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Abstract

Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of
poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live
vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing
recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs) that contain microneme adhesive repeat
regions (MARR). We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host
interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high
specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue
staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the
parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan
sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host
which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the
atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial
provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates.
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Introduction

The phylum Apicomplexa contains some of the most wide-

spread protozoan parasites of humans and animals. Key members

include Plasmodium spp., Eimeria spp., Neospora caninum and

Toxoplasma gondii. Eimeria spp. are a highly successful group of

host-specific, intracellular protozoan parasites that develop within

intestinal epithelial cells, causing Coccidiosis, which is economi-

cally one of the most important diseases in modern poultry

farming, and causes billion dollar economic losses worldwide [1].

The importance of the poultry industry is highlighted by the effort

to develop anticoccidial drugs, however many of these have been

thwarted by drug resistance. The incorporation of vaccination

with avirulence strains of Eimeria has vastly improved the control of

infections. The development of recombinant vaccines is hampered

by a relatively poor molecular understanding of the Eimeria-host

interface.

Infection by apicomplexans is established in the host by rapid

and forced invasion of host cells using a multistep process [2]. It

begins with an initial phase of non-oriented cell attachment then a

search across cellular surfaces for a particular niche and finally

deployment of the cell entry machinery. Microneme proteins

secreted in the early stages of this process participate in attachment

to the host cell and subsequent formation of the connection with

the parasite actinomyosin system, thereby providing the platform

from which to drive invasion [3]. A family of microneme lectins

(MICs) has been described that recognize sialylated glycans via

microneme adhesive repeat regions (MARR) [4]. The first MARR

protein to be characterized was MIC1 from Toxoplasma gondii

(TgMIC1), which possesses a pair of N-terminal MARR that form

two distinct subfamilies based on sequence, MAR1 and MAR2.

TgMIC1 recognizes sialic acid (Sia)-terminating glycan chains: a wide

variety of sialyl linkages including a2–3, a2–6 and a2–8 that are

abundantly present on host cell surfaces. This broad specificity likely

contributes to T. gondii ’s ability to establish an infection in all warm-

blooded animals [4,5]. T. gondii also possesses additional MARR

proteins that further extend the repertoire of sialylated cell-surface

glycoconjugates recognized by this parasite [6]. High resolution

structures have highlighted a critical TxH motif in the MAR2

domain that coordinates the sialyl moiety [4,5]. Intriguingly, MARR

PLoS Pathogens | www.plospathogens.org 1 October 2011 | Volume 7 | Issue 10 | e1002296



are also present in proteins of enteric coccidian parasites with very

specific host and tissue tropisms, such as Eimeria spp. that exhibit

strong site-specificity of development in the chicken intestine. Eimeria

tenella develops within cells of the caecum and caecal tonsils located at

the ileocecal junction, whereas Eimeria acervulina infects cells of the

duodenum and Eimeria maxima infects cells of the jejunum [7]. E.

tenella possesses a MARR-containing microneme protein, EtMIC3,

which is composed of seven tandem MARR that belong exclusively to

the MAR1 family [3,8,9] (Figure S1).

In this paper we provide a detailed structural, biochemical and

cellular characterization of EtMIC3. We demonstrate that

EtMIC3 is composed of tandem MAR1 domains that possess a

high specificity for sialylated glycans that terminate in N-

acetylneuraminic acid (NeuAc), but not in N-glycolylneuraminic

acid (NeuGc). The ability of EtMIC3 to bind to a2–3 sialyl

sequences and their abundance in the chicken caecal epithelium,

are likely to contribute to directing the parasite to this specific

location in the chicken gut. Furthermore, we demonstrate that

recombinant EtMIC3 protein or DNA act as an effective vaccine.

Results

Localization and host cell binding of EtMIC3
To confirm the intraparasite localization for EtMIC3 prior to

secretion, immunogold labeling of E. tenella sporozoites with anti-

EtMIC3 antibodies was performed and visualized using transmis-

sion electron microscopy (TEM). As shown in Figure 1a, gold

particles decorate exclusively the microneme compartments. The

polar location of EtMIC3 was confirmed by immunofluorescence

microscopy (IFA; Figure 1b) showing localization in merozoites

developing within schizonts in the chicken caecum. To follow the

localization of EtMIC3 during invasion E. tenella sporozoites were

incubated with monolayers of Madin-Darby bovine kidney

(MDBK) cells, which were then fixed, permeabilized and

examined by immunofluorescence assay (IFA) and differential

interference contrast (DIC) microscopy (Figure 1c). After attach-

ment to the host cell, the sporozoite caused invagination of the

host cell membrane and became committed to invasion with an

extruded conoid. EtMIC3 was present at the apical surface of the

sporozoite throughout these early invasion stages (Figure 1c) and

during invasion was detected at the interface between the host and

parasite cell membranes where it was present on a bead like

structure that forms a tight ring around the apical perimeter of the

sporozoite (Figure 2).

To examine more precisely the point at which EtMIC3

functions in invasion, the localization of EtMIC3 was compared

to that of two other important microneme proteins EtAMA1, an

integral component of the moving junction together with rhoptry

neck (RON) proteins [10] and EtMIC5 [11,12,13], a lactose-

binding, secreted microneme protein. In fixed and permeabilized

parasites, EtMIC3 labeled a necklace structure comprising 14

separate foci present at the junction between the invading parasite

and the host cell. This was proximal to a similar staining pattern

for EtAMA1, but not aligned exactly (Figure 2a). In contrast,

visualization of fixed, non-permeabilized sporozoites revealed that

during invasion EtMIC3 is detected around the circumference of

the parasite at the host cell-parasite junction and deposited on the

host cell surface, whereas EtAMA1 is not labeled (Figure 2b). This

suggests that whilst EtAMA1 is buried within the moving junction

and, in the absence of permeabilization, not accessible to antibody,

EtMIC3 is more peripherally associated with the junction and

remains surface exposed and in contact with the host cell. Dual

immunofluorescence staining of EtMIC3 and EtMIC5 was also

performed on fixed and permeabilized sporozoites and in parasites

that were apically attached to host cells EtMIC3 serum gave a

strong signal at the apical tip of the sporozoite, whilst the majority

of EtMIC5 labeling was detected just posterior to this region

(Figure 2c), indicating that it was not yet secreted.

EtMIC3 targets cell surface sialic acid-bearing molecules
Sporozoite lysates were incubated with monolayers of MDBK

cells and proteins that bound to the cells identified by Western

blotting. Whilst EtMIC1, EtMIC2, EtMIC3 and EtMIC4 proteins

were readily detected in the unbound fraction of the sporozoite

lysate, only EtMIC3 was observed to any extent in the cell bound

fraction (Figure 3a). Subsequent ELISA type cell-based binding

assays performed with sporozoite lysate showed a dose dependent

increase in the bound fraction of EtMIC3 (Figure 3b).

EtMIC3 possesses a tandem MARR, and the MARRs in the

MIC proteins of T. gondii, and N. caninum have been shown to

recognize a variety of sialylated glycans [4,5,6]. To establish

whether host cell sialyl glycans are a target for EtMIC3, cell

binding assays were performed in the presence of exo-a-sialidase

(neuraminidase), which strips cell surface sialic acid residues, or the

presence of fetuin, a sialylated glycoprotein derived from bovine

fetal serum, which would compete with sialyl oligosaccharides on

the cell surface for MIC3 binding. Treatment with neuraminidase

at 0.25 units per ml or fetuin at 100 mg per ml effectively inhibited

binding of EtMIC3 to host cells (Figure 3c & 3d). In contrast,

treatment with asialofetuin, a glycoprotein that lacks sialic acid

and instead has terminal galactose residues, did not compete for

EtMIC3 binding. Interestingly, treatment with free sialic acid

(NeuAc) did not inhibit EtMIC3 binding, which is in sharp

contrast with our observation with TgMIC1 whose binding is

inhibited by free sialic acid [4,6]. Fetuin and multi-sialylated

gangliosides containing at least one terminal a2–3 sialyl linkage

were extremely potent inhibitors of EtMIC3 binding. The GD1a

disialo-ganglioside which possesses both terminal and side chain

a2–3 sialic acid moieties is a potent inhibitor of cell binding,

whereas the related GD1b disialo-ganglioside, in which only the

a2–8 di-sialyl side chain is present, was not (Figure S2). This is in

accord with the results of microarray analyses (see below).

Sialyllactose with a2–3-linked sialic acid (Siaa2–3Galb1–4Glc)

was more effective in inhibiting the binding of EtMIC3 from a

sporozoite lysate to MDBK cells than a2–6-linked sialyllactose

(Figure 4a). Binding assays were also performed when MDBK cells

were preincubated with plant lectins that have preferences for

binding either a2–6 or a2–3 sialyl linkages, namely Sambucus Nigra

agglutinin (SNA) [14] and Maackia amurensis agglutinin (MAA)

[15], respectively. MAA (consisting of both Maackia amurensis

Author Summary

Eimeria spp. are highly successful protozoan parasites of
the intestine of birds and one of the most important
diseases in modern poultry farming. The economic impact
is significant causing billion dollar losses to the industry
and as a result there is pressing need for new therapeutic
approaches. Anticoccidial drugs are thwarted by resis-
tance, live vaccines are expensive to manufacture and few
recombinant vaccine antigens have been characterized in
detail. We show that the microneme protein, MIC3 from
Eimeria tenella, is deployed at the parasite-host interface
during the early stages of invasion. We provide new
atomic resolution insight into its predilection for sialic acid-
bearing glycans and demonstrate its role in invasion. We
also provide evidence that EtMIC3-based vaccines induce
protection in preliminary immunization studies.
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hemagglutinin and leukoagglutinin) inhibited the binding of

EtMIC3 to MDBK cells at lower concentrations compared with

SNA (Figure 4b). This indicates that a2–3-linked sialyl glycans

present on the MDBK cell surface are the dominate ligands in the

EtMIC3 binding.

To test the cell specificity of EtMIC3 binding in host tissues, we

performed binding assays using histological sections taken from

throughout the chicken intestine (Figure 4c). Incubation of these

sections with biotinylated SNA and Maackia amurensis hemagglu-

tinin (MAAII) lectins showed an abundance of MAAII staining

(and by inference, mucin-type sialyl glycan sequences [15]) in

sections taken from caecum. The tissue staining pattern observed

for EtMIC3 was similar to that of MAAII: the binding was

predominantly to the caecal epithelium.

EtMIC3 binds to a broad spectrum of oligosaccharides
that terminate in sialic acid in carbohydrate microarrays

To assess the carbohydrate binding specificity of EtMIC3, we

performed cell-independent binding analyses using carbohydrate

microarrays composed of 115 lipid-linked oligosaccharide probes.

Among these are 97 sialylated probes with differing sialic acid

linkages, backbone chain lengths and sequences; 18 nonsialylated

(neutral and sulfated) probes were included as negative controls

(Figure 5, and Table S1). Microarray analyses were performed

with recombinant proteins consisting of single MAR domain

(EtMIC3-MAR1b), or tandem MAR domains (1a-1b-1d-1e,

Figure S1) collectively referred to as EtMIC3-MAR5. For

comparison we analyzed in parallel the recombinant MARR of

T. gondii MIC1 (TgMIC1-MARR).

Similar to TgMIC1-MARR, the binding of EtMIC3-MAR1b

and EtMIC3-MAR5 was to sialylated probes in the arrays, and no

binding signal was observed with probes that lack sialic acids

(Figure 5). Compared with the five-domain construct, EtMIC3-

MAR5, the single domain EtMIC3-MAR1b had a more selective

binding profile (Figure 5a). Notably, it gave little or no binding to

sialyl di- or trisaccharide sequences, such as probes 19, 20, 27–34,

57–61, 70 and 76 (Table S1), but bound well to sialyl

tetrasaccharides and longer sequences. Among the best ligands

for EtMIC3-MAR1b are sialylated N-glycan probes (probes 56, 87

and 93), a sialyl Lewisx (SiaLex) probe which has a sulfate group at

the 6-position of the N-acetylglucosamine (GlcNAc) residue (probe

49), and ganglioside-related probes that have terminal a2–3 sialic

acid and side chain sialic acid, e.g. GD1a and GT1b (probes 66

and 109, Table 1). The five-domain construct, EtMIC3-MAR5

bound to a broader spectrum of sialyl probes with enhanced

binding intensities overall compared to MAR1b (Figure 5a and b).

Little or no binding was observed to a2–8-linked sialyl probes with

the two EtMIC3 proteins. The intensities of binding signals elicited

with a2–3 and a2–6-linked sialyl sequences sharing similar

backbones and lipid moieties were comparable (Table 1). This

pattern of binding is different from that observed in the inhibition

studies where free oligosaccharides were used as inhibitors of the

binding of EtMIC3 sporozoite lysate to MDBK cells, in which the

a2–3-linked sialyllactose was a more potent inhibitor (Figure 4a).

A striking finding is that neither EtMIC3-MAR1b nor EtMIC3-

MAR5 bound to sialyl sequences that terminate in the N-glycolyl

form of sialic acids (NeuGc), e.g. probes 39, 60 and 88 in Table 1;

this is in sharp contrast to TgMIC1-MARR which gave

comparable or even stronger binding to the NeuGc probes than

to their NeuAc analogs (Table 1).

Structure of EtMIC3 MAR1 domain
To select a MAR domain for structural studies, each of the five

unique MAR1 domains were analyzed for cell binding using a cell-

based ELISA assay. All of the five MARRs, but not a thioredoxin

control protein, bound to MDBK cells. The second, third and

fourth MARR (MAR1b, 1c, 1d) exhibited the most intense

binding signals (Figure S3). For high resolution structural analysis,

we selected the second MAR domain, EtMIC3-MAR1b, which as

shown above gave robust binding signals to sialyl glycan sequences

in microarray analyses (Figure 5a).

The solution structure of EtMIC3-MAR1b determined by

NMR spectroscopy comprises the distorted b-barrel arrangement

and flanking helices of the classic MAR domain (Table 2). Three

conserved disulfide bonds, C1–C4, C5–C7 and C6–C8 (namely

C163–C201, C216–C226 and C220–C256, Figures 6a and S1)

stabilize the core structure. A comparison of the structure with that

of MAR1 and MAR2 of TgMIC1 reveals that EtMIC3-MAR1b

contains a prominent extension to the first helix and subsequent

loop (MAR1 insertion), which is stabilized and pinned together by

an extra disulfide bond exclusive to the MAR1 subfamily (C2–C3

namely C171–C179; Figures 6a and S1). EtMIC3-MAR1b

superimposes with an RMSD of 2.2 Å over 104 equivalent

backbone Ca atoms with the MAR1 domain from TgMIC1 (PDB

code 2JH1; Figure S4).

The carbohydrate binding properties of the MAR2 subfamily

have been well characterized structurally [4,5,6]; however no

equivalent information is available for the MAR1 subfamily as

occupancy in the MAR1 site of TgMIC1 was not established in

soaking and co-crystallization experiments. Our NMR structure of

EtMIC3-MAR1b provides an opportunity to study recognition of

the MAR1 family in detail. To localize the carbohydrate binding

region further, we performed NMR titration experiments using
15N, 13C-labeled EtMIC3-MAR1b in the presence of a2–3- and

a2–6-linked sialyllactoses. Significant amide chemical shift chang-

es were observed for resonances of several residues proximal to the

expected carbohydrate binding site based on TgMIC1 (Figure S5).

To provide an atomic resolution basis for recognition we

embarked on the structural characterization for the carbohy-

drate-bound forms. Isotope 13C-filtered/edited NOESY spectra

were recorded on complexes between 13C/15N-EtMIC3-MAR1b

and sialyl N-acetyllactosamines (Siaa2–6Galb1–4GlcNAc or

Siaa2–3Galb1–4GlcNAc) to identify intermolecular NOEs (Figure

S4). A total of nine NOEs were assigned either to the ring protons

Figure 1. EtMIC3 is a microneme protein. (A) TEM/immunogold localization of EtMIC3 in an E. tenella sporozoite shows it to be located
exclusively to the micronemes. (R) rhoptry, (M) microneme (RB) refractile body. The bar represents 1 mm and 0.1 mm in insert. (B)
Immunofluorescence localization of EtMIC3 in fixed and permeabilized developing schizonts of E. tenella within a section of infected caecum
shows it to be located at the apical tips of newly formed merozoites in a crescent shaped distribution. Blue counterstain is DAPI. Arrowheads indicate
merozoites emerging from mature schizonts. (ES) early schizonts. The bar represents 10 mm. (C) Immunofluorescence localization (left panel) and
corresponding differential interference contrast (DIC, right panel) of EtMIC3 (green) and beta tubulin (red) in fixed and permeabilized invading
E. tenella sporozoites on MDBK monolayers. Blue counterstain is DAPI. Sporozoite attaches to the host cell (top panel) causing invagination of the
host cell membrane (middle panel) and the sporozoite becomes committed to invasion with an extruded conoid (bottom panel). Note merged
labelling of EtMIC3 and host cell tubulin at the moving junction (yellow) in the bottom panel. EtMIC3 is present at the apical end of the sporozoite
throughout these early invasion stages. The bar represents 1 mm.
doi:10.1371/journal.ppat.1002296.g001
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or to unambiguously well dispersed side chains (Table S2). The

a2–3 linked and a2–6 linked carbohydrate complexes exhibit

similar patterns of intermolecular NOEs. Structures of the

carbohydrate complexes were subsequently calculated invoking

both intermolecular NOEs and chemical shift-derived distance

restraints using the HADDOCK approach [16]. The lowest

energy ensembles of water-refined structures superpose well over

the intermolecular interface. As expected from NOEs the mode of

sialic acid recognition is identical for the Siaa2–3Galb1–4GlcNAc

and Siaa2–6Galb1–4GlcNAc, the major difference being the

relative position of the galactose unit (Figure S4). Although the

mode of recognition for the sialyl moiety is highly similar to that

observed for MAR2 domain from TgMIC1, the ‘MAR1 insertion’

makes several new contacts via L175 and Y178 (Figure 6b).

Figure 2. Details of localization of EtMIC3 and EtAMA1 in invading parasites. (a) Immunofluorescence localisation (left, top and bottom
panels) and DIC (right, top and bottom panels) of EtMIC3 (green) and EtAMA1 (red) in fixed and permeabilised invading E. tenella sporozoites on
MDBK monolayers. Blue counterstain is DAPI. Both EtMIC3 and EtAMA1 label necklace- like structures present at the junction between the invading
parasite and the host cell; the labelling is closely associated but does not co-localize. The top panels indicate the position of the parasite-host
junction and the bottom panels give a clear cross sectional image of the non-overlapping staining patterns. The bar represents 2 mm in top panels,
1 mm in bottom panels. (b) Immunofluorescence localisation (left panel) of EtMIC3 (red) and EtAMA1 (green) in fixed, unpermeabilized invading
E. tenella sporozoite (left image) and combined with DIC (right panel). The parasite is invading from left to right and EtMIC3 is found on the surface at
the region of the moving junction (arrowheads) and as a trail on the host cell surface. EtAMA1 was not detected. Blue counterstain is DAPI, N
indicates parasite nucleus. The bar represents 2 mm. (c) Immunofluorescent localization of EtMIC3 (green) and EtMIC5 (red) in permeabilised E. tenella
sporozoite attached to MDBK cell in culture. EtMIC3 is concentrated at the extended conoid and the apical surface of the sporozoite whereas EtMIC5
is slightly posterior to this region. The bar represents 3 mm.
doi:10.1371/journal.ppat.1002296.g002

Sialyl Glycan Recognition by Eimeria tenella

PLoS Pathogens | www.plospathogens.org 5 October 2011 | Volume 7 | Issue 10 | e1002296



Sialyl Glycan Recognition by Eimeria tenella

PLoS Pathogens | www.plospathogens.org 6 October 2011 | Volume 7 | Issue 10 | e1002296



Sporozoite invasion of cultured epithelial cells can be
inhibited by competitors of EtMIC3-sialic acid binding

MDBK is a cell line that supports invasion and intracellular

development of E. tenella sporozoites and we used this to investigate

whether sialylated structures on the cell surface contribute to

parasite invasion. Using uracil uptake assays, in which parasite

growth is measured over a period of 48 hours in culture, we found

no significant reductions in radiolabel uptake following any of the

treatments that had shown effects on EtMIC3 binding to MDBK

cells (neuraminidase, fetuin, sialic acid, a2–3 or a2–6 sialyllactose,

MAA or SNA lectins, gangliosides GD1a or GT1b). This indicates

that binding to sialyl groups is not essential for overall parasite

invasion of cultured cells. In these assays parasites were left in

contact with the cells over the whole 48 hour period and as in vitro

conditions differ so markedly from the in vivo situation, within the

gut of the chicken, it is conceivable that specificity is swamped by

other factors, especially over extended incubation periods. Given

the immediate secretion of EtMIC3 and its likely deployment at

very early during invasion, we next investigated the effect of these

treatments on short-term cultures in which sporozoites were

allowed to invade the MDBK monolayers for only 15 minutes

before fixation and enumeration of intracellular parasites. Under

these conditions we found dose-dependent inhibition of sporozoite

invasion following treatments with GD1a and GT1b gangliosides

and with a2–3 sialyllactose (Figure 7). In contrast treatment with

fetuin, sialic acid or a2–6 sialyllactose did not cause significant

inhibition of sporozoite invasion.

Vaccination trials with EtMIC3 indicate its potential as a
vaccine candidate

We carried out exploratory immunization and challenge

experiments in chicken to determine whether immunization with

EtMIC3 could induce protection against parasite infection. Five

independent experiments were carried out using purified EtMIC3-

MAR recombinant protein (EtMIC3-MAR1c) or EtMIC3-MAR

DNAs (of MAR1c and MAR5) as immunogens. In each case,

following challenge with E. tenella oocysts, there was statistically

significant reduction in oocyst shedding in vaccinated groups of

birds compared to control groups (data from two independent

experiments are shown in Figure 8).

Discussion

Host cell invasion by apicomplexan parasites is a conserved and

complex, multi-step process. While details are emerging of the key

phases of invasion, the early stages remain the least well

understood. It appears that parasites first attach transiently to

the host cell surface via GPI-anchored surface proteins known in

T. gondii as SRSs (Surface Antigen Glycoprotein Related

Sequences) [17,18] and which have been shown to bind sulfated

glycosaminoglycans such as heparin [19,20]. The loose attachment

mediated by the SRSs is thought to enable efficient sampling of

cell surfaces, which is followed by an irreversible interaction with

the apical end of the parasite, allowing for proper engagement of

the invasion machinery [2]. There are several adhesive microneme

proteins that are neither assembled into the moving junction

during invasion nor belong to the SRS family of surface proteins.

The MARR-containing MIC proteins from coccidians are

prominent examples of these and likely play a role in initiating

the transition from transient, non-oriented binding to irreversible

apical attachment.

We have demonstrated that EtMIC3, a MARR-containing

protein from Eimeria tenella, is secreted at the early stages of

invasion prior to the formation of the moving junction. It is

localized at the interface of the host cell membrane and apical

attachment of the parasite interface and remains proximal to the

moving junction complex during invasion. EtMIC3 and EtAMA1

antibodies each label 14 focal points that decorate the circumfer-

ence of the junction; the reason for this is unknown but it is

unlikely to relate to sub-pellicular microtubules which number 24

in E. tenella (D. Ferguson, P. Monaghan and F. Tomley,

unpublished observations). During the attachment stage of parasite

invasion of MDBK cells, EtMIC3 was rapidly deployed to the

sporozoite apical surface whereas another secreted microneme

protein, EtMIC5, was not deployed. These observations raise the

intriguing question as to whether the two molecules localize to the

same or different populations of micronemes. Although heteroge-

neous populations of micronemes provides an attractive hypothesis

for a staged deployment of microneme proteins during invasion,

further work is required to provide further experimental evidence

and elucidate the exact mechanism. Interestingly, invasion by

Eimeria tenella is only sensitive to inhibition by soluble sialylated

carbohydrates in the very early stages of contact between parasite

and host cell (Figure 7). This observation is consistent with the

view that EtMIC3 is secreted ahead of the moving junction to

promote efficient cell-adhesion and assist in early stage invasion.

This echoes the notion that parasites use multiple ligand–receptor

interactions to ensure invasion during the various stages of the

infection [21].

Compared to TgMIC1, a more restricted set of sialyl

oligosaccharides are bound by EtMIC3; notably EtMIC3 does

not recognize the N-glycolyl form of sialic acids and also shows

little binding to a2–8-linked sialyl oligosaccharides. All of the

MARR for EtMIC3 belong to the MAR1 family and three of

these, MAR1b, MAR1c and MAR1d, are highly active for cell

binding (Figure S3). In addition to active site TxH motif found in

MAR2 domains, the MAR1 family also possess an extended first

helix and loop which can be seen from the structure of EtMIC3-

MAR1b to also coordinate the carbohydrate ligand via the side

chains of L175 and Y178 (Figure 6b and S4). The methyl group of

the N-acetyl moiety NeuAc makes several intimate contacts with

this insertion, explaining why EtMIC3 cannot recognize the

NeuGc form as the additional hydroxyl group would not be

accommodated without significant rearrangement. Furthermore,

the central residue in TxH is normally a small side chain in MAR2

domains, but in EtMIC3-MAR1b this is replaced by the larger

leucine (i.e. L238) that contacts directly the glycerol side chain of

sialic acid (Figure 6b and S4). The first and last MAR1 domains of

Figure 3. EtMIC3 binds cell surface sialylated carbohydrates. (a) Western blot analysis of a sporozoite lysate (lys) and the cell-bound (CB)
fraction of the lysate after incubation on MDBK cells. Proteins were detected using specific antisera to EtMIC1, EtMIC2, EtMIC3 and EtMIC4. All four
proteins were detected in the sporozoite lysate, but only EtMIC3 was detected in the cell bound protein fraction of this assay this. It is useful to note
that cell binding activity has been reported for the EtMIC4/5 complex [11], but the assay protocol used in this work is less sensitive and unable to
detect it. The faint band below EtMIC3 is likely to be a break down product. (b) Dose-dependent bindg of a sporozoite lysate containing EtMIC3 to
fixed MDBK cell monolayers determined by cell based ELISA. Sporozoite lysate was diluted in PBS at a range of concentrations from 2 mg/ml -
0.001 mg/ml. The lysate was incubated with gluteraldehyde fixed MDBK cell monolayers. Cells were washed to remove unbound protein and binding
of EtMIC3 was determined by ELISA. Error bars indicate standard deviations. (c) Western blot analysis of EtMIC3 from a sporozoite lysate (206106/ml)
within cell bound (CB) or unbound (UB) fractions of a sporozoite lysate in the presence of neuraminidase (c), (d) fetuin or asialofetuin.
doi:10.1371/journal.ppat.1002296.g003
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EtMIC3 (MAR1a and MAR1e; Figure S1) show significant

differences in these positions and this is consistent with the weaker

binding of these two domains to cells (Figure S3).

Complex sialylated glycans are yet to be identified in coccidians

[22,23]. Given their wide distribution in warm-blooded animals, it

is appropriate that sialylated glycans of the host are the targets for

the MARR proteins. We have shown that binding specificity goes

beyond simple recognition of sialic acid and includes the sialyl

linkage, the chain length and further modification of the backbone

sequence. Although stronger inhibitory activity was observed with

a2–3-linked sialyllactose compared with the a2–6 analog in the

inhibition of cell binding experiments, the preference for a2–3

sialyl oligosaccharides was not apparent in the carbohydrate

microarray analyses. This is of interest, as in contrast to MAR1b

and MAR5 of EtMIC3, the TgMIC1-MARR did show stronger

binding to a2–3 than to a2–6 sialyl sequences in the microarrays

(Figure 5c, and Table 1), in accord with our previous finding [4,5].

With EtMIC3 there are maybe several explanations for the

discrepancy in the relative potencies of sialyl a2–3 vs to a2–6 in

the inhibition and the microarray binding assays. First, it is

possible that the multivalent binding in the microarray system

(both the oligosaccharide ligands and the EtMIC3 MAR domains

are in oligomeric form) may result in substantial amplification of

the binding response thus rendering it difficult to observe

differential binding affinities/avidities towards the sialyl ligands.

An example is the rather selective binding profile observed with

the single-domain construct EtMIC3-MAR1b that becomes

blurred with the five-domain construct EtMIC3-MAR5. It is also

important to note that compared with the MAR2 domain present

in TgMIC1, the EtMIC3 MAR domains (MAR1 family) have an

inherent increased affinity for sialyl oligosaccharides due to

additional interactions with sialic acid mediated by the MAR1

insertion between a1 and b1 and the HLT motif (Figures 6 and

S1); this would make it more difficult to detect the difference in

binding intensities for EtMIC3-MAR1b even when it was tested

under the same conditions as TgMIC1-MARR. Second, the

structure of the MAR2 domain of TgMIC1 revealed a water-

mediated hydrogen bond network between protein (E205, E206

and E207) and Gal O6 position of the carbohydrate ligand, which

contributed to the a2–3-linked sialyl oligosaccharide binding

preference [4,5]. Interestingly, several of these positions are

replaced with other amino acid residues in the MAR1 domains

from EtMIC3 (e.g. 241PSE in MAR1b, 382NPQ in MAR1c and
533NPQ in MAR1d); this may lead to the absence of structured

water network thus providing an explanation for the lack of

significant binding preference for a2–3-linked sialyl oligosaccha-

rides in our microarray analyses. Finally, the increased flexibility of

the a2–6 over the a2–3 sialyl linkage would also contribute to an

additional entropic penalty upon ordering in the complex, and this

may at least in part account for the stronger inhibitory activity of

a2–3 sialyllactose in the inhibition assays where free oligosaccha-

rides were used in solution as inhibitors.

E. tenella sporozoites invade primarily the caecal epithelium of

chickens, in contrast to T. gondii zoites which have the ability to

infect almost any nucleated cell. All the EtMIC3 MAR domains

belong to the MAR1 family and they are likely to have similar

binding specificities; whereas T. gondii possesses several proteins

(e.g. TgMIC1 and TgMIC13) with diverse MAR domains (MAR1

and MAR2 family) that are capable of more promiscuous glycan

binding.

It is interesting that our microarray analyses revealed a lack of

recognition of NeuGc-terminating glycans by EtMIC3, which are

rare in the chicken host [24]. The opposite, namely a preference of

the NeuGc form of the sialyl ligand GM1, was revealed by

microarray analysis of the oncogenic virus SV40 for which the

primary host is the monkey that, unlike humans, can synthesize

NeuGc [25]. The T. gondii MIC1 recognizes glycans with both

NeuAc and NeuGc forms of sialic acids consistent with its very

broad cell tropisms. These differing specificities are clearly major

factors in the host tropisms of these microbes. The restricted tissue

staining pattern observed for EtMIC3, namely in the chicken

caecal epithelium, but not in other parts of the chicken intestine,

indicates that EtMIC3 play a key role in efficiently directing the

parasite to the caecum.

Apart from the specificities of EtMIC3-MAR1b toward

different sialic acid forms and linkages, the carbohydrate

microarray analyses have revealed modulation of binding strength

in the presence of certain sulfate modifications of the sialyl

oligosaccharide sequences. EtMIC3-MAR1b gave stronger bind-

ing to the 3’SiaLex sequence that has a sulfate at position 6 of the

GlcNAc residue (6-SU SiaLex; probe 49 in Table 1) than to

analogs lacking sulfate on GlcNAc (probe 45 and 47) or having an

additional sulfate group on the galactose (Gal) residue (6,69-SU

SiaLex; probe 51). We have previously reported that sulfation

pattern plays an important role in carbohydrate recognition by

Neospora caninum MIC1 [6]. In that study, we observed strong

binding of NcMIC1-MARR to two sulfated SiaLex probes both of

which have a sulfate group on the Gal residue (as in probes 47 and

51). These properties of MIC proteins might have implications for

tissue tropism. It is worth noting that the greater binding to 6-SU

SiaLex sequence is a feature shared with highly pathogenic poultry

influenza viruses including H5N1 viruses [26,27]. These viruses

also target the chicken intestinal tract.

Rotational treatment with anticoccidial drugs and commercial

live vaccine is current best way to control infecting within chicken

flocks. Due to the high expense of scaling-up the production of live

parasite vaccine, there have been a number of recent efforts to

develop subunit and recombinant coccidiosis vaccines using both

DNA and protein based antigens [28,29,30,31]. However, few

have been successful and much work needs to be done to identify

appropriate antigens and the optimal mode of delivery. The role of

EtMIC3 in targeting host sialyl glycans in the early stages of

invasion and its prominent location at the host-parasite interface

suggests that it may serve as an effective vaccine antigen. We have

carried out five independent challenge experiments in groups of

birds vaccinated with recombinant EtMIC3-MAR protein or

EtMIC3-MAR DNA and found that EtMIC3 vaccination results

in highly significant reductions in oocyst output after challenge

Figure 4. EtMIC3 targets sialic acid bearing glycans on host cells. (a) Western blot analysis of a cell bound fraction of EtMIC3 from a
sporozoite lysate (206106/ml) in presence of increasing amounts of either a2–3 sialyllactose or a2–6 sialyllactose. (b) Western blot analysis of a cell
bound fraction of EtMIC3 from a sporozoite lysate (206106/ml) in presence of increasing amounts of lectins from Sambucus nigra (SNA) or Maackia
amurensis (MAA). (c) Histology analysis of carbohydrate presentation within chicken intestine. Alkaline phosphatase staining of histological sections
of chicken intestinal tissue derived from the upper, mid and lower intestine and the caecum following incubation with plant lectins SNA or MAAII,
with recombinant EtMIC3-MAR5 protein or with thioredoxin as a control protein (C). EtMIC3 and MAAII bind abundantly to epithelial cells of the
caecum indicating that the preferred binding site of EtMIC3 is in the region of the intestine that expresses a high level of a2–3 sialylated glycans.
doi:10.1371/journal.ppat.1002296.g004

Sialyl Glycan Recognition by Eimeria tenella

PLoS Pathogens | www.plospathogens.org 9 October 2011 | Volume 7 | Issue 10 | e1002296



infection (Figure 8). Whilst these are small-scale experiments, the

consistency of the trials and level of efficacy (around 50%

reduction in oocyst shedding following vaccination) are higher

than seen in many studies with other antigens, indicating that

EtMIC3 should be considered as a good candidate antigen for

future recombinant vaccine development.

Figure 5. Carbohydrate microarray analyses of MAR domains. Carbohydrate microarray analyses of recombinant EtMIC3-MAR1b (a), EtMIC3-
MAR5 (b) and TgMIC1-MARR (c) using microarrays of 115 lipid-linked oligosaccharide probes. Numerical scores of the binding signals are means of
duplicate spots at 5 fmol/spot (with error bars). The various types of terminal sialic acid linkage are indicated by the coloured panels as defined at the
bottom of the figure. The list of probes and their sequences and binding scores are in Table 1.
doi:10.1371/journal.ppat.1002296.g005
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Table 1. Comparison of the binding intensities elicited by selected glycan probes in carbohydrate microarrays with EtMIC3-MAR5
and TgMIC1-MARR.

Position Structure Fluorescence signal intensities

EtMIC3-
MAR1b

EtMIC3-
MAR5

TgMIC1-
MARR

Selected a2–3-linked and a2–6-linked sialyl sequences

20 NeuAca-3Galß-4Glc-AO 254 6,260 4,734

70 NeuAca-6Galß-4Glc-AO 349 5,441 767

37 NeuAca-3Galß-3GlcNAcß-3Galß-4Glc-DH 2,347 10,945 4,163

79 NeuAca-6Galb-4GlcNAcb-3Galb-4Glc-DH 5,570 16,300 834

56 NeuAca{3Galß{4GlcNAcß{2Mana{6 Fuca{6

Manß{4GlcNAcß{4GlcNAc{DH

NeuAca{3Galß{4GlcNAcß{2Mana{3

8,831 11,915 8,831

87 NeuAca{6Galß{4GlcNAcß{2Mana{6

Manß{4GlcNAcß{4GlcNAc{DH

NeuAca{6Galß{4GlcNAcß{2Mana{3

15,725 15,948 671

Selected fucosylated and sulphated sialyl sequences

45 NeuAca{3Galß{4GlcNAcß{3Galß{4Glcß{Cer36

Fuca{3

(SiaLex) 1,031 4,623 785

47 SU{6

NeuAca{3Galß{4GlcNAcß{3Galß{4Glcß{Cer36

Fuca{3

(6’SU SiaLex) 790 8,527 6,077

49 SU{6

NeuAca{3Galß{4GlcNAcß{3Galß{4Glcß{Cer36

Fuca{3

(6SU SiaLex) 5,012 17,393 6,143

51 SU{6 SU{6

NeuAca{3Galß{4GlcNAcß{3Galß{4Glcß{Cer36

Fuca{3

(6,6’SU SiaLex) 1,997 13,131 8,834

Selected Ganglioside-related sequences

66 NeuAca{3Galß{3GlcNAcß{4Galß{4Glcß{Cer

NeuAca{3

(GD1a) 4,849 12,980 3,630

98 Galß{3GlcNAcß{4Galß{4Glcß{Cer

NeuAca{8NeuAca{3

(GD1b) - 217 -

—
—

—

—
—

—

—
—

—

—

—
—

—
—

—
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Materials and Methods

Ethics statement
This study was carried out in strict accordance with the Animals

(Scientific Procedures) Act 1986, an Act of Parliament of the

United Kingdom. All animal studies and protocols were approved

by the Institute for Animal Health Ethical Review Committee and

the United Kingdom Government Home Office under project

license number PPL 80/2545.

The authors are committed to the principals of the 3Rs:

reduction (in numbers), refinement (of procedures) and replace-

ment (with laboratory procedures) of experimental animals,

commensurate with being able to do statistically and biologically

significant experiments for animal health. Enriched environments

have been introduced for our animals in line with guidelines from

the National Centre for the 3Rs.

Cloning, expression and purification from E. coli
Recombinant EtMIC3 fragments were expressed and purified

using previously described strategies [32,33]. Constructs corre-

sponding to EtMIC3-MAR1a (residues 42 to 153), EtMIC3-

MAR1b (residues 154 to 289), EtMIC3-MAR1c (residues 290 to

440) EtMIC3-MAR1d (residues 743 to 874), EtMIC3-MAR1e

(residues 875 to 988) and EtMIC3-MAR5 (comprising sequences

encompassing MAR1a, MAR1b, MAR1d and MAR1e residues 1-

298,750-921) were each cloned into pET32b Xa/LIC plasmid

(Novagen) and expressed as thioredoxin fusion proteins in Origami

(DE3) (Novagen) [34]. For binding assays and vaccination

experiments recombinant proteins were used as thioredoxin-

hexa-His fusions and unfused thioredoxin protein was prepared in

parallel from ‘empty’ vector as a control. For structure calculation

an optimized construct of EtMIC3-MAR1b was generated

encompassing residues 153–274. Protein expression was induced

with 500 mM isopropyl b-D-thiogalactopyranoside overnight at

30uC. The fusion protein was purified by affinity chromatography

using a nickel-nitrilotriacetic acid (Ni-NTA) resin (Qiagen) and

separated from thioredoxin in a factor Xa cleavage reaction

(Novagen). Factor Xa was removed from the sample by binding it

to an immobilised Xarrest agarose resin (Novagen) and residual

protease was inhibited with 1 mM AEBSF (Novagen). Thior-

edoxin was removed from the sample by passing the sample back

across a Ni-NTA resin. The protein was concentrated to ,1 mM

and exchanged into phosphate buffer for NMR (20 mM sodium

phosphate pH 6.5, 50 mM NaCl for the structure calculation and

20 mM sodium phosphate pH 5.5 mM NaCl for binding studies).
15N,13C-labelled samples were produced in minimal media,

containing 0.07% 15NH4Cl and 0.2% 13C6-glucose. Recombinant

TgMIC1-MARR was prepared as described [4,6].

Cell binding and inhibition experiments
Confluent monolayers of MDBK cells were blocked with 1%

BSA in PBS for 2 h at 4uC, washed three times in PBS then

incubated with sporozoite lysate or recombinant-expressed

proteins (0.001 mg/ml to 2 mg/ml) for 1 h at 4uC. Monolayers

were washed four times with PBS to remove unbound proteins,

then cells and bound proteins were solubilised in SDS sample

buffer, separated by SDS PAGE, transferred to nitrocellulose and

probed with rabbit sera raised to EtMIC1, EtMIC2, EtMIC3 and

EtMIC4. Dose dependent binding of EtMIC3 was determined by

ELISA using gluteraldehyde fixed MDBK cells.

For binding inhibition experiments, MDBK cells were treated

as follows: neuraminidase (from C. perfringens) obtained from

Sigma, used at 0.5 to 0.125 units/ml, 37uC, 1 h; lectins SNA

(from Sambucus nigra) or MAA (from Maackia amurensis) obtained

from Sigma, used at 10, 50 or 100 mg/ml, 4uC for 30 min.

Alternatively, sporozoite lysates or recombinant proteins were

treated as follows: fetuin and asialofetuin (from fetal calf serum)

obtained from Sigma, used at 1 to 1000 mg/ml, 4uC for 10 min;

sialic acid (NeuAc), a2–3 sialyllactose and a2–6 sialyllactose (from

bovine colostrum) obtained from Sigma, used at 10–200 mg/ml,

4uC for 10 min; gangliosides GD1a, GD1b and GT1b (from

bovine brain), obtained from Sigma, ganglioside GD1a (from

bovine brain) obtained from Alexis biochemicals), used at 100 mg/

ml 4uC for 10 min.

Position Structure Fluorescence signal intensities

EtMIC3-
MAR1b

EtMIC3-
MAR5

TgMIC1-
MARR

109 NeuAca{3Galß{3GlcNAcß{4Galß{4Glcß{Cer

NeuAca{8NeuAca{3

(GT1b) 8,121 28,174 11,032

110 NeuAca{8NeuAca{3Galß{3GlcNAcß{4Galß{4Glcß{Cer

NeuAca{3

(GT1a) 88 2,114 -

Selected NeuAc and NeuGc-terminating sequences

38 NeuAca-3Galb-3GlcNAcb-3Galb-4Glcß-C30 5,423 18,142 11,580

39 NeuGca-3Galb-3GlcNAcb-3Galb-4Glcß-C30 - - 11,075

59 NeuAca-3Galß-4Glcß-Cer 232 3,694 4,327

60 NeuGca-3Galß-4Glcß-Cer - - 12,526

89 NeuAca-6GalNAc-AO - 7,328 3,815

88 NeuGca-6GalNAc-AO 47 264 13,982

-, less than 100.
doi:10.1371/journal.ppat.1002296.t001

Table 1. Cont.

—
—
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Carbohydrate microarray analysis
Microarrays were composed of lipid-linked oligosaccharide

probes, namely neoglycolipids (NGL) and glycolipids, robotically

printed on nitrocellulose-coated glass slides at 2 and 5 fmol per spot

using a non-contact instrument [4,35]. The NGLs were prepared by

either reductive amination [36] or oxime ligation [37]. Among these

are 97 sialylated probes with differing sialic acid linkage, glycan

backbone, chain length and sequence, and 18 nonsialylated (neutral

and sulfated) probes were included as negative controls (Figure 5,

and Table S1). The microarray binding assays were performed at

ambient temperature. His-tagged EtMIC3-MAR1b and TgMIC1-

MARR were assayed essentially as described [4,6]). In brief, the

arrayed slides were blocked for 1 h with 1% w/v bovine serum

albumin (Sigma) in Pierce Casein Blocker solution (casein/BSA).

EtMIC3-MAR1b and TgMIC1-MARR were precomplexed with

mouse monoclonal anti-polyhistidine and biotinylated goat anti-

mouse IgG antibodies (Sigma) in a ratio of 1:2.5:2.5 (by weight) and

overlaid onto the arrays at 40 mg/ml. For the analyses of EtMIC3-

Figure 6. Three-dimensional structure of the MAR1b domain from EtMIC3. (a) Superposition of EtMIC3-MAR1b (red; PDB code 2LBO) on the
MAR2 domain from TgMIC1 (PDB code 2JH1; cyan) showing the position of the disulfide bonds and ‘MAR1 insertion’ [4,5]. Left and right images represent
views from two orientations (Figure S1 and S4). (b) Superposition of EtMIC3-MAR1b (red; PDB code 2LBO) on the MAR2 domain from TgMIC1 (PDB code 2JH1;
cyan) in complex with Siaa2–3Gal. For clarity only the sialic acid units are shown for both structures. Additional side-chain contacts from the MAR1 domain are
shown in red. Conserved binding site HxT side chains are shown in purple. Left and right images represent views from two orientations (Figure S4).
doi:10.1371/journal.ppat.1002296.g006
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MAR5, precomplexation was not required. The protein was tested

at 40 mg/ml, and followed by overlay with anti-polyhistidine and

biotinylated anti-mouse IgG antibodies (10 mg/ml, precomplexed

in a ratio of 1:1). Binding was detected using Alexa Fluor 647-

conjugated streptavidin (Molecular Probes). Microarray data

analysis and presentation were carried out using dedicated software

[38]. The binding to oligosaccharide probes was dose-related, and

results at 5 fmol per spot are shown.

Immunofluorescence assay (IFA) of E. tenella sporozoites
and gut stages

E. tenella sporozoites were allowed to settle at ambient

temperature onto monolayers of MDBK cells grown on coverslips,

then these were incubated at 41uC for 5 min. Cells were fixed in

4% paraformaldehyde, permeabilized with Triton X-100 and

blocked with 1% BSA in PBS. Caecae were removed from infected

chickens at 96 h post infection and fixed in paraformaldehyde.

Sections were submitted to histology for automated dehydration,

paraffin embedding, sectioning and staining. They were cut using

a microtome, dewaxed, pressure cooked and treated with 1% BSA

in PBS to block non-specific staining [39] Cell monolayers and gut

sections were incubated with various sera generated against E.

tenella proteins as previously described [40]; chicken anti-EtMIC3

serum (1:300), rabbit anti-EtMIC3 serum, (1:300), mouse anti-

tubulin (1:1000), chicken anti-EtAMA1, (1:400) or rabbit anti-

EtMIC5 serum (1; 200). After washing, cells were incubated with

appropriate secondary antibodies; goat anti-chicken-Alexa Fluor

488 (green) and goat anti–mouse Alexa Fluor 568 (red) and then

briefly incubated with DAPI. Coverslips and sections were

examined with a Zeiss Axioskop microscope or a Leica confocal

microscope using Ar, Kr and 633 HeNe lasers.

Transmission electron microscopy (TEM) of E. tenella
sporozoites

Samples (pellets of sporozoites or pieces of infected tissue) were

fixed in 2% paraformaldehyde in 0.1 M phosphate buffer,

dehydrated and embedded in LR White resin. Thin sections were

blocked with 1% BSA in PBS, floated on drops of rabbit anti-

MIC3 antibody, washed and exposed to goat anti-rabbit Ig

conjugated to 10 nm gold. Finally grids were washed and stained

with uranyl acetate prior to examination in the electron

microscope.

NMR spectroscopy and structure calculation
All NMR spectra on the structure determinations of EtMIC3-

MAR1b (residues 153–274) were recorded on 15N, 13C-labelled

samples. Backbone and side-chain assignment were completed using

standard double and triple-resonance assignment methodology

[41,42,43]. The side-chain assignments were completed using

HCCH-total correlation (TOCSY) spectroscopy and (H)CC(CO)NH

TOCSY [43]. 3D 1H-15N/13C NOESY-HSQC (mixing time

100 ms at 500 MHz and 800 MHz) experiments provided the

distance restraints used in the final structure calculation.

The ARIA protocol [44] was used for completion of the NOE

assignment and the interface to the CNS structure calculation

program [45]. Dihedral angle restraints derived from TALOS+
were also implemented [46]. The frequency window tolerance for

Table 2. Structural statistics from the solution structure calculation for EtMIC3.

Number of experimental restraints (PDB code 2LBO)

Total NOE-derived 2918

Ambiguous 684

Unambiguous 1980

Intraresidue 738

Sequential 311

Medium-range (|i2j|#4) 305

Long-range (|i2j|.4) 626

H-bonds 30

Talos (Q/y) 224

RMSD from experimental restraints

Distance (Å) 0.055+/20.003

Dihedral angle (deg.) 3.16+/20.10

RMSD from idealized covalent geometry

Bonds (Å) 0.0071+/20.00013

Improper angles (deg.) 2.48+/20.05

Angles (deg.) 0.81+/20.02

Coordinate RMSD (Å)

Backbone atoms in secondary structure 0.17+/20.039

Heavy atoms in secondary structure 0.53+/20.057

Ramachandran plot

Residues in most favoured regions (%) 78.8

Residues in allowed regions (%) 18.9

Residues in disallowed regions (%) 0.4

doi:10.1371/journal.ppat.1002296.t002
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assigning NOEs was 60.05 ppm and 60.07 ppm for direct and

indirect proton dimensions and 60.5 ppm and 60.5 ppm for

nitrogen and carbon dimensions, respectively. The ARIA

parameters, p, Tv, and Nv, were set to default values. A slow

cooling step was used with 72000 steps of 0.003 ps dynamics [47].

The 10 lowest energy structures had no NOE violations greater

than 0.5 Å and dihedral angle violations greater than 5u. The

structural statistics are presented in Table 1.

For the HADDOCK-derived structures of the carbohydrate-

bound complexes the following protocol was used. The final family

of 10 structures for EtMIC3-MAR1b were used as starting

structures. The family of starting structures for the carbohydrate

ligand were generated by selecting random torsion angles about the

glycosidic bond. Two thousand starting structures for the complex

were generated by selecting random structures from the above

families and carrying out rigid-body minimisation, from which 1000

were used for subsequent simulated annealing (SA). During the SA

and subsequent water-refinement stage, amino acid side chains

within the putative carbohydrate binding site and whole carbohy-

drate ligand were allowed complete flexibility. The entire Raver1

peptide was also allowed complete flexibility during the calculation.

200 lowest-energy SA models were selected for a final water-

refinement stage. NOE restraints were derived in standard fashion

from heteronuclear-filtered NOE spectra (9 NOEs were identified in

each complex and hydrogen bond restraints were included between

the sialic acid carboxylate and threonine residue in the HLT motif).

NOEs to sugar rings were implemented in an ambiguous manner.

Chemical shift mapping for the EtMIC3-MAR1b and sialyl-
containing carbohydrates

For NMR mapping experiments, 15N-labelled EtMIC3-

MAR1b was prepared in 20 mM sodium phosphate buffer at

pH 5.5 at approximately 1 mM in 0.5 ml. Either sialic acid

(NeuAc), Siaa2–3Galb1–4Glc, Siaa2–6Galb1–4Glc, Siaa2–

3Galb1–4GlcNAc or Siaa2–6Galb1–4GlcNAc in the same buffer

were introduced at several steps up to a 50 fold molar excess and

2D 1H-15N HSQC spectra were recorded at each stage under

identical experimental conditions. The final saturated position is

shown in Figure S5.

Chicken intestine histology
Samples of intestinal tissue including upper, mid, lower intestine

and caeca, were removed immediately post-mortem from a 3 week

old SPF Light Sussex chicken into 10% buffered formalin and

subsequently embedded in paraffin. Sections (10 mm) were cut

onto glass slides, dewaxed and treated with 10 mM Na citrate

(pH 6.5) for 15 min in a microwave oven. Sections were blocked

overnight in 5% BSA then binding of EtMIC3 or biotinylated

plant lectins SNA or MAA-II (Vector Lab) was carried out using a

Vectastain ABC-AP system. For EtMIC3, sections were incubated

first with normal mouse serum, then rinsed and incubated with

EtMIC3-MAR5 recombinant protein (100 mg/ml) for 30 min

followed by washing, incubation with mouse anti-His serum

for 30 min, washing and incubation with diluted biotinylated

secondary antibody for 20 min. For SNA or MAAII, sections were

incubated directly with biotinylated lectins (,20 mg/ml; Vector

Labs). All sections were processed for development with the

VECTASTAIN ABC-AP reagent and substrate according to the

manufacturer’s instructions.

Sporozoite invasion, replication and inhibition assays
In vitro infection of Madin Darby Bovine Kidney (MDCK) cells

was carried out essentially as described previously [40]. Briefly for

invasion assays, semi-confluent monolayers grown on coverslips in

Figure 7. Sporozoite invasion of MDBK cells can be inhibited by sialic acid competitors. Freshly excysted sporozoites of E. tenella were incubated
for 10 mins at room temperature with varying concentrations of sialylated molecules, and then allowed to invade semi-confluent monolayers of MDBK cells for
15 mins at 41uC. Cells were then fixed in methanol, stained in haematoxylin and eosin and the number of intracellular sporozoites enumerated.
doi:10.1371/journal.ppat.1002296.g007
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24-well tissue culture plates were infected with 106 freshly purified

sporozoites and the plates re-incubated at 41uC for 15 minutes, at

which time they were fixed in methanol, stained with haematox-

ylin and eosin, mounted under polyvinyl resin and examined at

4006magnification. The total number of intracellular parasites

(within vacuoles) for 10 random fields was counted on each

coverslip and at least three coverslips were examined for each

treatment. For uracil uptake assays that measure parasite

replication as an indirect read-out of parasite invasion [48],

semi-confluent monolayers in 96-well plates were infected with 105

freshly purified sporozoites together with 1 mCi [5,6]-[3H]-uracil

(Perkin-Elmer NEN) and incubated for 48 hr, after which cells

were lysed, harvested onto glass fibre filter mats with a cell

harvester (Packard Filtermate) and uracil uptake quantified as

counts per minutes using a direct beta-counter (MicroBeta, Perkin-

Elmer-Wallac). Each treatment was replicated four times and

control wells without parasites were set up for each experiment.

Treatments used in this study were pre-incubation of sporozoites

with fetuin, asialofetuin, sialic acid (NeuAc), a2–3 sialyllactose,

a2–6 sialyllactose, gangliosides GD1a or GT1b (ranging from

10 mg/ml to 1 mg/ml) for 10 minutes at room temperature, or

pre-incubation of MDBK cells with SNA or MAA lectins (ranging

from 5 to 100 mg/ml) or neuraminidase (0.05 to 0.5 units/ml) for

1 hr at 41uC.

Protection of chickens against challenge with Emeria
tenella

Chickens were immunized with purified recombinant proteins

(prepared as described above) or by DNA vaccination using

pcDNA3.1 as the vector. Briefly, DNA corresponding to EtMIC3-

MAR1c (residues 290–440) was PCR amplified with 59 Eco RI and

39 Xba I linkers and DNA corresponding to EtMIC3-MAR5 was

PCR amplified with 59 Nco I and 39 Hind III linkers and each

fragment cloned into pcDNA3.1.

One week-old pathogen free Light Sussex (SPF) chickens were

divided into groups (n = 5–8). For protein immunizations, birds

were injected subcutaneously with 100 mg recombinant protein

split between two sites in the skin of the neck area. Three injections

were administered at two weekly intervals, the first two in

Titermax gold adjuvant (Sigma) and the third in Freund’s

incomplete adjuvant. Control groups were immunized with PBS

or with thioredoxin fusion protein expressed and purified from

empty pET32b vector. For DNA immunizations, birds were

injected into the leg muscle with 100 mg plasmid split between two

sites. Two injections were administered at two weekly intervals and

control groups were immunized with PBS or with pcDNA3.1

plasmid DNA lacking a cloned insert. One week after the final

immunization all birds were challenged with 250 E. tenella oocysts

and total faecal droppings were collected from each individual bird

on a daily basis from between 5 and 11 days post challenge. Faecal

samples were processed to determine total oocyst counts from each

individual bird using a MacMaster flotation chamber. Group

averages and standard errors of the means were calculated and

statistical significances between the means of different treatment

groups determined using post-hoc Tukey analysis of variance.

Supporting Information

Figure S1 EtMIC3 Topology and MAR2 domain se-
quence alignment (Top) Cartoon shows the location of each

type of MARR in the full length EtMIC3 protein. (Bottom)

Sequence alignments for the MAR domain families from EtMIC3

and TgMIC1. Cysteines are shaded orange and disulfide bond

connectivities are indicated for the MAR domains. The position of

the MAR1 insertion is shown by the arrows. Secondary structure

elements are indicated above the sequence alignments; b-strands

as arrows and a-helices as cylinders. Amino acid sequence

numbers are indicated at the start and end of the rows.

(PDF)

Figure S2 Inhibition of Cell binding of EtMIC3-MAR5.
Recombinant expressed protein (10 mg/ml) was incubated with

either (1) fetuin -100 mg/ml (2) sialic acid -100 mgml (3) trisialo-

ganglioside GT1a -100 mg/ml (4) disialoganglioside GD1a (Sigma) -

100 mg/ml (5) disialoganglioside GD1b(Sigma) - 100 mg/ml, (6)

disialoganglioside GD1a (Alexis biochemicals) -100 mg/ml or (7) no

ligand control - 0 mg/ml, for 15 mins at 4uC and then incubated

with MDBK cell monolayer for 15 min at 4uC. Monolayers were

washed 3 times in PBS to remove unbound protein. The bound

fraction was solubilized in SDS loading buffer and run on SDS

PAGE gels, blotted and probed with ant-his antibody.

(PDF)

Figure S3 Binding of individual MARR of EtMIC3 to
fixed MDBK cell monolayers determined by ELISA.

(PDF)

Figure S4 Three-dimensional structure of the MAR1b
domain from EtMIC3. a) Stereo-view of the superimposition

for the ten best NMR structures of EtMIC3-MAR1b. b)

Superposition of EtMIC3-MAR1b (red; PDB code 2LBO) on

the MAR2 domain from TgMIC1 (PDB code 2JH1; cyan). c)

Superposition of EtMIC3-MAR1b (red; PDB code 2LBO) on the

MAR1 domain from TgMIC1 (PDB code 2JH1; green). d) 1H-13C

strips from filtered (12C, 14N)H-NOESY-13C-HSQC NMR

experiment on 13C/15N-labelled EtMIC3-MARb in complex with

Siaa2–6Gal. e) NMR-derived solution structure of EtMIC3-

MAR1b in complex with Siaa2–6Gal. f) 1H-13C strips from

filtered (12C, 14N)H-NOESY-13C-HSQC NMR experiment on
13C/15N-labelled EtMIC3-MARb in complex with Siaa2–3Gal. g)

NMR-derived solution structure of EtMIC3-MAR1b in complex

with Siaa2–3Gal.

(PDF)

Figure S5 Chemical shift mapping for the interaction of
recombinant EtMIC3-MAR1b with a2–6 sialyllactose.
(Top) 1H-15N HSQC spectrum for 15N,13C-labelled EtMIC3-

MARb alone (black) and in presence of unlabelled Siaa2–6Galb1–

4Glc (pink) at a molar ratio of 1:1. (Bottom) Surface representation

for the lowest energy structure for EtMIC3-MARb with residues

colour red according to the extent of chemical shift perturbation in

the presence of Siaa2–6Galb1–4Glc. Orientation is the same as in

Figure 6.

(PDF)

Figure 8. Vaccination trials with MARR from EtMIC3. (a) Counts for individual birds for each antigen are shown as overlapping columns and
the average shown as a separate column with error bar. Immunization with recombinantly-expressed EtMIC3-MAR1c fusion protein resulted in an
overall reduction in oocyst output after challenge of 54% compared to treatment with the thioredoxin fusion protein alone (See Table S3). (b) Counts
for individual birds for each antigen are shown as overlapping columns and the average shown as a separate column with error bar. DNA
immunization with pcDNA3.1 vector containing EtMIC3-MAR5 or EtMIC3-MAR1c resulted in an overall reduction in oocyst outputs after challenge of
48 and 51% respectively compared to treatment with the pcDNA3.1 vector alone (See Table S3).
doi:10.1371/journal.ppat.1002296.g008
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Table S1 Oligosaccharide probes included in the mi-
croarrays sorted by sialyl linkage and backbone se-
quences, and the binding signals (fluorescence intensi-
ties) they elicited* with EtMIC3-MAR5 and TgMIC1-
MARR.

(PDF)

Table S2 Intermolecular NOE restraints for HADDOCK
docking calculations of EtMIC3 with sialyl carbohy-
drates.

(PDF)

Table S3 Cumulative faecal oocysts counts from each
individual bird in the two vaccination/challenge exper-
iments shown in Figure 7.
(PDF)
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