
The architecture of eukaryotic translation
Dominique Chu1,* and Tobias von der Haar2,*

1School of Computing, University of Kent, CT2 7NF Canterbury and 2School of Biosciences, University of Kent,
CT2 7NJ Canterbury, UK

Received June 1, 2012; Revised July 11, 2012; Accepted August 7, 2012

ABSTRACT

Translation in baker’s yeast involves the coordi-
nated interaction of 200 000 ribosomes, 3 000 000
tRNAs and between 15 000 and 60 000 mRNAs.
It is currently unknown whether this specific con-
stellation of components has particular relevance
for the requirements of the yeast proteome, or
whether this is simply a frozen accident. Our study
uses a computational simulation model of the
genome-wide translational apparatus of yeast to
explore quantitatively which combinations of
mRNAs, ribosomes and tRNAs can produce viable
proteomes. Surprisingly, we find that if we only
consider total translational activity over time
without regard to composition of the proteome,
then there are many and widely differing combin-
ations that can generate equivalent synthesis
yields. In contrast, translational activity required
for generating specific proteomes can only be
achieved within a much more constrained param-
eter space. Furthermore, we find that strongly
ribosome limited regimes are optimal for cells in
that they are resource efficient and simplify the
dynamics of the system.

INTRODUCTION

Proteomes evolve under many different constraints
including the minimization of the energy required to
produce them (1), and the establishment of biochemical
networks that optimize metabolic fluxes or increase fitness
by other means (2). Another constraint, which is not
widely studied, is that viable proteomes must be produ-
cible with a limited gene expression machinery. Gene ex-
pression is in essence a two-step process, whereby protein
templates are produced during transcription, and the
proteins proper during translation. Although specific limi-
tations apply at every level, translation is overall the more
resource intense step. The main components of the trans-
lation machinery are tRNAs, mRNAs and ribosomes.

Particularly the latter are very costly to produce for the
cell and have been proposed to limit gene expression and
cell growth as a whole (1).

The optimality of a particular proteome is not only a
function of its environment, but will also depend on its
metabolic maintenance costs. It appears to be generally
accepted knowledge that cell resources somehow limit the
achievable proteomes (1), yet at present we do not have a
detailed understanding of this limitation. Indeed, while the
particular details of many biological mechanisms involved
in gene expression are well understood now, we do not
know how the individual processes interact with one
another at a systems level.

To understand this we will focus on a particularly
well-studied model organism for translation, baker’s
yeast (Saccharomyces cerevisiae). Its translational machin-
ery consists of �200 000 ribosomes, 4500 expressed
mRNA species and 3 million tRNAs distributed over
42 tRNA species (3,4). Estimates of the total number of
mRNA within the cell at any one time range from 15 000
to 60 000 (3,5,6). For the purpose of this contribution we
will primarily focus on the lower end of this range, which
is dynamically the most complex area. However, where
applicable, we will discuss how conclusions are affected
if the mRNA content is higher. The molecular detail of
the translation-factor-mediated interactions between the
individual components is now well understood (7). With
all these available data, we possess in principle the infor-
mation to fully characterize yeast translation. However,
due to the complexity of the system we are still unable
to understand the implications of these data. Even less
do we understand the ‘fitness landscape’ of translation,
that is how changes in parameters affect the ability of
the cell to translate efficiently.

We have recently developed a stochastic simulation
model of eukaryotic translation (8) that can be used to
systematically probe the system and understand the impli-
cations of available knowledge about translation. For the
present study, we parametrized this model using ribosome
footprinting data by Ingolia (9) and other parameter
values from the literature (especially (3)). We thus have
a simulation model of S. cerevisiae translation under a
specific growth condition (fast growth in rich medium)
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that represents in detail tRNA concentrations, individual
ribosomes and mRNAs. The model can also provide a
system-wide picture of ribosomal traffic jams on particular
mRNAs including modulations of initiation rates caused
by traffic jams that block the initiation sequence.

Computational modelling of translation per se is not
new. The first model dates back to 1969 (10) and there
has been a steady stream of improved models ever since.
In recent years activity in this field has increased substan-
tially. However, the focus of current models tends to be
rather narrow as they concentrate on isolated aspects of
translation, such as codon usage (11–13), ribosome–
ribosome interactions (14,15), initiation (16,17) or elong-
ation (18).

This study is an attempt to explore the system-level
properties of translation. Our interest is not primarily to
reproduce a particular known (or conjectured) behaviour
of the bio-system. Instead we wish to use the simulation
model as a computational synthesis machine to generate
a systems understanding of translation. This includes
exploring the structure of the parameter space that
defines translation. Remarkably, we find that the overall
translation rate (proteins per second) can be achieved by a
wide range of parameters. In contrast, if not only the
overall translation rate, but also the translation rates of
each individual ORF are taken into account, then the
range of parameters that leave the system invariant
narrows drastically. We also find that within the range
of physiologically plausible parameters, ribosomes are
limiting translation. Our simulations show that a
ribosome limited regime has a number of characteristics
that are beneficial to the cell: Firstly, the high metabolic
cost of ribosomes warrants their economical use.
Secondly, too many ribosomes lead to traffic jams and
hence sub-optimal use of resources which, thirdly, also
makes it difficult for the cell to maintain a specific
proteome.

MATERIALS AND METHODS

Simulation model and parametrization

For all simulations we used a recently published agent-
based software developed by Chu et al. (8) to simulate
translation. We parametrized the model for S. cerevisiae
using data from (3,9). In the model ribosomes and tran-
scripts are explicitly represented as individual agents. This
means that the software keeps track for each ribosome
whether it is bound to an mRNA and if so which one
and at which position. For tRNA molecules only the
overall numbers of mRNA-bound, free-charged and
free-uncharged tRNAs of each species are accounted for.
Stochastic events in the model are generated using the
Gillespie (19) algorithm.

The rate of binding of ribosomes to the initiation
sequence happens with a rate of C�iMiR

free. Here C, the
initiation rate factor; �i, the relative initiation rate
(see below); mi, the number of transcripts of type i; and
Rfree, the number of free ribosomes. The parameters �i
were estimated based on the distance between ribosomes
on mRNA sequences. We obtained an estimate for the

number of ribosomes on each type of mRNA from the
Ingolia dataset. Then we divided this by the estimated
reading time of the ORF (calculated using the model by
Fluitt et al.) to obtain the distance between ribosomes in
seconds. This cannot be used directly as the initiation rate,
because the number of free ribosomes are unknown.
We calculated �i by dividing the sum over all distances
by the average distance on ORF i. This is not an
accurate estimate of the initiation rate because actual
reading times may be impacted by traffic jams potentially
overestimating the initiation rates.
Upon binding to the initiation site, a ribosome attempts

to move on to the coding sequence immediately (with a
very high rate). If the coding sequence is occupied, then it
unbinds again. In real cells, there will be a delay between
binding to the initiation site and finding the AUG site.
The relevant rates are not known, hence there is no
benefit gained from including this effect in the model.
The elongation step follows the Fluitt model (18,20,21)

and includes competitive binding between cognate and
near-cognate aa-tRNA. The effect of non-cognate tRNA
on elongation is ignored. Mis-incorporations of amino
acids are allowed in accordance with the model (20).
After the final proofreading step ribosome translocation
happens with a high rate (see Supplementary Table S1B
for details). If the ribosome cannot move on because the
next codon position is occupied, then it waits until the site
becomes free and translocates then. Upon termination the
ribosome either unbinds from the mRNA molecule or
proceeds to the first AUG codon for another translation
round. The decision whether or not to unbind is made
probabilistically, but a ribosome always unbinds after a
user-defined number of re-initiations.
We assumed that there are in total 15 000 mRNA

species in the cell distributed over several thousands of
species (3). The individual numbers of transcripts of type
i per cell cannot be obtained from the Ingolia dataset. We
therefore use an independent set of measurements
reported by von der Haar (3). This dataset is not coexten-
sive with the Ingolia set. For the simulations we used the
intersection of those two sets and a total of 4248 different
ORFs (see Supplementary Dataset S3 for the complete
list). For the model we do not use this absolute number
of copies mi, but instead the relative number qi ¼ mi=M

vdH

to allow convenient scaling. The number of transcripts mi

of a particular ORF i in the simulation are then calculated
as follows:

mi ¼ roundðMuserqiÞ: ð1Þ

Here M is the total number of mRNA determined by
the user, as opposed to MvdH the sum of all mRNA from
the von der Haar set. Unless stated otherwise we used
Muser=15 000 in all simulations reported here; given the
particular random seed we used this resulted in 13 018
mRNAs. All data reported here were obtained from simu-
lations that were run for at least 5000s. This was suffi-
ciently long to minimize the influence of any transient
effects at initialization.
Throughout the article we refer to standard parameters

(see Table 1 for the key parameters that have been varied;
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for an exhaustive list, see Supplementary Dataset S3).
These are the currently best known parameter values for
S. cerevisiae during exponential growth.

Minimal transcriptome analysis

To obtain the size of the minimal transcriptome we first
calculated the translational capacity. Based on the data in
Supplementary Figure S1.3 we approximated this by the
translation rate at 500 000 ribosomes. Using the transla-
tional capacity we could then calculate for each ORF the
minimum number of transcripts mmin

i required to complete
a certain number of translation rounds per second. This is
obtained by the following formula:

mmin
i ¼

ti
�i

� �
: ð2Þ

Here �i is the translational capacity of the i-th ORF and
ti is the observed translation rate (at standard parameters
in this case). The brackets indicate the ceiling function. We
did this analysis for each ORF i in the simulation to
obtain the minimum number of transcripts required. To
obtain the minimum number of mRNAs to translate a
given transcriptional profile we calculated

P
i

mmin
i the

sum over all ORFs.
We performed the analysis for a number of assumed

total translation rates ranging from 200 to 10 000 s�1.
For a given translational profile and translation capacities
the minimum number of transcripts is a linear function of
the total translation rate. To obtain Equation (6) we fitted
the various sample points from the analysis to a straight
line.

Minimum ribosome analysis

In the limiting case of infinite transcriptome or when the
mRNA number is sufficiently large, then there will be only
one ribosome per transcript. This means that there are no
traffic jams and the translation rate scales linearly with the
number of ribosomes and the relative expression rate tiribo
of ORF i will solely depend on the relative transcript
number mi=M and initiation rate �i:

triboiP
i t

ribo
i

¼
�imi

M
: ð3Þ

The left-hand side of this equation defines the contri-
bution of ORF i to the translational profile. Note that the
number of free ribosomes is assumed to be zero here,
which is a direct consequence of the assumption of an
infinite transcriptome. In this simple case, the absolute

expression rate is determined by the number of ribosomes
ri transcribing ORF i and the time �i required to read the
ORF.

triboi ¼
ri
�i

ð4Þ

If we allow sharing of ribosomes between different ORFs
(and hence non-integer ribosome numbers), then the
number of ribosomes required to yield a given average
translation rate ttargeti is given by

rmin
i ¼ �it

target
i : ð5Þ

To calculate the minimum number of ribosomes we
used for ttargeti the observed translation rates at standard
parameters and the calculated �i using the Fluitt model.

RESULTS AND DISCUSSION

Translation initiation

Among studies on the molecular mechanism of transla-
tion, translation initiation is often referred to as ‘the
rate-limiting step’ of protein synthesis (e.g. (22)). The
underlying rationale for this statement is that most
identified translational control mechanisms impinge on
translation initiation factors, and that the experimental
manipulation of translation initiation for an mRNA
usually alters the corresponding protein expression
levels. It is worth noting that although experimental
results indicate that initiation is one important control
point of protein synthesis rates, it is not necessarily the
only one. For example, formal control analyses have
shown that control can pass between translation initiation
and elongation by altering the numbers of free ribosomes
(23). Because of this general perception of translation
initiation as an important regulator of gene expression,
we begin our study by asking in how far the observed
translation initiation rates determine other observed
properties of the system.

In order to investigate translation initiation using the
model, we need to conceptually distinguish three elements
that each could be a separate limiting factor. Firstly, there
is the affinity of ribosomes to the transcript. In eukaryotic
translation this is an intricate process that involves
many different translation factors (24). Since we have in-
sufficient quantitative information to model initiation
faithfully, we make the simplifying assumption that the
reaction follows mass-action dynamics. Secondly, the
overall initiation rate also depends on the availability of
free ribosomes: an increase in ribosome affinity cannot
affect translation rates if there are no free ribosomes avail-
able to bind to mRNAs. Thirdly, initiation may be
affected by 50-UTR crowding caused by slow scanning
of the initiation sequence: even if the ribosome affinity is
high and many ribosomes are available, no further trans-
lation initiation event can happen until the previously
bound ribosome has liberated the initiation region. In
reality this problem is split into two parts: following
cap-binding, it is likely that the small ribosomal subunit
needs to scan to the AUG codon before the next small

Table 1. The standard parameters The standard parameters have

nominally 15 000 mRNAs, however, due to the stochastic nature of

the allocation algorithm this results in 13018 mRNAs only

Number of ribosomes 200 000
Number of mRNA 13 018
Ribosome recycling Rounds 9
Number of tRNA 3 million
Rate of reacharging tRNA 47 s-1
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subunit can attach to the cap-structure (25). Then, follow-
ing localisation of the AUG and assembly of the full
ribosome, this ribosome must elongate away from the
AUG before the next small subunit can reach the start
codon.

In our model, ribosome affinity is approximated by
mRNA-specific initiation rate factors (see Materials and
Methods section for an explanation) obtained from recent
footprinting data (9). These initiation rates reflect the
transcript-specific effects due to 50-UTR crowding.
Therefore, we do not explicitly represent scanning in our
model. For initiation rates that are significantly above the
physiological ones this choice may lead to artefactual be-
haviours as discussed below. Note, however, that the
impact of traffic jams at the initial AUG site on the ribo-
somal binding rate is explicitly represented in the model.

Figure 1 shows the translation rate as a function of the
initiation rate factor. Clearly, the translation rate saturates
for high enough values. This saturation could be due to a
limitation of available space on the transcript, or due to a
reduction of available free ribosomes at high initiation
rates or both. In the simulations with 400 000 ribosomes
(i.e. twice the best estimate) there are significant numbers
of free ribosomes available within the saturated area
(Figure 1 (right)). This suggests that in this case transcript
capacity is limiting translation. In contrast, for 100 000
and 200 000 ribosomes there are practically no free ribo-
somes at saturating levels indicating that in this part of
parameter space ribosome availability is limiting transla-
tion rates at high initiation rates. Physiological mRNA
numbers may be significantly higher than stipulated by
standard parameters. Clearly, if the size of the transcrip-
tome is increased while keeping the ribosome number
fixed, then limitation due to ribosomes is further
exacerbated because more transcripts are competing for
the same amount of ribosomes. It should be noted that
these statements strictly pertain to global translational
activity, and do not preclude that for individual tran-
scripts the capacity is limiting.

Our choice to represent delays due to scanning as a part
of ribosome binding affinities could potentially
over-estimate the density of ribosomes on the mRNAs
and under-estimate ribosome availability for high initi-
ation rates. Based on the range of possible parameters,
we can estimate the maximal impact of 50-UTR scanning
on the global translation rate which is the maximal con-
tribution of scanning to limitation. In a live yeast cell at
high growth it is thought that 10–20% of the ribosomes
are free (summarized in (3)). Due to the experimental tech-
niques used, this value itself is probably an upper limit,
since ribosomes are more likely to artefactually detach
from mRNAs than they are to artefactually associate
with mRNAs during the polysome isolation procedures
used for these assays. At standard parameters our model
predicts about 10% free ribosomes for an initiation rate
factor of 0.025. This falls into an area of the parameter
space where the initiation rate is beginning to saturate.
One conclusion to draw from this is that limitations by
scanning are small: if we take the 10% estimate at face
value and if we believe that ribosome density at the 50-
UTR is not limiting, then an initiation rate factor of
0.025 would reflect reality. It could equally be that the
initiation rate factor is substantially higher than 0.25 but
50-UTR crowding prevents binding of ribosomes.
However, we can infer from the model that 50-UTR
crowding at most leads to a small (� 4%) reduction of
the translation rate corresponding to the difference
between the rates at an initiation rate factor of 10 (i.e. at
full saturation) and the standard parameters. If indeed
20% of ribosomes are free, then the closest initiation
rate factor we sampled is 0.005 which predicts about
25% free ribosomes and a � 12:5% reduction of the trans-
lation rate. We performed a similar analysis for larger
transcriptomes. We found the largest impact to be
� 13:5 % and � 10 % for 30 000 and 70 000 mRNAs,
respectively.
In summary, these detailed simulations confirm our

previous findings (18) that under the conditions of fast
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growth the global capacity for protein synthesis in S.
cerevisiae is limited first and foremost by ribosome short-
ages. The ribosome affinity and limitations in the scanning
process exert additional levels of control over global trans-
lation rates.

Transfer RNA availability

Following the investigation of translation initiation as a
limiting parameter in the system, we turned our attention
to elongation. This process depends on a number of par-
ameters in the system, of which we first investigate tRNA
availability. Other aspects are dealt with in the following
sections.
According to the current structural understanding of

the ribosome, tRNAs can be accommodated simultan-
eously at two out of three distinct tRNA binding sites
(26). With about 200 000 ribosomes in the cell, at most
400 000 tRNAs can be bound at any one time, leaving at
least 2.6 million tRNAs free in the cytoplasm. Available
quantitative information (18) suggests that aminoacyla-
tion is fast compared with aa-tRNA depletion. Most of
the remaining tRNAs are therefore predicted to be
charged with tRNA, consistent with experimental studies
on selected tRNA species (27–29). Altogether, this leaves a
large excess of free tRNA in the cell.
It is not clear whether a large excess of tRNAs is

important for the dynamic properties of translation. The
best available biochemical knowledge suggests (18,20) that
the relevant indicator for the average elongation time of a
particular codon is the ratio of cognate and near-cognate
aa-tRNA. In contrast, the absolute number of cognate
aa-tRNA only becomes a strong determinant of elong-
ation rates at extremely low tRNA concentrations.
In order to understand this, we conduct simulations

where we vary the total number of tRNA while keeping
the species composition fixed (Figure 2). For very low
tRNA numbers the translation rate is very low, but it in-
creases rapidly with the tRNA concentration. For high
tRNA numbers we find, as expected, that the translation
rate is insensitive to tRNA numbers. Surprisingly,
in-between these two regimes, the translation rate shows
a maximum (albeit a modest one). The existence of this
maximum is difficult to reconcile with our theoretical ex-
pectation that the decoding speed only depends on the
ratio of cognate and near-cognate tRNA. Upon closer
examination we found it to be a result of trapping of
tRNA in ribosomal A and P sites (Supplementary
Figure S1.6). At low tRNA levels this leads to fast
ORFs being disproportionally sped up (Supplementary
Figure S1.1) resulting in an overall increase of the
translation.
It is not clear whether this effect would carry over into

biological reality. As far as the biological interpretation
of the simulation results is concerned, of far greater con-
sequence is that tRNA levels are higher than one would
expect to be necessary based on the simulations. For
example, uniformly halving the number of tRNAs from
the standard parameters has no significant effect on the
translation rate, either globally or for any individual
mRNA. We have shown previously that yeast fitness is

robust with respect to changes in tRNA synthetase gene
copy number (i.e. the activity that recharges tRNAs after
a translational cycle) (18), which is consistent with the
view that the tRNA system in general is designed for
spare capacity. On the other hand, we note that this ro-
bustness of the translation apparatus to tRNA concentra-
tions could be an artefact of the ‘perfect mixing’
assumption underlying the model. The spatial structure
of real cells may lead to local depletions of ternary
complexes in the vicinity of ribosomes (30) which may
lead to local concentrations much below the global ones.
This could be a particularly strong effect on local stretches
of transcripts with high codon repetition. In these cases
the diffusion constant could become a limiting factor of
translation.

Limitation through traffic jams

Apart from tRNA availability, the role of ribosome–
ribosome interactions or traffic jams in limiting transla-
tion has been frequently studied. On densely packed ribo-
somes traffic jams could have a material impact on the
average transit time of ribosomes. There are a number
of analytical/mathematical methods to understand this
effect in idealized systems; particularly relevant for trans-
lation is (31); for a comprehensive review see (32).
However, the analytical models are of limited value in
the case of translation because traffic jams are crucially
sensitive not only to polysome size, but also to the par-
ticular codon sequence (33); no analytical models are
available for the latter. Moreover, traffic jams impact on
the average reading time of codons and as such the avail-
ability of free ribosomes. Hence, the number of ribosomes
on one transcript depends on the amount of traffic jams
on this and all other transcripts. The effects of ribosome–
ribosome interactions can therefore only be estimated in
system-wide models such as the present one.

We quantify the impact of traffic jams by the excess
time ratio to read a codon in simulations (i.e. the ratio
of the reading time in the full model over the reading time
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for one isolated ribosome). If this ratio is high for an
ORF, then traffic jams are a dominant effect. If it is 1
then no traffic jams occur; due to the stochastic nature
of our simulation values slightly smaller than 1 can also
occur. Figure 3 shows the distribution of these ratios
across the transcriptome for three different ribosome
numbers at standard parameters. It clearly emerges that
the standard parameters have a peak close to 1, which
indicates that traffic jams have a minimal effect. This is
in strong contrast to the case of 400 000 ribosome which
peaks at higher reading times and has a much wider dis-
tribution around the peak, indicating that at increased
ribosome numbers, translational activity becomes signifi-
cantly limited by traffic jams. In contrast, the figure also
shows that for standard parameters with doubled and
quadrupled mRNA numbers traffic jams are essentially
absent.

Number of ribosomes

So far our results predict that the translation rate is
limited by the ribosome numbers; this is also consist-
ent with previous experimental and computational
results obtained with a simpler model (18). The extent to
which ribosomes limit translation in the absence of
scanning depends strongly on the number of mRNAs
(Figure 4). At standard parameters and 100 000 ribosomes
doubling the ribosome number causes a 1.34-fold increase
of the translation rate, whereas doubling the mRNA
content leads to a slightly smaller (1.29-fold) increase
(Supplementary Figure S1.5). At standard parameters
proper, that is with 200 000 ribosomes, the limitation
due to mRNA (1.51-fold increase of the translation rate
when the size of the transcriptome is doubled) is stronger
than limitation due to ribosomes (1.16-fold increase when
doubled). If on the other hand the mRNAs are doubled
from standard parameters, then a further doubling of the
size of the transcriptome leads to negligible increases of
the translation rate only. However, at this point sensitivity

to ribosome numbers is restored (> 1:3-fold increase when
ribosomes are doubled). This suggests that at standard
parameters with 30 000 or more mRNAs translation is
no longer limited by the size of the transcriptome.
It is clear from Figure 5 that a given overall translation

rate can be realized by a wide range of different combin-
ations of ribosome and mRNA numbers. In order to be
able to interpret this we used available biochemical data to
explore in detail the cost of generating the ribosome,
tRNA and mRNA complements in the yeast system
(Supplementary Methods S2). We find that maintenance
of the ribosome complement carries energy costs of 255
million ATP equivalents per minute, 50 times more than
the cost of maintaining the tRNA complements and
(depending on the number of mRNA) 50–150 times
more than the cost of maintaining the mRNA transcrip-
tome. Thus in pure energy expenditure terms, systems that
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would employ reduced numbers of ribosomes but
increased numbers of mRNAs while allowing the same
global translation rate are energetically favourable.

Translational profiles

An aspect we have ignored so far is the translational
profile, that is the translation rate of individual ORFs.
Biologically this is more relevant than the overall transla-
tion rate because it directly determines the proteome
composition.
We define the translational capacity of a transcript as

the maximal translation rate per transcript given an
infinite (or very large) supply of ribosomes; in essence
the translational capacity is the translation rate when
traffic jams are the sole limiting factor. We found that
(at standard parameters) most ORFs reach capacity at
500 000 ribosomes (Supplementary Figure S1.2) and we
choose to approximate the capacity as the translation
rate at this point.
The translational capacity sets a lower limit to the

number of mRNA given a translational profile and total
translation rate. If the capacities of ORFs were sufficiently
large (or infinite) the minimal transcriptome size would be
equal to the number of mRNA species. For example, if the
capacity of an ORF is 20 proteins per second and the
required rate is 23 per second, then at least two copies
of this particular ORF are necessary (assuming a fixed
proteome).
We performed a minimal transcriptome analysis

(see Materials and Methods section) to understand the
smallest transcriptome that is consistent with the transla-
tional profile obtained at standard parameters. This

analysis assumes that there is an unlimited supply of ribo-
somes in the system. We obtained the following relation-
ship between the total translation rate T (per second) and
the minimum size of the transcriptome Mmin.

Mmin ¼ 4:6121T+2166:4 ð6Þ

The fitting error associated with the slope and intercept
are �0:01048 and �61:39, respectively. If we assume that
the size of the transcriptome isM=13 018 (i.e.Muser=15
000), then we obtain a maximal translation rate of
T � 2366 s�1. In the simulations with standard parameters
we found a translation rate of T � 2160 s�1 which is
just (8.7%) below the maximal rate. Another way to say
this is that the actual expression rate could have been
realized with a transcriptome of 12 128 mRNAs running
at capacity. If we allow for fractional mRNA numbers (i.e.
transcripts go in and out of existence and realize fractional
averages), then the maximal expression rate increases to
T � 2823 s�1 and the minimal transcriptome to achieve
the existing expression rate would be � 9890 mRNA
molecules.

We also performed a minimal ribosome analysis
(see Materials and Methods section) to determine the
minimum number of ribosomes required to achieve the
translational profile at a given translation rate. This
analysis assumes a very large transcriptome, large enough
to avoid traffic jams. Using the translation rates from one
particular run of the model with standard parameters, we
found that the minimum number of ribosomes required is
196 729, which is very close to the actually used 200 000.
Note that when (i) scanning is not limiting; and (ii) the
transcriptome is sufficiently large so that there are no
traffic jams, then the minimum number of ribosomes is
equal to the maximal number of ribosomes. Under these
conditions the dynamics of translation simplifies signifi-
cantly in that the overall translation rate is only determined
by the number of ribosomes and the relative protein ex-
pression is determined by the specifics of the transcriptome.
If on the other hand both ribosome numbers and the size of
the transcriptome are limiting, i.e. there are traffic jams,
then varying the number of ribosomes will also affect the
translational profile. This is clear from considering the
translation rates: Figure 5 predicts a translation rate of
< 2300s�1 at standard parameters. A similar translation
rate (� 2320s�1) can be achieved in simulations using
100 000 ribosomes and 50 000 ribosomes. Since the
minimum ribosome number for the translational profile
resulting at standard parameters is much larger than that
(196 729), it is clear that the change of ribosome numbers
results in a change of the translational profile.

CONCLUSIONS

In this contribution, our approach was to take the best
available knowledge about translation at face value and
analyse its consequences in a computer simulation. We did
not set out to reproduce any particular behaviour, nor did
we fit any parameters to the data.

According to our model, the cell seems to have an
over-abundance of aa-tRNAs. We suspect that this
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Figure 5. The total translation rate as a function of the total amount
of mRNA. The plot shows an initiation rate of 10. As a comparison we
show the total protein production for 400 000, 200 000 and 100 000
ribosomes at otherwise standard parameters with an initiation rate
of 10. The data of these lines corresponds to the relevant points in
Figure 1 (left). The arrow indicates the number of translated proteins
that are achieved by doubling the mRNA number from the standard
parameters. The line labelled ‘Equation (1)’ indicates the capacity trans-
lation rate for a given number of mRNAs, as predicted by Equation
(1). Going beyond standard parameters, the system operates far below
capacity. Note that Equation (1) is no longer valid at very low mRNA
numbers because many low copy mRNA molecules will not be avail-
able there and hence the transcriptome will be different.
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conclusion is an artefact of the perfect mixing assumption
that underpins our simulations. There have been previous
reports of local aa-tRNA shortages in certain circum-
stances. We leave it to future research to decide on the
interpretation of this apparent over-abundance.

In line with previous findings, we find that ribosomes
numbers are a limiting factor of translation. Based on a
consideration of costs, one would certainly expect that.
However, limitation by ribosomes is also dynamically
beneficial. A large number of ribosomes (compared with
the size of the transcriptome) leads to traffic jams. This is
inefficient because it leads to an overall reduction of the
elongation rate. Moreover, traffic jams also cause a
more complicated dynamics in the sense that the relative
translation rate of ORFs depends on both the number
of ribosomes and the composition of the transcriptome.
This makes it hard for the cell to control the translational
profile under changing environmental conditions. We find
that under standard parameters this difficult dynamical
regime is still in force. If, on the other hand, the transcrip-
tome is 30 000 or larger, which it could be according to
recent estimates, then mRNA numbers effectively cease to
limit the translation rate. In this case they are the sole
determinant of the relative protein production rate.

The simulations presented in this contribution are based
on a model parametrized for yeast. Yet, based on insights
obtained from them we predict that other organisms will
be in the same dynamical regime. Concretely, we predict
that the number of ribosomes will be sufficiently high so
that traffic jams are avoided except on few highly ex-
pressed mRNAs where the required translation rates
would meet the limitations of the transcription apparatus.
Moreover, limitation due to scanning will remain a
sub-ordinate effect. Its primary dynamical role is in pre-
venting traffic jams on mRNAs. This can equally be
achieved by reducing the global ribosome number which
would also come at a metabolic benefit. Given current
understanding of translation, scanning therefore only
makes sense as a secondary control mechanism. At
present it is not possible to test this prediction because
the required numerical information is not available for
eukaryotic cell types other than baker’s yeast. However,
we expect that in the near future the relevant parameters
will be known and our prediction can be tested by com-
putational modelling and experimental enquiry.
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