vibrations
and stochastic resonance activated by conventional thermal noise. We have observed reasonable shifts
of the spontaneous vibrations and stochastic resonance modes when attaching an analyte molecule to
the oligomer. Our simulations have shown that spontaneous vibrations and stochastic resonance of
the bistable thermoresponsive oligomers are sensitive to both the analyte molecular mass and the
binding affinity. All these effects indicate that the oligomers with mechanic-like bistability may be
utilized as ultrasensitive operational units capable of detecting single molecules.

Keywords: thermoresponsive oligomers; nanomechanics; bistability; stochastic resonance; single
molecules detection

1. Introduction

The desire to build detecting, control, and logic elements as small as possible actively stimulates
the search for molecular structures of nanometer size, capable of performing discrete operations at the
molecular level. To date, impressive advances have been made in mastering various nanodevices, e.g.,
switches [1,2], sensors [3–6], catalytic agents [7], actuators [8], and logic gates [9]. Submicron-sized
mechanical and electromechanical machines are also an important advance [10–14]. However, the
design of molecular machines a few nanometers in size remains a challenge.

A nanometer-sized molecule must have a specific dynamic in order to work as a machine. Indeed,
such a molecule, being large enough, has a huge number of degrees of freedom. However, machine-like
action implies low-dimensional dynamics, which are supposed to be realized through collective atomic
motions associated with the one or two slowest degrees of freedom of the molecule. To be distinguished
dynamically, the functional degrees of freedom must be separated from all faster degrees of freedom
by a large spectral gap [15–17]. Therefore, the search for molecular structures performing machine-like
action is severely limited.

The type of operation can further narrow the scope of the search. Switching, for example, implies
an abrupt change in state of a two-state system when the controlling stimulus crosses a threshold value.
In terms of dynamical systems, switching is a non-linear dynamic with criticality [18,19].
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A commonplace metal ruler subjected to longitudinal compression is a simple demo system with
critical behavior. Indeed, the ruler remains straight under light compression. However, as soon as the
compressive force exceeds a certain critical value, the straightened state becomes unstable and the
ruler bends up or down. Above critical compression, the ruler is a bistable dynamical system and can
jump from one state to another. In dynamical terms, the compression transforms one-state dynamics
into bistable dynamics, which are characterized by potential energy with two minima separated by a
bistability barrier. The ability of a metal plate to undergo abrupt changes in states via applied power
loads is exactly why it is used in mechanical switches.

Bistability is interesting not only for the discrete action. If random perturbations can activate
transitions over the bistability barrier, the bistable system will spontaneously jump between two states,
performing spontaneous vibrations. The time intervals separating spontaneous jumps, i.e., the lifetimes
of the system in each of the two states, are widely distributed around a mean value, which, in turn,
depends exponentially on the ratio of the bistability barrier to the intensity of the perturbation [20,21].
The exponential dependence enables the transformation of spontaneous vibrations into regular jumps
via a slight wiggle of the bistable potential by a weak oscillating force. Regularization of spontaneous
vibrations by a weak oscillating force was called stochastic resonance [20], mainly because the output
associated with noise-induced transitions of the bistable system can be much larger than the weak
oscillating force used as the input. In this sense, one can say that stochastic resonance is a phenomenon
involving the amplification of a weak signal by noise. That is why stochastic resonance has attracted
much interest, in particular, for sensing [22,23].

In macroscale dynamical systems, the bistability barrier is macroscopically high, so spontaneous
vibrations of the macroscopic-sized bistable systems, e.g., of the micron- or even submicron-sized ones,
cannot be activated by thermal-bath fluctuations. Much stronger perturbations are needed. However,
thermal fluctuations can be major perturbations for systems a few nanometers in size. Therefore, if
a nanometer-sized molecule is bistable, and its bistability barrier is comparable to the thermal-bath
fluctuations energy, spontaneous vibrations and stochastic resonance will appear naturally. Thermally
activated spontaneous vibrations and stochastic resonance seem to be highly attractive for measuring
at the molecular level.

Searching for mechanic-like bistability among molecules a few nanometers in size may
not seem promising, but computer simulations give some hope [24]. Our intensive molecular
dynamic simulations of rather short oligomeric fragments of thermoresponsive polymer
poly-N-isopropyl-methyl-acrylamide (PNIPMA) subjected to longitudinal compression revealed
specific oligomeric samples that successfully combine nanometer size and mechanic-like bistability.
These oligomers do exhibit thermally activated spontaneous vibrations and stochastic resonance, and
both of these modes of bistability turned out to be sensitive to the attachment of single molecules. In
this article, we present the computer simulation data on the mechanic-like bistability of a syndiotactic
N-isopropylmethylacrylamid oligomer with a length of 30 units (oligo-30s-NIPMAm), as well as
the data on the sensitivity of the oligomer spontaneous vibrations and stochastic resonance to the
attachment of single molecules.

2. Materials and Simulation Method

The simulation approach consists of the following steps: (i) equilibrium conformation of
oligo-30s-NIPMAm below and under critical temperature (~32 ◦C); (ii) application of a compression
force to a closed 30s-NIPMAm conformation to observe spontaneous vibrations; (iii) application of
external periodic stimuli to a critical compression force to observe stochastic resonance; (iv) addition of
an analyte to 30s-NIPMAm to show a sensing regime.

We started with morphology simulations using the GROMACS 2019 simulation package [25].
In our approach, we first adapted the OPLS-AA force-field [26–28]. Because all Lennard–Jones
parameters were taken from the OPLS-AA, the combination rules and the fudge factor of 0.5 were
used for 1–4 interactions. The long-range electrostatic interactions were treated by using a smooth
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particle mesh Ewald technique. All calculations were performed in the NVT ensemble using the
canonical velocity-rescaling thermostat, as implemented in the GROMACS simulation package. The
oligo-30s-NIPMAm and the environmental water were modeled in a fully atomistic representation in a
box sized 6.0 × 8.0 × 8.0 nm with a time step of 1 fs. The temperature was set at 290 K, i.e.,sufficiently
below the low critical solution temperature of the poly-NIPMAm [29–32].

The second step was a simulation of spontaneous vibrations. For that, we applied a longitudinal
load. After the definition of a critical force for observing spontaneous vibration, we applied a weak
oscillating force. Computational details of the application of longitudinal load and weak oscillation
force for the oligomer in the free and sensing regime are described in Supplementary Materials,
Note S1–S2.

3. Results

In this section, we describe a set of specific characteristics of the oligo-30s-NIPMAm dynamics,
which unambiguously show that the oligomer, when subjected to power loads, behaves like a nonlinear
system with criticality. Mechanic-like bistability, spontaneous vibration, and stochastic resonance
are the focus of our simulations. In addition, we present the data corresponding to the sensitivity
of the spontaneous vibrational and stochastic resonance modes of the oligomer to the attachment of
single molecules.

3.1. Oligomeric Templates for Molecular Dynamic Simulations

We started with simulations of the molecular dynamics of oligo-30s-NIPAm at different
temperatures to ensure that the oligomer was thermoresponsive, i.e., it actually had two well-defined
conformational states (called, hereafter, “open” and “closed” states) and sharply changed the states
when the temperature crossed a critical value. The oligomer states were characterized by the distance
between the oligomer ends, while the oligomer conformation was additionally controlled by the
gyration radius. The low critical solution temperature of the oligo-30s-NIPAm was specified to be
close to 305 K [29–32], so a temperature equal to 290 K was chosen for the preparation of samples in
the open state, while it was equal to 320 K for samples in the close state. Figure 1a shows the shapes
of the open and closed states of oligo-30s-NIPAm equilibrated at 290 K and 320 K, respectively. The
fluctuations of the end-to-end distance, Re, at these two states are shown in Figure 1b.

Figure 1. Temperature-induced bistability of the oligo-30s-NIPMAm. (a) Typical shapes of the oligomer
in the “open” and “closed” states equilibrated at the temperatures 90 K and T = 320 K, respectively. (b)
Normalized distributions of fluctuations of the end-to-end distances Re at the open and closed states.
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3.2. Bistability and Spontaneous Vibrations

Assuming that a longitudinal compression of the oligomer could lead to a sharp transition from
the open state to the closed state as the compression exceeded a critical value, we took the oligomer
equilibrated in the open state (at 290 K) and applied a longitudinal compressive force, F, in the same
manner as in the demo-ruler above (Figure 2a). In fact, one could take the oligomer equilibrated in the
closed state at 320 K and apply the pulling forces. Such experiments also were checked, and the results
were qualitatively the same.

Figure 2. The response of the oligo-30s-NIPMAm to longitudinal compressions: (a) Schematic
presentation of the oligomer compression; (b) The bifurcation diagram represents how the stationary
states, Re, of the oligomer depend on compression F as a control parameter. A shadow interval of
compression forces from 340–430 pN marks the area of spontaneous vibrations.

Figure 2b shows how the stationary states of the oligomer evolve when the compression grows.
One can clearly see a drastic change in the oligomer dynamics near the critical point Fc ≈ 320 pN.

Indeed, the open state remains the only state of the oligomer up to the critical compression. However,
at the critical compression, a new branch of actually bent stationary states appears. Far from the critical
point, the oligomer is found in the open or closed state, depending on compression. If the compressive
force quickly crossed the critical point, then the oligomer would abruptly transition from the open
state to the closed state, like a jump-like switching of a metal ruler. Somewhat above the critical
compression, low-frequency spontaneous vibrations between the open and closed states are observed,
i.e., the oligomer is bistable in this region. It should be noted that spontaneous vibrations are not
observed just after the critical point, despite the fact that there are two branches of states. Spontaneous
vibrations are observed with some offset from the critical point, i.e., in the region where the bistability
barrier matches the thermal fluctuations. The bistability barrier should be neither too small nor too
large relative to thermal fluctuations.

Spontaneous vibrations are observed with some offset from the critical point, i.e., in the region
where the bistability barrier matches the thermal fluctuations. Indeed, as long as the barrier remains
less than kT, the thermal noise will blur the states. Therefore, the bistability barrier should be
noticeably larger than kT. The bistability barrier should be neither too small nor too large relative to
thermal fluctuations in order to observe spontaneous vibrations as random transitions between two
well-defined states.

To more accurately verify the spontaneous vibrations, we plotted the probability distributions,
P(Re), of the states Re averaged over a set of dynamic trajectories, Re(t), and studied how these
distributions were transformed when the compression grew. The bifurcation diagram in Figure 2b is
reconstructed exactly from these data. Below and fairly above the bifurcation point Fc ≈ 320 pN, the



Nanomaterials 2020, 10, 2519 5 of 10

oligomer dynamics are characterized by single-peak distributions P(Re) at the open or closed state,
respectively. Near the bifurcation point from above, there is an interval of compressions in which
the distributions P(Re) have a double-peak form caused by spontaneous vibrations of the oligomer
between the open and closed states. In our simulations, the mean lifetime of the states, i.e., the mean
value of random time intervals between the jumps defined along dynamic trajectories, ranged from 5 to
10 ns, depending on the compression. Using Kramer’s exponential relation between the lifetime of the
states and the bistability barrier, and assuming that the pre-exponent collision factor is equal to 10−13 s,
the bistability barrier was estimated as 10–15 kBT, where kB is the Boltzmann constant and T is the bath
temperature. Following this estimate, we assumed that the reordering of hydrogen bonds between the
oligomer and surrounding water could activate spontaneous vibrations of the oligo-30s-NIPMAm. If
this were the case, the spontaneous vibrations would be caused precisely by the thermoresponsibility
of the oligo-30s-NIPMAm, e.g., due to the switching of hydrogen bonds from the oligomer–water
configuration to the oligomer–oligomer configuration [30–32].

To verify whether the mechanic-like spontaneous vibrations of the oligomer were, indeed,
controlled by reversible switching of some hydrogen bonds, we checked the hydrogen bonds in
the oligomer–water configuration and in the oligomer–oligomer configuration and studied how the
number of these hydrogen bonds fluctuated. We realized that only the hydrogen bonds located in the
oligomer bending area had a reasonable relation to the oligomer spontaneous vibration. These data are
shown in Figure 3a.

Figure 3. Correlation between the oligomer dynamics Re(t) and switching of hydrogen bonds located in
the oligomer bending area. The compressions F are indicated on the panels. (a) Spontaneous vibrations
of the oligomer (black curves, left axes, Re nm) strongly correlate with the switching of hydrogen
bonds from the oligomer–oligomer configuration to the oligomer–water configuration and back (red
curves; right axes). (b) No significant correlation between the oligomer dynamics and the fluctuations
of hydrogen bonds is seen beyond the bistability region.

One can see that spontaneous vibrations of the oligomer and the switching of particular hydrogen
bonds are synchronized on antiphase with high correlation coefficients of−0.90. Figure 3b demonstrates
that no significant correlation between the oligomer dynamics and the switching of hydrogen bonds is
observed beyond the bistability region.

3.3. Stochatic Resonance

Taking the oligomer in the spontaneous vibrations regime, we stimulate the stochastic resonance
by applying an additional weak oscillating force directed along the compressive force, F (see Figure 2).
The oscillating force was induced by an external oscillating electrical field E = E0cosωt enacted on
a charge (+1) set at one end of the oligomer, while a compensative charge was set at the opposite
end. Following the well-known fact that the main resonance peak arises when the frequency of the
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oscillating field matches the mean value of the state lifetimes in the spontaneous vibrations mode [23],
we tested the oci fields with the period of T = 5 ns (200 MGz in frequency); the amplitudes ranged
from 0.1 V/nm to 1.0 V/nm. For more details, see Supplementary Materials, Note S1.

The explicit manifestation of the stochastic resonance induced by the oscillating force with the
frequency of 200 MHz and the amplitude of 0.2 V/nm is shown in Figure 4.

Figure 4. Stochastic resonance generated by harmonic electric field E = E0cosωt with the amplitude 0.2
V/nm and the frequency 200 MGz: (a) The oligomer dynamic Re(t) in the stochastic resonance mode;
(b) The autocorrelation function of Re(t); (c) The frequency spectrum of the autocorrelation function
shown on panel (b).

3.4. Single Molecules Sensing via Spontaneous Vibrations Mode

This series of computer experiments aimed to study the bistable dynamics of the 30s-NIPMAm
when a molecular cargo was attached. It is known that nonlinear systems are sensitive to weak impact
precisely near the bifurcation point [32–35]. Therefore, we first initiated the spontaneous vibration
of unloaded oligo-30s-NIPMAm near the critical compression and then studied how the oligomer
dynamics changed with molecular cargo attachment (see Figure 5a). Figure 5b,c show the response of
spontaneous vibrations of the oligo-30s-NIPMAm at the compression of 375 pN to the attachment of a
dye molecule (ATTO 390).

Figure 5. Sensitivity of the oligo-30s-NIPMAm spontaneous vibrations to the attachment of
a single-molecule cargo (an analyte). (a) Schematic presentation of the computer experiments.
(b) Spontaneous vibrations of the unloaded oligomer (black trajectory) at the compression of 375 pN,
and non-vibrating dynamics of the oligomer loaded with an analyte at the same compressing force (rad
trajectory). (c) Evolution of statistical weights for visiting the open and closed states by the loaded
oligomer vs. the compressive force. Molecular cargo (an analyte) shifts the spontaneous vibrations
mode from the compression of 375 pN (see panel (b)) to the compressive of 390 pN.

Recall that the unloaded oligomer subjected to the same compression is bistable and vibrates
spontaneously. However, as Figure 5b shows, the oligo-30s-NIPMAm escapes the spontaneous
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vibrations mode when a molecular cargo attaches to the oligomer. The loading by a cargo shifts the
bistability region. This fact is additionally confirmed by the evolution of statistical weight distributions
for visiting the open and closed states when the compressing force is varied. In particular, the
attachment of a dye molecule shifts the compression under which the spontaneous vibrations are
observed from 375 pN to 390 pN (Figure 5c). Note that a molecular cargo shifts the spontaneous
vibrations mode toward the higher compression of the oligomer. The shifts must depend on the type
and number of the molecules attached. The shifts of the spontaneous vibrations mode caused by the
attachment of various molecular cargos are presented in Supplementary Materials, Note S2.

3.5. Single Molecules Sensing via Stochastic Resonance

Taking the oligomer in the spontaneous vibrations mode at the compression of 375 pN, we first
initiated the stochastic resonance mode by applying an additional oscillating field E = E0cosωt with the
amplitude E0 = 0.2 V/nm and frequency ω = 2π/5 ns−1, and then studied how the oligomer dynamics
changed with a molecular cargo attachment.

The spontaneous vibrations mode (red curve) and the stochastic resonance mode (black curve) for
the oligomer without an analyte are shown in Figure 6a.

Figure 6. Stochastic resonance and the sensing regime. (a) Spontaneous vibrations (red curve) and
stochastic resonance (black curve) of the unloaded oligo-30s-NIPMAm under the compression of 375
pN. (b) Dynamics of the oligomer loaded by a tryptophan molecule at the same conditions. Trajectories
are marked as in panel (a).

In the spontaneous resonance mode, the oligomer itself responded to the oscillating force with the
resonance frequency. The oligomer dynamics loaded by a molecular cargo are shown in Figure 6b. One
can see that, when the cargo is attached, the oligomer completely leaves the spontaneous vibrations
mode (Figure 6b). The stochastic resonance mode is lost too, but the oligomer still vibrates, though the
vibrations are not well-synchronized with the external harmonic field. These experiments showed that
the attachment of a molecular cargo transformed the stochastic resonance mode into irregular jumps
characteristic of spontaneous vibrations. We have tested various types of cargos, as well as various
numbers of attached cargo-molecules (one, two, or three). This allows us to study the effect of the mass
of the analyte on oscillation characteristics (see the Supplementary Materials, S3).

To see this transformation more clearly, we slightly increased the compressive force up to 390 pN
and first generated the stochastic resonance of the oligo-30s-NIPMAm without a molecular cargo by
applying the harmonic field of the amplitude E0 = 0.2 V/nm and frequency ω = 2π/5 ns−1. Then
we attached an analyte and generated new trajectories. The analyte-induced transformation of the
stochastic resonance mode is clearly seen in a comparison of these two sets of trajectories, shown in
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Figure 7a,d. Figure 7b,e show autocorrelation functions. One can see that upon attaching the analyte
molecule, the autocorrelation function is blurred. This fact is also supported by the furrier spectrum of
these autocorrelation functions (Figure 7c,f), where the main peak is significantly lower for the system
with the analyte.

Figure 7. The analyte-induced transformation of the stochastic resonance mode. Vibrations of the
oligo-30s-NIPMAm before (top row of panels) and after (bottom row of panels) the attachment of a
tryptophan molecule: (a–c) Stochastic resonance mode of the oligo-30s-NIPMAm, its autocorrelation
function, and the frequency spectrum. (d–f) Distortion of the spontaneous resonance mode caused by
the attachment of a molecular cargo to the oligomer.

Summarizing this set of computer experiments, we conclude that the attachment of a molecular
cargo shifts the stochastic resonance mode and its characteristics. This shift depends on various factors,
such as binding motive and the mass of the analyte. The stochastic resonance mode can blur, or the
resonance can transform into spontaneous vibrations, or can leave the vibrational mode. It is important
that the spontaneous vibrations and stochastic resonance modes are sensitive to both the analyte’s
molecular mass and its binding affinity (for more details, see Supplementary Materials, Note S3).

4. Discussion

In most sensing applications, it is generally accepted that the inevitable stochastic disturbance
imparted by the surroundings limits the detection signal at the molecular level. However, noise can be
leveraged to amplify, rather than distort, a weak signal—a phenomenon known as stochastic resonance.
Our computer simulation studies of nanometer-sized oligomeric fragments of thermoresponsive
polymer poly-N-isopropyl-methyl-acrylamide subjected to longitudinal compression have shown that
the large-scale conformational dynamic of the oligomers can exhibit non-linear dynamics similar to the
dynamics of bistable mechanical systems. To manifest such behavior, the oligomer should be about
two Kuhn length in size. Aside from the spontaneous vibrations and stochastic resonance, which in
our case are activated by conventional thermal noise, these dynamic modes turn out to be sensitive to
single molecule attachment. When a molecular cargo attaches, either the stochastic resonance mode
is blurred, or the resonance is transformed into the spontaneous vibrations mode, or the oligomer
completely exits the vibrational mode. It is important that the spontaneous vibrations and stochastic
resonance of the bistable oligomers are sensitive to both the analyte’s molecular mass and its binding
affinity (for more details, see Supplementary Materials, Note S3). All these effects manifest themselves
to a sufficiently significant extent to be used in detecting the masses of single molecules in solutions.
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Therefore, bistable oligomers can act as ultrasensitive materials capable of detecting single molecules
against the background of natural stochasticity at the molecular level. Due to the small size of the
oligomers, the stochastic resonance visibly shifts even when the attached molecule is about 200 Dalton
in mass. This is sufficient for the detection of single molecules, e.g., hormones we have used as an
analyte in our studies.

Importantly, the oligo-30s-NIPMAm that we established in this article is not a unique sample.
Several oligomers of thermosensitive polymers have properties suited for exhibiting nano-mechanical
bistability and detecting small molecules.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/12/2519/s1;
Figure S1: Simulation details; Figure S2: Model of the sensing element; Figure S3: Adsorption of a molecular
cargo; Figure S4: Sensing regime; Figure S5: Molecular dynamic trajectories in the sensing regime; Figure S6:
Spontaneous vibrations diagrams in the sensing regime; Figure S7: Binding energies.
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