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Metabolic associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, which
include steatosis, nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, that is a critical risk factor for
hepatocellular carcinoma (HCC) development. Its pathogenesis is intertwined with obesity and type 2 diabe-
tes (T2D). However, the predisposition to develop MAFLD is severely influenced by environmental and inher-
ited cues. The rs641738 variant close to MBOAT7 gene has been identified by a genome-wide association
screening in heavy drinkers. Although this variant has been associated with the entire spectrum of MAFLD,
these results have not been completely replicated and the debate is still opened. Thus, functional studies that
unravel the biological mechanisms underlying the genetic association with fatty liver are required. This
review aims to summarize the clinical and experimental findings regarding the rs641738 variation and
MBOAT?7 function, with the purpose to shed light to its role as novel player in MAFLD pathophysiology.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

Nonalcoholic or more recently re-defined Metabolic associated
fatty liver disease (MAFLD) is the most common chronic liver disor-
der worldwide, affecting more than one third of the general popula-
tion (around 30% of adults in industrialized countries) [1, 2]. Thus,
given its increasing proportion, it represents a primary health, social
and economic concern [3]. MAFLD is defined by enhanced hepatic fat
deposition that exceeds 5% of liver weight, in absence of alcohol
abuse and it entails a wide spectrum of hepatic clinical conditions,
spanning from uncomplicated steatosis to nonalcoholic steatohepati-
tis (NASH), defined by the presence of lobular inflammation and
hepatocyte ballooning, to fibrosis, cirrhosis and, only in a minor per-
centage of cases, to hepatocellular carcinoma (HCC) [4].

MAFLD is epidemiologically related to obesity, type 2 diabetes
(T2D) and metabolic syndrome (MetS) [5] and its pathogenesis is
closely entangled with increased adiposity, insulin resistance (IR)
and dyslipidemia [6]. Indeed, it is regarded as the hepatic manifesta-
tion of MetS and its prevalence increases along with body mass index
(BMI), reaching 60—70% in obese patients [7]. The risk of progressive
MAFLD is higher in patients with severe hyperinsulinemia, IR and
T2D, which are identified as the strongest predictors of advanced
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fibrosis and cirrhosis. Therefore, the prevalence of MAFLD in T2D
patients is estimated at 34—74% and it is even higher in T2D patients
with obesity (almost 100%) [8]. As a consequence, unhealthy dietary
habits, excessive caloric intake, high fructose consumption and poor
physical exercise greatly contribute to this pathological condition [9].

Nonetheless, the inter-individual predisposition to develop
MAFLD may be also attributable to inherited factors [10]. Single
nucleotide polymorphisms (SNPs) in genes regulating hepatic lipid
remodeling, among which Patatin-like Phospholipase Domain-contain-
ing 3 (PNPLA3), Transmembrane 6 Superfamily Member 2 (TM6SF2) and
Membrane Bound O-acyltransferase Domain-containing 7 (MBOAT7),
have been broadly associated with increased susceptibility to develop
the entire spectrum of MAFLD from steatosis towards NASH and
fibrosis [11]. The unraveling of the biological associations between
fatty liver and inherited risk factors, and their interplay with environ-
mental context are primary goals in the study of MAFLD pathophysi-
ology. More deeply, the mechanism whereby the less explored
MBOAT? variations exert detrimental effects at hepatic level remains
to be fully elucidated.

Currently, no therapeutic consensus exists for the treatment of
MAFLD and lifestyle modifications, regular physical activity and sus-
tained weight loss remain the cornerstone of approaches to patients
with MAFLD, with the purpose to improve glycemic control, hepatic
insulin sensitivity, liver enzymes and histology [12]. However,
mounting evidence points out that the individual genetic background
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has to be considered to personalize genome-based therapeutic
approaches [9].

Therefore, this review pursuits to highlight recent findings about
the role of MBOAT?7 regulation in hyperinsulinemia and IR as a novel
example of the gene-environment interaction. These concepts pave
the way to improve our knowledge about the mechanisms that pre-
dispose to steatosis during IR and emphasize the idea to target
MBOAT?7 for therapeutic strategies.

2. Insulin resistance and MAFLD pathogenesis

Although the precise mechanism of MAFLD pathogenesis is still
under definition, current knowledge supports a model whereby the
development of liver injury is multifactorial, commonly referred to as
the ‘multi-hits’ hypothesis [13—16]. In particular, IR is accountable for
the first hit’ that induces the rising of hepatic steatosis.

IR is defined as a pathological condition in which physiological or
elevated insulin concentrations produce an attenuated biological
response, mainly in terms of glucose homeostasis [17]. IR may be due
to either impaired insulin receptor activity and/or expression or to a
derangement in insulin response through the downstream signaling
cascades, or less frequently to loss-of-function mutations in Insulin
receptor (INSR) gene. In obese subjects, IR results in chronically ele-
vated insulin concentrations (hyperinsulinemia), alterations in insu-
lin secretion and clearance, increased glucose output and decreased
hepatic glucose utilization [18]. To compensate the dampened insulin
sensitivity, pancreatic B-cells over-produce insulin, eventually
undergoing to exhaustion and leading to impaired glucose tolerance
and T2D [19]. Furthermore, in IR context, insulin fails to inactivate
gluconeogenesis [20].

In muscle and adipose tissue, IR determines an impairment of glu-
cose uptake and promotes an enhanced activity of hormone-sensitive
lipoprotein lipases, favoring lipid storage dismissal [21]. Therefore, in
MAFLD patients, it is well supported that hepatic fat accumulation
results from an increased efflux of non-esterified or free fatty acids
(FFAs) from adipose tissue to the liver where they are stored into the
hepatocytes as triglycerides (TAG), in order to protect cells from lipo-
toxicity [22]. In addition, hyperinsulinemia exacerbates fat depot for-
mation, by inducing de novo lipogenesis from glucose through sterol
regulatory element-binding protein-1c (SREBP-1c). Reduction in neu-
tral lipid secretion through very low-density lipoproteins (VLDL) and
in B-oxidation due to mitochondrial dysfunction are also involved in
steatosis onset [23]. In turn, fatty liver per se may then precipitate
hepatic IR promoting metabolic disturbances and cardiovascular
damage [24]. Lipid metabolites, such as diacylglycerols (DAG), ceram-
ides and long chain acyl-CoA have also been implicated in IR, affect-
ing insulin signaling [25]. Thus, the composition of lipid species and
the tight regulation of the phospholipid distribution in plasmatic and
organelle membranes is extremely essential to maintain the physio-
logical signal transduction, the adequate response to insulin and the
exchange of metabolites from membranes to intracellular compart-
ments [26, 27]. These notions suggest that alteration in intracellular
lipid profiles may further contribute to fatty liver [28]. Indeed, grow-
ing evidence indicates that changes in polyunsaturated fatty acids
(PUFAs) play a crucial role in MAFLD onset. In particular, it has been
observed that arachidonic acid and eicosapentanoic acid-related spe-
cies decreased in the liver of MAFLD patients, supporting a reduction
of enzymatic activity of desaturases [28].

Modifications in lipid homeostasis play also a role in the cascade
of events that may precipitate fatty liver to NASH. In particular,
arachidonic acid is released from the phospholipids of the mem-
branes by phospholipase A2, that is extremely enhanced in NASH
patients. The utilization of arachidonic acid by cyclooxygenases may
also contribute to its reduction observed in NASH patients and to its
conversion into proinflammatory prostaglandins, thromboxanes, and

leukotrienes [28]. Thus, lipids are intertwined with inflammatory
pathways and cellular injuries in NASH [29].

3. The rs641738 variant is considered a risk factor for MAFLD
onset and progression

MAFLD has a strong inherited component and several genetic risk
factors are recognized to influence its onset and severity, as broadly
revealed by epidemiological, familial and twin studies [30-32].
Indeed, the individual susceptibility to develop MAFLD is striking
diverse among subjects characterized by the same adiposity, support-
ing the notion that the genetic make-up contributes to the pheno-
typic variability of MAFLD. In particular, hepatic fat accumulation
which is epidemiologically related to IR and MetS, has been indicated
as the main driver of the progression to end-stage liver injuries in
genetically predisposed individuals. Thus, the effect of each genetic
variation on the spectrum of MAFLD is closely intertwined with their
ability to induce fat accumulation [33].

In 2015, the first genome-wide association study (GWAS), regard-
ing the inherited determinants of alcoholic cirrhosis in heavy
drinkers, identified the common rs641738 C>T variant as a novel
mediator of the susceptibility to develop hepatic damage [34, 35].
This naturally occurring variation is localized in the Membrane bound
o-acyltransferase domain-containing 7 — Transmembrane channel-like
4 (MBOAT7-TM(4) locus on chromosome 19 [34]. Mancina and Don-
giovanni further corroborated these findings, demonstrating that the
rs641738 variant associates with steatosis severity and with the
entire spectrum of liver damage related to MAFLD, including HCC
[36—38]. Their observations were well supported since they analyzed
the rs641738 distribution among two different independent cohorts,
the Dallas Heart study (DHS) cohort and the Liver biopsy cross-sec-
tional cohort (LBC). The former is a population-study that includes
3854 individuals of whom 2736 underwent to proton magnetic reso-
nance spectroscopy to measure hepatic TAG content, whereas the lat-
ter entails 1149 European subjects, who underwent liver biopsy for
suspected NASH or severe obesity. Patients carrying the T allele dis-
played an enhanced TAG content, higher prevalence of NASH and
fibrosis compared to non-carriers [36]. This data has been even con-
firmed in a cohort of pediatric individuals in which MBOAT7 variation
correlated with high circulating liver enzymes, mainly ALT levels and
C-reactive protein (CRP) concentrations, and with increased total
body fat percentage [39]. These results may introduce the concept
that MBOAT7 might regulate not only hepatic fat accumulation but
also the whole body adiposity [39, 40]. In 2018, Di Sessa and collabo-
rators supported this evidence, revealing that T allele carriers were
characterized by high ALT, more advanced steatosis and fibrosis in
1002 obese pediatric patients. Moreover, they found a combined
effect of the rs641738, PNPLA3 1148M, and TM6SF2 E167K variants on
pediatric MAFLD risk [41]. This combined effect has been previously
investigated in a multicenter biopsy-based study by Krawczyk and
colleagues, revealing that the co-presence of the three main risk var-
iants correlates with more advanced liver injury in adult MAFLD
patients, testified by a severe enhancement of circulating liver
enzymes [42]. Thus, score-based strategies on the evaluation of poly-
genic determinants of MAFLD are considered highly predictive and
they can be exploited to improve diagnostic accuracy and to guide
treatment options [43, 44].

Notably, the rs641738 variant has been identified as a risk factor
for the transition to early fibrosis in viral hepatitis B (HBV) and C
(HCV), possibly representing a common modifier of liver damage [45,
46]. Moreover, it predisposes to HCC development, even in the
absence of cirrhosis in 765 patients with MAFLD and in 1121 non-cir-
rhotic patients affected by HCV or alcoholic liver disease (ALD) [38].
Even more, rare loss-of-function variants in MBOAT7 have been found
to be associated with HCC in NAFLD patients [47]. Nonetheless, it has
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been implicated in primary biliary cholangitis, exerting a positive
effect on transplant free survival [48, 49].

However, the association between the rs641738 variant and liver
injuries remains still controversial and not fully replicated, mainly due
to the different sample size, clinical features and severity of the disease
(i.e. obesity and T2D presence), and ethnicity of the cohorts enrolled in
the studies or to the diverse assessment of hepatic steatosis [50—54].
In particular, the T allele frequency in different ethnicity is highly vari-
able ranging from 0.44 in Europeans, 0.32 in African-Americans and
0.34 in Hispanics and displays even intra-ethnic variability (0.24 in
East Asians compared to 0.53 in those of South Asian ancestry). For
example, the loss of association between the rs641738 variant and
hepatic steatosis assessed by ultrasonography has been observed in
831 Taiwanese children by Lin YC and coworkers [55]. Moreover, for
complex diseases, an interplay between genetics and environmental
factors exists and gene—environment interactions may amplify the
phenotypic effects of the inherited variations [56]. Indeed, the associa-
tions between common variants and MAFLD may be unmasked by the
increased adiposity, thus enhancing the genetic risk [56]. Thus, we
could speculated that in cohort in which the obesity rate is low among
NAFLD patients, the association between the rs641738 variant and
NAFLD did not obtained a statistical significance [54].

Therefore, a large meta-analysis is required to deeply elucidate
the role of this variation on the spectrum of MAFLD. Very recent
results which have been obtained by considering data from 1047,265
participants, of whom 8303 had liver biopsies, across 42 studies, con-
firmed the positive correlation between the rs641738 variant and
liver fat, ALT, histological severity of MAFLD, fibrosis and HCC in indi-
viduals of European descent [57]. In particular, it has been reported
that in T allele carriers, the total risk of NAFLD, advanced fibrosis and
HCC is attested at 20%, 30% and 40% more compared to non-carriers,
respectively. Thus, the effect sizes reported for the MBOAT7
rs641738 variant is smaller compared to the ones of PNPLA3 [148M
and TM6SF2 E167K. Likewise, functional studies are required to
extensively explain the mechanisms through which the presence of
the rs641738 variant may favor hepatic fat accumulation and pro-
gressive liver damage.

Although NAFLD pathogenesis is closely entangled with metabolic
syndrome features among which atherogenic dyslipidemia and car-
diovascular disease risk, it remains unclear whether the rs641738
variant may exert an impact on cardiovascular diseases [58, 59].
Indeed, while it is well described that the PNPLA3 1148M and the
TMG6SF2 E167K variants play a protective role against coronary artery
disease (CAD), the rs641738 T allele seems to have a neutral effect,
but this association remains poorly explored and further studies are
necessary to validate these findings [60]. Moreover, the MBOAT7
rs8736 C>T variant located in the 3’ UTR has been associated with
cardiovascular outcomes and TT carriers showed significantly
reduced levels of PI (18:0;0—20:4;0) reinforcing the concept of a cor-
relation between genetic factors and lipid species composition [61].
The main studies that explored the association between the
rs641738 and liver damage have been listed in Table 1.

4. MBOAT?7 function

MBOAT? gene is the mammalian orthologue of mboa-7, that has
been firstly identified by using a RNA interference—based genetic
screen in Caenorhabditis elegans [62]. mboa-7 deletion mutants
showed a decreased Eicosapentaenoic acid (EPA), that is the predom-
inant PUFA in C elegans, reduced phosphatidylinositol species (PI)
[62] and impaired PI-3-phosphate (PI3P)-related events such as early
endosome morphology and autophagy [63]. Thus, these findings
revealed that mboa-7, is required for incorporation of PUFAs into PL.

MBOATY7 is also referred to as Lysophosphatidyl-inositol acyltrans-
ferase 1 (LPIAT1). MBOAT7 gene codifies for an enzyme, member of
the “Lands’ Cycle” of phospholipid acyl-chain remodeling of the

membranes, through sequential deacylation and reacylation reac-
tions. It catalyzes a desaturation of the second acyl-chain of phospho-
lipids and specifically transfers a PUFA, in form of acyl-CoA to lysoPI
and other lysophospholipids, using as preferential substrate the
arachidonoyl-CoA. Thus, it is a fine-tune regulator of the amount of
free arachidonic acid, that, as mentioned above, is a potent trigger for
hepatic inflammation and fibrosis, due to its conversion in eicosa-
noids [64]. Indeed, in neutrophils MBOAT7 activation has been found
to be related to anti-inflammatory processes, by limiting the avail-
ability of free arachidonic acid for the synthesis of Leukotriene B4,
that is a strong chemoattractant mediator [65].

It has been deeply investigated that Mboat7 participates to brain
development in mice, since arachidonic acid is the most enriched
PUFA in the brain and it is involved in multiple aspects of neuronal
development and function. Mboat7 knock-out (KO) mice show
almost no activity with arachidonoyl-CoA as an acyl donor and show
reduced arachidonic acid contents in PI and PI phosphates (PIP, PIP2
and PI3P). Specifically, arachidonic acid-containing PI/PI phosphates
play an important role in normal cortical lamination during brain
development in mice. Indeed, Mboat7 KO mice die within a month
and show atrophy of the cerebral cortex and hippocampus, disor-
dered cortical lamination and neuronal processes and delayed neuro-
nal migration in the cortex [63,66]. Notably, inactivating variants in
MBOAT7 lead to intellectual disability accompanied by epilepsy and
autistic features in patients [67,68]. In turn, up-regulation of MBOAT7
in intrauterine growth restriction (IUGR) neonates could represent
an adaptive response to an adverse fetal environment [67].

PI are enabled to regulate membrane dynamics and signal trans-
duction pathways, whereas PI phosphates are synthesized by PI kin-
ases and phosphatases and play crucial roles in the regulation of a
wide variety of cellular processes via specific interactions of PIP-bind-
ing proteins [69,70]. Among PI phosphates, PI 3-phosphate (PI3P)
regulates vesicular trafficking pathways, including endocytosis,
endosome-to-Golgi retrograde transport, autophagy and mTOR sig-
naling [71]. Therefore, given its regulatory role in lipid composition
of the membranes, we could speculate that MBOAT?7 function might
also influence signal transduction pathways and the dynamism of
cell membranes, essential for membrane fusion and fission steps dur-
ing endocytosis, exocytosis, cytokinesis and vesicle trafficking.

At a cellular level, the highest expression of MBOAT?7 is found in
circulating monocytes and lymphocytes, which it has been attested
at 7-fold more than that of human hepatocytes, sinusoidal endothe-
lial cells and HSCs. Conversely, its expression in cholangiocytes is
very low [38, 49, 72]. MBOAT7 topological structure has been
recently solved by Caddeo at al, which demonstrated that is a multi-
spanning integral membrane protein with 6 transmembrane
domains and the putative catalytic dyad in the lumen [73]. It is local-
ized specifically in membrane fractions rich in phospholipids, such as
the ER and the mitochondria-associated membranes (MAM), where
arachidonic acid-selective acyl-CoA synthases are enriched [36].
MAM is the membrane bridging ER and mitochondria, which is
involved in the biosynthesis and trafficking of lipids between the two
organelles [74, 75] and in lipid droplets formation [76]. It interacts
with the small subunit of serine palmitoyltransferase a (ssSPTa), that
plays a role in fatty acid remodeling of PI, probably by facilitating
MBOAT7 localization in MAM [77].

Another enzyme of the MBOAT family, MBOAT5 (mammalian
orthologue of mboa-6 [78]), also named Lysophosphatidylcholine acyl-
transferase 3 (LPCAT3), has similar enzymatic activity to MBOAT?7. It is
ubiquitously expressed, especially in liver, testis, kidney, pancreas and
adipose tissue, where it participates in the acyl-chain remodeling of
Phosphatidylcholines (PC), Phosphatidylserine (PS) and Phosphatidyle-
thanolamines (PE) [79]. Expression of LPCAT3 mRNA is controlled by
liver X receptors (LXR) and is induced during adipogenesis [80].
Mboat5 KO mice are neonatally lethal due to an extensive TAG accu-
mulation in enterocytes since TAG are not assembled into lipoproteins.
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List of studies that explored the association between the rs641738 and liver damage.

First author, year, reference

Country, Ancestry Study Type

Sample size, features

Liver disease diagnosis

Associations

Buch et al., 2015 [35]

Mancina and Dongiovanni
etal, 2016 [36]
Luukkonen et al., 2016 [37]

Viitasalo et al., 2016 [39]
Krawczyk et al., 2016 [40]

Thabet et al., 2016 [46]

Donati et al., 2017 [38]

Thabet et al., 2017 [45]

Krawczyk et al., 2017 [42]
Di Sessa et al., 2018 [41]

Krawczyk et al., 2018 [44]
Di Costanzo et al., 2018 [43]

Umano et al., 2018" [87]

Koo et al., 2018 [53]

Sookoian et al., 2018 [51]

Lin et al., 2018 [55]

Basyte-Bacevice et al., 2019
[52]

Xiaetal., 2019 [50]

Freund et al., 2020 [49]
Anstee et al., 2020 [54]

Teo et al., 2020 [57]

Caucasians

Multi-ethnic

Caucasians

Caucasians
Caucasians

Caucasians

Caucasians

Multi-ethnic

Caucasians
Caucasians

Caucasians
Caucasians

Multi-ethnic
Asians
Caucasians
Asians
Caucasians

Multi-ethnic

Caucasians
Caucasians

Multi-ethnic

GWAS

Population-based (first
stage); cases only (second
stage)

Cases only

Population-based
Cases only

Case-control

Case-control

Cases only

Cases only
Cases only

Cases only
Cases-control

Cases only
Case-control
Case-control
Cases only
Case-control

Meta-analysis

Cases only
GWAS

Meta-analysis

Discovery: 712 cases and
1426 controls;
Validation: 1148 cases
and 922 controls

3854 participants from the
DHS (first stage)

1149 cases from LBC (sec-
ond stage)

125 cases

467 children
84 obese individuals sched-
uled for bariatric surgery

Discovery: 931 HCV cases;
270 controls

Validation: 765 HCV cases;

75 HCV-related HCC cases
765 non-cirrhotic MAFLD
cases (HCC, n=132); 1121
non-cirrhotic patients
affected by ALD or HCV
(HCC,n=25)
1101 HBV cases

515 MAFLD cases
1002 obese children

63 MAFLD cases

218 MAFLD cases and 227
controls

860 obese children

416 cases and 109 controls

372 cases and 262 controls

831 obese children

462 cases with alcohol or
HCV-related fibrosis and
550 controls

20 studies, including 5415
cases and 17,896 controls

262 PSC cases

Discovery: 1483 cases and
17,781 controls;
Validation: 559 cases and
945 controls

42 studies, including
1047,265 participants

Liver biopsy, ultrasound
(US), MRI

DHS: liver spectroscopy
(n=2736);
LBC: liver biopsy
Liver biopsy

Not assessed
Liver biopsy and MRI

Liver biopsy

Liver biopsy and US

Liver biopsy

Liver biopsy (n = 320)

US and indirect measure-
ment of liver fibrosis

Liver biopsy

us

MRI (n = 490)
Liver biopsy
Liver biopsy
us

MRI

Mixed

Not assessed
Liver biopsy, US

Liver biopsy (n = 8303), MRI

Alcohol-related cirrhosis

Steatosis, NASH, Fibrosis
stage

Steatosis, NASH, Fibrosis
stage

Plasma ALT levels

Circulating TAG, total cho-
lesterol, LDL, and serum
glucose levels
No evidence of association
with steatosis

Hepatic inflammation and
fibrosis stage

Increased risk of MAFLD-
HCC and alcohol-related
or HCV-related HCC

Hepatic inflammation and
fibrosis stage

Fibrosis stage

Plasma ALT levels, steatosis
and fibrosis

MAFLD risk

MAFLD presence and
severity

Steatosis and glucose metab-
olism (only in Caucasians)

No evidence of association

No evidence of association

No evidence of association

No evidence of association

No evidence of association

Liver transplant free survival
No evidence of association
with MAFLD

Steatosis, MAFLD severity,
fibrosis stage, HCC and
plasma ALT levels

* These associations are referred to the rs626283 polymorphism in the MBOAT7 gene.

Mice with specific deletion of hepatic Mboat5 display a decreased
arachidonic acid-containing PC, PS and PE in the liver and an increased
risk of hepatic steatosis onset, due to altered lipid kinetics within hepa-
tocytes, and inflammation [81, 82]. Conversely, the induction of
Mboat5 ameliorates saturated free fatty acid-induced ER stress, lower-
ing also blood glucose and insulin levels in Lep°®?°® mice [80, 83]. The
acyltransferase activities of both MBOATS5 and MBOATY7 is susceptible
to inhibition by Thimerosal, a thiol-reactive reagent widely used as a
preservative in several biological and drug product [65] (Fig. 1). This
organomercury compound is the only described reagent that exert a
direct effect on MBOAT5 and MBOAT?7.

5. Pathogenic effect of the rs641738 variant and functional
studies

Functional studies aim to decipher the mechanisms through which
inherited risk variants may induce the development of fatty liver and
its progression to more severe forms. In the past years, Sookoian and

coworkers showed that the analysis of the expression of quantitative
trait loci (eQTLs) revealed a correlation between the rs641738 variant
and tissue-specific MBOAT?7 expression in liver and fat [51]. Moreover,
Mancina and Dongiovanni have clearly elucidated that the underlying
mechanisms behind the association between the rs641738 variant and
liver damage is related to the hampered hepatic gene and protein
expression of MBOAT7 and not of TMC4, determining changes in PI
species, as further confirmed by Luukkonen et al. [36, 37]. Consistently
with an impaired hepatic MBOAT7 enzymatic activity, patients carry-
ing the T risk allele display changes in plasma and hepatic PI species,
decreasing specifically PI enriched in omega-3 PUFA and arachidonic
acid [36, 37]. In particular, these patients are characterized by lower
concentrations of arachidonoyl-Pl/total and in turn, by higher levels of
oleyl-Pl/total PI linoleoyl-Pl/total PI ratios (PI containing saturated and
monounsaturated fatty acid chains) [36, 37].

The rs641738 T allele seems to be associated with reduced
MBOAT?7 expression in human hepatocytes and in immune cells, but
not in HSCs. Moreover, the polarization of monocytes to both M1 and
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MBOAT7

Lyso-PS Adids
Lyso-PE
(Brachi cor) ((Arachidonic Acid) Lyso-PC
igase

Fig. 1. Phosphatidylcholines (PC), Phosphatidylserine (PS), Phosphatidylethanol-
amines (PE) and Phosphatidylinositols (PI) are the main components of the mem-
branes. Phospholipase A2 (cPLA2) releases free arachidonic acid from the sn-2 position
of phospholipids, generating the corresponding lysophospholipids and free arachi-
donic acid. The free arachidonic acid produced may become the precursor of proin-
flammatory mediators (Eicosanoids) or it may be returned to the phospholipid pool
through the activation of an acyl-CoA ligase and either MBOAT?7 (that uses lyso-PI) or
MBOATS5 (that uses lyso-PC, lyso-PS, and lyso-PE). Thimerosal, an MBOAT unspecific
inhibitor, increases the production of Eicosanoids (Prostaglandins and Leukotrienes).
Modified by Gijon et al. [65].

M2 macrophages is related to MBOAT7 down-regulation, supporting
its role in triggering inflammation [72, 84].

The observed reduction of both mRNA and protein synthesis in T
allele carriers seems to be due to the linkage disequilibrium between
the rs641738 variant and those in the 3'UTR of MBOATY? (eg, rs8736
C>T, R? > 0.95 in the CEU population from the 1000 genomes project),
which may influence mRNA stability/translation [51]. In severely obese
patients, indeed, it has been demonstrated that the rs641738 variation
is in strong linkage disequilibrium with the rs8736 polymorphism
(R? = 0.98), that show a more close association with MAFLD due to a
stronger MBOAT7 impairment [38]. However, these observations have
been not replicated by Sookoian and colleagues, which demonstrated
that MBOAT7 is down-regulated in MAFLD patients even indepen-
dently of the presence of the rs641738 polymorphism [51].

rs641738 C allele

Normal
Liver

iArachIdonoyl-CoA 2,7y MBOATY :‘5'.3 rjrs\“"BOAD £ ol
7 anA e Rt
Lysost e }44%%‘ B Lo Freo
'Q ?’ h \ 2TAG ArncA):it:’omc
P 3
MBOAT? high

Arachidonoyl-CoA

This evidence have been further corroborated by an our very recent
paper [72], in which we pointed out that hepatic MBOAT7 down-regu-
lation is a maladaptive response to inherited or diet-induced hyperin-
sulinemia and it causes intracellular fat accumulation in clinical
samples, in in vivo models of MAFLD and in genetically edited HepG2
cells (MBOAT7 /). Indeed, in overweight adults, MBOAT7 is hampered
in presence of hyperinsulinemia and severe liver damage, indepen-
dently of the genetic background. This data has been confirmed in
experimental models of MAFLD, in which the reduction of MBOAT7
expression is greater during obesity and hyperinsulinemia. Specifically,
MBOAT7 is physiologically down-regulated during fasting-feeding
cycles in liver, adipose tissue and in intestine and during hyperinsuli-
nemia in vivo, in dependence of insulin signaling activation [85]. Con-
versely, MBOAT5 was up-regulated during hyperinsulinemia,
suggesting that MBOAT?7, but not MBOAT5, down-regulation may be
involved in hepatic fat accumulation in metabolic disorders [72]. A
possible link between MBOAT7 and IR has been provided even by
Helsley and colleagues [86], who confirmed a dramatic MBOAT7 sup-
pression during obesity and IR and who correlated its adipose tissue
expression with indices of insulin sensitivity. In keeping with these
findings, Umano and coworkers found an association between lower
degree of whole-body insulin sensitivity and MBOAT7 in obese chil-
dren [87]. Furthermore, it has been demonstrated in Mendelian ran-
domization studies that the ability of a genetic variant to induce IR is
attributable to its impact on the severity of liver damage [33, 88].

In addition, we revealed that MBOAT?7 is causally involved in the
pathogenesis of fatty liver. Indeed, acute silencing of hepatic MBOAT7
to levels similar to those observed in carriers of the rs641738 variant
induces hepatic fat accumulation, rapidly leading to steatosis devel-
opment. Moreover, hepatocytes acquire a cell-autonomous property
to accumulate giant lipid droplets when MBOAT7 expression is
impaired. According to this notion, we highlighted that MBOAT7 /-
hepatocytes accumulate saturated phospholipids, mainly PI, which
may be delivered to saturated and mono-unsaturated DAG and TAG
synthesis, exacerbating fat deposition (Fig. 2). In line with this data,
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Fig. 2. During fasting or in rs641738 C allele carriers (left panel), MBOAT?7 is highly expressed and it localizes into the membranes, where it conjugates arachidonoyl-CoA to the sec-
ond acyl-chain of Lyso-PI, thus guaranteeing their physiological fluidity and the dynamism, that allows the exchange of the metabolites from the membranes to intracellular com-
partments. During hyperinsulinemia or in carriers of the T risk allele (right panel), MBOAT7 is reduced, favoring the increase of saturated PI, which are accumulated and delivered
to TAG synthesis. This process requires the up-regulation of FATP1 and associates in vitro with enhanced de novo lipogenesis. Modified from Meroni et al., [72].
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Fig. 3. Unhealthy dietary habits, excessive caloric intake, high fructose consumption and poor physical exercise are widely recognized as risk factors of IR development. During diet-
induced or pathological hyperinsulinemia, MBOAT7 is hampered in intestine, adipose tissue and in liver. In adipose tissue, peripheral IR, induces MBOAT7 down-regulation and
lipolysis, favoring an exaggerated free fatty acid (FFA) release into the bloodstream. As a consequence, FFAs uptake increases in hepatocytes, even due to the up-regulation of the
fatty acid transporter FATP1. Then, FFAs are stored in intracellular lipid droplets as triglycerides (TAG). Moreover, high insulin concentrations hamper hepatic gene and protein
expression of MBOAT7, determining changes in PI composition pattern, favoring in turn, TAG synthesis and de novo lipogenesis. These events may precipitate hepatic fat deposition
and fatty liver onset. In turn, MBOAT7 down-regulation per se may be causally implicated in fatty liver and in IR exasperation. The impairment in MBOAT?7 function may also facili-
tate the switch from simple steatosis to steatohepatitis and fibrosis, affecting lipid composition of the membranes of inflammatory cells and altering lipid mediator profiles. Thus,
the increase amount of free arachidonic acid and its conversion in pro-inflammatory mediators triggers immune cell activation. Cytokine release and hyperinsulinemia may then

stimulate HSCs to produce ECM, perpetuating fibrogenic processes.

MBOAT7~/~ cells display an induction of lipogenic program and a
reduced ability to respond to insulin stimulation through Akt signal-
ling, maybe due to alterations in lipid composition of the membranes.
Helsley et al., supported this hypothesis referring that a reduction of
MBOAT?7 expression exacerbates hepatic IR in high fat diet (HFD)-fed
mice and promotes a severe hyperinsulinemia in the fasted state
[86]. It has been demonstrated that enhanced saturation of phospho-
lipids may favor oxidative stress and impair signal transductions
[89]. For instance, the exposure of 3T3-L1 adipocytes to a challenge
of saturated fatty acids may affect insulin sensitivity by hampering
membrane lateral diffusion [90]. The reduced membrane fluidity
influences also the effectiveness of insulin-independent glucose
transporters (GLUTs), impairing glucose uptake [89].

Notwithstanding, the process of fat deposition even requires the
contribution of another player namely fatty acid transporter (FATP1)
and the consequent induction of FFA uptake. Indeed, as MBOAT?7 is
also expressed in adipose tissue, we can hypothesize that MBOAT7
down-regulation may promote lipolysis and FFAs release into the cir-
culation, as we revealed in MBOAT7 acutely silenced mice and in T
allele carriers [72]. According to this notion, FATP1 genetic deletion
rescued the intracellular fat accumulation and the increased lipogen-
esis observed in MBOAT7~/~ hepatocytes. In addition, FATP1 expres-
sion which is inversely related to that of MBOAT?7, is independently
associated with the presence of T2D, lipogenesis and inflammation in
obese patients with MAFLD [72].

The causative role of MBOAT7 in fatty liver onset has been inde-
pendently confirmed even by Helsley [86], who elegantly evidenced
that Mboat7 loss, but not Tmc4, is sufficient to promote the progres-
sion of NAFLD in the setting of HFD, and then by Tanaka and collabo-
rators, who exploited hepatocyte-specific MBOAT7 KO mice and
MBOAT7-depleted human hepatic cells [91]. These authors revealed
that MBOAT7 KO mice fed HFD spontaneously develop steatosis, and
hepatic fibrosis and that MBOAT?7 deficiency favors the formation of
lipid droplets in cultured hepatic cells and in liver spheroids as a con-
sequence of higher TAG synthesis fueled by a non-canonical pathway,
that directly entails the shunting of PI to TAG synthesis [91]. Notwith-
standing, MBOAT?7 depletion in 3D-spheroids composed by hepato-
cytes and HSCs, induced cytokines release, fibrogenic markers
expression and collagen deposition [91], due to the accumulation of
the MBOAT?7 substrate LPI lipids [86]. Indeed, circulating saturated
LPI were found to be significantly elevated in patients affected by
advanced fibrosis compared to healthy individuals. In turn, LPI
administration may promote hepatic inflammation and fibrosis in
MBOAT7 deficient mice, but not in their wild-type littermates [86].
Notably, this data has been further corroborated by Fondevila et al.,
who revealed that the increased circulating LPI levels in obese NASH
patients, are related to the hepatic over-expression of the G protein-
coupled receptor 55 (GPR55), a putative cannabinoid receptor [92].
Moreover, LPI administration in mice and in cultured cells induced
lipogenic genes and HSCs activation, in a GPR55-dependent manner.
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Indeed, GPR55 deficiency ameliorated hepatic injuries in mice fed HF,
methionine choline deficient (MCD) diets or injected with carbon tet-
rachloride (CCly). Taken together, these observations point out that
the restoration of MBOAT?7 activity or a reduction of its effectors may
constitute possible therapeutic strategy to improve liver damage in
NAFLD patients [93-95].

6. Conclusion

Several lines of evidence indicate that MBOAT7 may represent a
modifier of liver damage in both genetically or diet-induced MAFLD.
Indeed, it has been made clear that the possible mechanisms behind
the biological association between the rs641738 variant and liver
damage is due to the hampered hepatic gene and protein expression
of MBOAT7 which induces changes in PI composition pattern, favor-
ing in turn TAG synthesis. However, irrespectively of the genetic
background, hyperinsulinemia, a typical feature of metabolic syn-
drome and of post-prandial state, contributes to MBOAT7
impairment, favoring hepatic fat accumulation. These novel observa-
tions may introduce the new concept that MBOAT7 dysfunction may
participate to the cascade of events that may precipitate chronic
hyperinsulinemia to steatosis development (Fig. 3). Moreover,
MBOAT?7 impairment may facilitate the progression towards steato-
hepatitis and fibrosis, profoundly affecting lipid composition of the
membranes and altering lipid mediator profiles. Therefore, this,
surely, constitutes a new example of gene-environment interaction,
which should be deeply explored in future studies.

7. Outstanding questions

Nowadays, TAG accumulated in lipid droplets are not considered
as just ‘innocent bystander’, but real culprits of the cellular injuries
[96]. Indeed, emerging evidence pinpoints the role of lipid droplets in
the multiple processes that leading to steatohepatitis [96, 97]. They
are enormously dynamic, modifying their location, size, lipid and
protein composition in response to environmental stimuli. Thus, they
are engaged not only in energy expenditure but also in signaling
pathways, acting as hubs that integrate metabolic and inflammatory
processes [97]. The deep understanding of the biological implication
of changes in lipid composition may be useful to narrow the gap in
the knowledge of MAFLD pathogenesis.

We are aware that in the complex architecture of MAFLD, several
other contributors may participate to fatty liver onset. We are also
conscious that further studies are required to better explain how IR
may lead to liver damage. Thus, it should be useful to better address
the impact of the rs641738 variation on hepatic disorders and the
mechanisms entailing MBOAT7 down-regulation in IR-induced liver
injuries. In the future, researches aimed to identify therapeutic
approaches that influence MBOAT?7 activity might represent a novel
targeted strategy in the management of patients with MAFLD and in
particular in those with diabetes. Furthermore, the effects of
1s641738 variant and MBOAT?7 alterations on MetS components, cir-
culating lipids and cardiovascular risk remain uncharted.

8. Search strategy and selection criteria

Data for this Review were identified by searches of MEDLINE and
PubMed, and references from relevant articles using the search terms
“LPIAT1”, “MBOAT7”, “MAFLD”, “NAFLD”,“NASH” and “rs641738".
Reports from meetings were not included. Only articles published in
English between 2000 and 2020 were included.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgement/Funding statement

The study was supported by the Ricerca Corrente Fondazione
IRCCS Ca Granda and Ricerca Finalizzata Ministero della Salute RF-
2013-02358319. The funders had no role in design, data collection,
data analysis, interpretation or writing of the paper.

References

[1] Eslam M, Sanyal AJ, George ]. MAfld: a consensus-driven proposed nomenclature
for metabolic associated fatty liver disease. Gastroenterology 2020;158(7):1999-
2014 el.

[2] Eslam M, et al. A new definition for metabolic dysfunction-associated fatty
liver disease: an international expert consensus statement. ] Hepatol 2020;73
(1):202-9.

[3] Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-
analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64
(1):73-84.

[4] Wong R], et al. Nonalcoholic steatohepatitis is the second leading etiology of liver
disease among adults awaiting liver transplantation in the United States. Gastro-
enterology 2015;148(3):547-55.

[5] Marchesini G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic
syndrome. Diabetes 2001;50(8):1844-50.

[6] Byrne CD, Targher G. NAFLD: a multisystem disease. ] Hepatol 2015;62(1 Suppl):
S47-64.

[7] Angulo P, et al. Liver fibrosis, but no other histologic features, is associated with
long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroen-
terology 2015;149(2):389-97 e10.

[8] Dongiovanni P, et al. The role of insulin resistance in nonalcoholic steatohepatitis
and liver disease development—a potential therapeutic target? Expert Rev Gas-
troenterol Hepatol 2016;10(2):229-42.

[9] Meroni, M., et al., Nutrition and genetics in NAFLD: the perfect binomium.
2020;21(8).

[10] Dongiovanni P, Valenti L. Genetics of nonalcoholic fatty liver disease. Metab Clin
Exp 2016;65(8):1026-37.

[11] Dongiovanni, P. and M. Meroni, miRNA signature in NAFLD: a turning point for a
non-invasive diagnosis. 2018.19(12).

[12] Dongiovanni P, Valenti L. A nutrigenomic approach to non-alcoholic fatty liver
disease. Int ] Mol Sci 2017;18(7):1534.

[13] Estep JM, et al. Expression of cytokine signaling genes in morbidly obese patients
with non-alcoholic steatohepatitis and hepatic fibrosis. Obes Surg 2009;19
(5):617-24.

[14] Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty
liver disease. Semin Liver Dis 2008;28(4):360-9.

[15] Miele L, et al. Hepatic mitochondrial beta-oxidation in patients with nonalcoholic
steatohepatitis assessed by 13C-octanoate breath test. Am ] Gastroenterol
2003;98(10):2335-6.

[16] Charlton M, et al. Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepa-
tology 2002;35(4):898-904.

[17] Cefalu WT. Insulin resistance: cellular and clinical concepts. Exp Biol Med (May-
wood) 2001;226(1):13-26.

[18] Thomas DD, Corkey BE. Hyperinsulinemia: an early indicator of metabolic dys-
function. ] Endocr Soc 2019;3(9):1727-47.

[19] Grancini V, et al. Contribution of beta-cell dysfunction and insulin resistance to
cirrhosis-associated diabetes: role of severity of liver disease. ] Hepatol 2015;63
(6):1484-90.

[20] Matsumoto M, et al. Impaired regulation of hepatic glucose production in mice lack-
ing the forkhead transcription factor Foxo1 in liver. Cell Metab 2007;6(3):208-16.

[21] Longo M, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated
Metabolic Complications. Int ] Mol Sci 2019;20(9).

[22] Bugianesi E, et al. Insulin resistance in non-diabetic patients with non-alcoholic
fatty liver disease: sites and mechanisms. Diabetologia 2005;48(4):634-42.

[23] Fabbrini E, et al. Alterations in adipose tissue and hepatic lipid kinetics in obese
men and women with nonalcoholic fatty liver disease. Gastroenterology
2008;134(2):424-31.

[24] Korenblat KM, et al. Liver, muscle, and adipose tissue insulin action is directly
related to intrahepatic triglyceride content in obese subjects. Gastroenterology
2008;134(5):1369-75.

[25] Ozcan U, et al. Endoplasmic reticulum stress links obesity, insulin action, and type
2 diabetes. Science 2004;306(5695):457-61.

[26] Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol
Cell Biol 2019;20(3):137-55.

[27] Casares D, Escriba PV. Membrane lipid composition: effect on membrane and
organelle structure. Funct Compartmentalization Ther Avenues 2019;20(9).

[28] Puri P, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology
2007;46(4):1081-90.

[29] Di Marzo V. Arachidonic acid and eicosanoids as targets and effectors in second
messenger interactions. Prostaglandins Leukot Essent Fatty Acids 1995;53
(4):239-54.

[30] Sookoian S, Pirola CJ. Genetics of Nonalcoholic Fatty Liver Disease: From Patho-
genesis to Therapeutics. Semin Liver Dis 2019;39(2):124-40.


http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0003
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0003
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0003
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0012
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0012
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0015
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0015
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0016a
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0016a
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0016
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0016
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0016
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0017
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0017
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0019
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0019
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0020
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0020
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0020
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0021
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0021
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0021
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0023a
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0023a
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0026

8 M. Meroni et al. / EBioMedicine 57 (2020) 102866

[31] Dongiovanni P, Anstee QM, Valenti L. Genetic predisposition in NAFLD and NASH:
impact on severity of liver disease and response to treatment. Curr Pharm Des
2013;19(29):5219-38.

[32] Dongiovanni P, Romeo S, Valenti L. Genetic Factors in the Pathogenesis of Nonal-
coholic Fatty Liver and Steatohepatitis. Biomed Res Int 2015;2015:460190.

[33] Dongiovanni, P., et al., Causal relationship of hepatic fat with liver damage and
insulin resistance in nonalcoholic fatty liver. 2018.283(4): p. 356—370.

[34] Stickel F, et al. The genetics of alcohol dependence and alcohol-related liver dis-
ease. ] Hepatol 2017;66(1):195-211.

[35] Buch, S., F. Stickel, and E. Trepo, A genome-wide association study confirms
PNPLA3 and identifies TM6SF2 and MBOAT? as risk loci for alcohol-related cirrho-
sis. 2015.47(12): p. 1443-8.

[36] Mancina RM, et al. The MBOAT7-TMC4 variant rs641738 increases risk of nonal-
coholic fatty liver disease in individuals of European descent. Gastroenterology
2016;150(5):1219-30 e6.

[37] Luukkonen PK, et al. The MBOAT?7 variant rs641738 alters hepatic phosphatidyli-
nositols and increases severity of non-alcoholic fatty liver disease in humans. J
Hepatol 2016;65(6):1263-5.

[38] Donati B, et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-
cirrhotic individuals. Sci Rep 2017;7(1):4492.

[39] Viitasalo A, et al. Association of MBOAT7 gene variant with plasma ALT levels in
children: the PANIC study. Pediatr Res 2016;80(5):651-5.

[40] Krawczyk M, et al. PNPLA3 p.[148M variant is associated with greater reduction of
liver fat content after bariatric surgery. Surg Obes Relat Dis 2016;12(10):1838-46.

[41] Di Sessa A, et al. The membrane-bound O-Acyltransferase7 rs641738 variant in pedi-
atric nonalcoholic fatty liver disease. ] Pediatr Gastroenterol Nutr 2018;67(1):69-74.

[42] Krawczyk M, et al. Combined effects of the PNPLA3 rs738409, TMG6SF2
1s58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter
biopsy-based study. ] Lipid Res 2017;58(1):247-55.

[43] Di Costanzo, A, et al., Evaluation of polygenic determinants of non-alcoholic fatty liver
disease (NAFLD) by a candidate genes resequencing strategy. 2018.8(1): p. 3702.

[44] Krawczyk M, et al. Could inherited predisposition drive non-obese fatty liver disease?
Results from German tertiary referral centers. ] Hum Genet 2018;63(5):621-6.

[45] Thabet K, et al. The membrane-bound O-acyltransferase domain-containing 7
variant rs641738 increases inflammation and fibrosis in chronic hepatitis B. Hep-
atology 2017;65(6):1840-50.

[46] Thabet K, et al. MBOAT?7 rs641738 increases risk of liver inflammation and transi-
tion to fibrosis in chronic hepatitis C. Nat Commun 2016;7:12757.

[47] Pelusi, S. and G. Baselli, Rare pathogenic variants predispose to hepatocellular car-
cinoma in nonalcoholic fatty liver disease. 2019.9(1): p. 3682.

[48] Rahal HK, Tabibian JH. The MBOAT7 rs641738 variant in primary sclerosing
cholangitis: A novel biomarker for prognostication. Clin Res Hepatol Gastro-
enterol 2020.

[49] Freund C, et al. The MBOAT7 rs641738 variant is associated with an improved
outcome in primary sclerosing cholangitis. Clin Res Hepatol Gastroenterol 2020.

[50] XiaY, et al. Meta-analysis of the association between MBOAT?7 rs641738, TM6SF2
rs58542926 and nonalcoholic fatty liver disease susceptibility. Clin Res Hepatol
Gastroenterol 2019;43(5):533-41.

[51] Sookoian S, et al. Lack of evidence supporting a role of TMC4-rs641738 missense
variant-MBOAT?7- intergenic downstream variant-in the Susceptibility to Nonal-
coholic Fatty Liver Disease. Sci Rep 2018;8(1):5097.

[52] Basyte-Bacevice, V., et al., TM6SF2 and MBOAT7 Gene Variants in Liver Fibrosis
and Cirrhosis. 2019.20(6).

[53] Koo, B.K,, S.K. Joo, and D. Kim, Additive effects of PNPLA3 and TM6SF2 on the his-
tological severity of non-alcoholic fatty liver disease. 2018.33(6): p. 1277—1285.

[54] Anstee QM, et al. Genome-wide association study of non-alcoholic fatty liver and
steatohepatitis in a histologically-characterised cohort. ] Hepatol 2020.

[55] Lin, Y.C,, et al., Genetic determinants of hepatic steatosis and serum cytokeratin-
18 fragment levels in Taiwanese children. 2018.38(7): p. 1300—1307.

[56] Stender, S. and ]. Kozlitina, Adiposity amplifies the genetic risk of fatty liver dis-
ease conferred by multiple loci. 2017.49(6): p. 842—-847.

[57] TeoK, et al. rs641738C&gt;T near MBOATY7 is positively associated with liver fat, ALT,
and histological severity of NAFLD: a meta-analysis. medRxiv 2020:19013623.

[58] Sookoian, S. and CJ. Pirola, Review article: shared disease mechanisms between
non-alcoholic fatty liver disease and metabolic syndrome - translating knowledge
from systems biology to the bedside. 2019.49(5): p. 516—527.

[59] Eslam, M. and ]. George, Genetic contributions to NAFLD: leveraging shared
genetics to uncover systems biology. 2020.17(1): p. 40—52.

[60] Simons N, et al. PNPLA3, TM6SF2, and MBOAT7 genotypes and coronary artery
disease. Gastroenterology 2017;152(4):912-3.

[61] Tabassum, R, ].T. Rimo, and P. Ripatti, Genetic architecture of human plasma lipi-
dome and its link to cardiovascular disease. 2019.10(1): p. 4329.

[62] Lee HC, et al. Caenorhabditis elegans mboa-7, a member of the MBOAT family, is
required for selective incorporation of polyunsaturated fatty acids into phospha-
tidylinositol. Mol Biol Cell 2008;19(3):1174-84.

[63] Lee HC, et al. LPIAT1 regulates arachidonic acid content in phosphatidylinositol and is
required for cortical lamination in mice. Mol Biol Cell 2012;23(24):4689-700.

[64] Zarini S, et al. Lysophospholipid acyltransferases and eicosanoid biosynthesis in
zebrafish myeloid cells. Prostaglandins Other Lipid Mediat 2014;113-115:52-61.

[65] Gijon MA, et al. Lysophospholipid acyltransferases and arachidonate recycling in
human neutrophils. ] Biol Chem 2008;283(44):30235-45.

[66] Vogel P, et al. Congenital hydrocephalus in genetically engineered mice. Vet
Pathol 2012;49(1):166-81.

[67] Ruis-Gonzalez MD, et al. Alterations of protein expression in serum of infants
with intrauterine growth restriction and different gestational ages. ] Proteomics
2015;119:169-82.

[68] Johansen A, et al. Mutations in MBOAT7, encoding lysophosphatidylinositol acyl-
transferase I, lead to intellectual disability accompanied by epilepsy and autistic
features. Am ] Hum Genet 2016;99(4):912-6.

[69] Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane
dynamics. Nature 2006;443(7112):651-7.

[70] Sasaki T, et al. Mammalian phosphoinositide kinases and phosphatases. Prog Lipid
Res 2009;48(6):307-43.

[71] Backer JM. The regulation and function of Class IIl PI3Ks: novel roles for Vps34.
Biochem J 2008;410(1):1-17.

[72] Meroni M, et al. Mboat7 down-regulation by hyper-insulinemia induces fat accu-
mulation in hepatocytes. EBioMedicine 2020;52:102658.

[73] Caddeo A, et al. MBOAT?7 is anchored to endomembranes by six transmembrane
domains. ] Struct Biol 2019;206(3):349-60.

[74] Hayashi-Nishino M, et al. A subdomain of the endoplasmic reticulum forms a cra-
dle for autophagosome formation. Nat Cell Biol 2009;11(12):1433-7.

[75] de Brito OM, Scorrano L. An intimate liaison: spatial organization of the endoplas-
mic reticulum-mitochondria relationship. Embo J 2010;29(16):2715-23.

[76] Horl G, et al. Sequential synthesis and methylation of phosphatidylethanolamine
promote lipid droplet biosynthesis and stability in tissue culture and in vivo. ] Biol
Chem 2011;286(19):17338-50.

[77] Hirata Y, et al. Identification of small subunit of serine palmitoyltransferase a as a
lysophosphatidylinositol acyltransferase 1-interacting protein. Genes Cells
2013;18(5):397-409.

[78] Matsuda S, et al. Member of the membrane-bound O-acyltransferase (MBOAT)
family encodes a lysophospholipid acyltransferase with broad substrate specific-
ity. Genes Cells 2008;13(8):879-88.

[79] Hashidate-Yoshida T, et al. Fatty acid remodeling by LPCAT3 enriches arachidonate in
phospholipid membranes and regulates triglyceride transport. Elife 2015;4.

[80] Demeure O, et al. Regulation of LPCAT3 by LXR. Gene 2011;470(1-2):7-11.

[81] Kabir I, et al. Small intestine but not liver lysophosphatidylcholine acyltransferase
3 (Lpcat3) deficiency has a dominant effect on plasma lipid metabolism. ] Biol
Chem 2016;291(14):7651-60.

[82] Rong X, et al. Lpcat3-dependent production of arachidonoyl phospholipids is a
key determinant of triglyceride secretion. Elife 2015;4.

[83] Cash ]G, Hui DY. Liver-specific overexpression of LPCAT3 reduces postprandial
hyperglycemia and improves lipoprotein metabolic profile in mice. Nutr Diabetes
2016;6:206.

[84] Takemasu S, et al. Lysophosphatidylinositol-acyltrasferase-1 (LPIAT1) is involved
in cytosolic Ca(2+) oscillations in macrophages. Genes Cells 2019.

[85] Pajvani UB, Accili D. The new biology of diabetes. Diabetologia 2015;58
(11):2459-68.

[86] Helsley, R.N., et al., Obesity-linked suppression of membrane-bound O-acyltrans-
ferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. 2019.8.

[87] Umano GR, et al. The rs626283 variant in the MBOAT7 gene is associated with
insulin resistance and fatty liver in caucasian obese youth. Am ] Gastroenterol
2018;113(3):376-83.

[88] Parisinos CA, et al. Genome-wide and Mendelian randomisation studies of liver
MRI yield insights into the pathogenesis of steatohepatitis. ] Hepatol 2020.

[89] Weijers RN. Lipid composition of cell membranes and its relevance in type 2 dia-
betes mellitus. Curr Diabetes Rev 2012;8(5):390-400.

[90] Grunfeld C, Baird KL, Kahn CR. Maintenance of 3T3-L1 cells in culture media con-
taining saturated fatty acids decreases insulin binding and insulin action. Bio-
chem Biophys Res Commun 1981;103(1):219-26.

[91] Tanaka, Y., et al., LPIAT1/MBOAT7 depletion increases triglyceride synthesis
fueled by high phosphatidylinositol turnover. 2020.

[92] Fondevila, M.F,, et al.,, The L-a-lysophosphatidylinositol/GPR55 system induces
the development of non-alcoholic steatosis and steatohepatitis. 2020.

[93] Romeo S, Sanyal A, Valenti L. Leveraging human genetics to identify potential new
treatments for fatty liver disease. Cell Metab 2020;31(1):35-45.

[94] Sookoian, S., CJ. Pirola, and L. Valenti, Genetic pathways in nonalcoholic fatty liver
disease: Insights from systems biology. 2020.

[95] Eslam M, George J. Genetic Insights for Drug Development in NAFLD. Trends Phar-
macol Sci 2019;40(7):506-16.

[96] Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalco-
holic steatohepatitis: the central role of nontriglyceride fatty acid metabolites.
Hepatology 2010;52(2):774-88.

[97] Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators.
Biochimie 2020;169:69-87.


http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0035
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0035
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0037
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0037
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0039
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0039
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0040
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0040
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0040
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0041
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0041
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0043
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0043
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0043
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0044
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0044
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0045
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0045
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0046
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0046
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0047
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0047
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0047
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0048
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0048
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0049
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0049
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0050
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0050
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0051
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0051
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0052
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0052
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0052
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0053
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0053
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0053
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0054
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0054
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0055
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0055
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0056
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0056
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0057
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0057
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0058
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0058
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0059
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0059
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0060
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0060
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0061
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0061
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0061
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0062
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0062
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0062
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0063
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0063
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0063
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0064
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0064
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0065
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0066
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0066
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0066
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0067
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0067
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0068
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0068
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0068
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0069
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0069
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0070
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0070
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0071
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0071
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0071
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0072
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0072
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0073
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0073
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0074
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0074
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0074
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0075
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0075
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0076
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0076
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0077
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0077
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0077
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0078
http://refhub.elsevier.com/S2352-3964(20)30241-3/sbref0078

	MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD
	1. Introduction
	2. Insulin resistance and MAFLD pathogenesis
	3. The rs641738 variant is considered a risk factor for MAFLD onset and progression
	4. MBOAT7 function
	5. Pathogenic effect of the rs641738 variant and functional studies
	6. Conclusion
	7. Outstanding questions
	8. Search strategy and selection criteria
	Declaration of Competing Interest
	Acknowledgement/Funding statement
	References


