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Prediabetes is a condition affecting more than 35% of the population. In some forms, excessive carbohydrate intake (primarily
refined sugar) plays a prominent role. Prediabetes is a symptomless, mostly unrecognized disease which increases
cardiovascular risk. In our work, we examined the effect of a fructose-enriched diet on cardiac function and lipidome as
well as proteome of cardiac muscle. Male Wistar rats were divided into two groups. The control group received a normal
diet while the fructose-fed group received 60% fructose-supplemented chow for 24 weeks. Fasting blood glucose
measurement and oral glucose tolerance test (OGTT) showed slightly but significantly elevated values due to fructose
feeding indicating development of a prediabetic condition. Both echocardiography and isolated working heart perfusion
performed at the end of the feeding protocol demonstrated diastolic cardiac dysfunction in the fructose-fed group. Mass
spectrometry-based, high-performance lipidomic and proteomic analyses were executed from cardiac tissue. The lipidomic
analysis revealed complex rearrangement of the whole lipidome with special emphasis on defects in cardiolipin remodeling.
The proteomic analysis showed significant changes in 75 cardiac proteins due to fructose feeding including mitochondria-,
apoptosis-, and oxidative stress-related proteins. Nevertheless, just very weak or no signs of apoptosis induction and
oxidative stress were detected in the hearts of fructose-fed rats. Our results suggest that fructose feeding induces marked
alterations in the cardiac lipidome, especially in cardiolipin remodeling, which leads to mitochondrial dysfunction and
impaired cardiac function. However, at the same time, several adaptive responses are induced at the proteome level in
order to maintain a homeostatic balance. These findings demonstrate that even very early stages of prediabetes can impair
cardiac function and can result in significant changes in the lipidome and proteome of the heart prior to the development
of excessive oxidative stress and cell damage.
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1. Introduction

Diabetes mellitus is a heterogeneous chronic metabolic disor-
der characterized by hyperglycemia [1]. The number of peo-
ple suffering from diabetes increased from 108 million in
1980 to 422 million by 2014, and global prevalence almost
doubled since 1980, from 4.7% to 8.5% [2]. According to
the International Diabetes Federation, the number of people
with diabetes may rise to 629 million by 2045 [3]. Prediabe-
tes—in which glucose levels do not meet the criteria for dia-
betes but are too high to be considered normal—usually
precedes diabetes mellitus and may remain symptomless
for several years [4]. Prediabetes affects more than 35% of
the population, and it is known that even nondiabetic levels
of hyperglycemia and impaired glucose tolerance may be
associated with an elevated risk of cardiovascular disease
[5]. It has been recently shown that a mild diastolic dysfunc-
tion occurs even in prediabetic rats [6].

Type 2 diabetes is associated with myocardial lipotoxicity
[7], which can cause impaired mitochondrial function [8].
Impaired mitochondrial function enhances oxidative stress,
activates apoptosis, and thus contributes to cardiac dysfunc-
tion [7, 9, 10]. Although the role of lipotoxicity, oxidative
stress, and apoptosis in diabetes has been well studied, the
role of these mechanisms in prediabetes has not yet been well
described. Saccharose and high-fructose corn syrup (isoglu-
cose) are often used as sweeteners in the food and drink
industry, and the consumption of these fructose-rich foods
or beverages has an adverse effect on both animals [11] and
humans [12]. A high-fructose diet is often used as a model
of prediabetes or impaired glucose tolerance. After absorp-
tion, fructose is rapidly and uncontrollably absorbed in the
liver, where its metabolism increases de novo lipogenesis
(DNL). Induction of DNL has the capacity to alter the circu-
lating nonesterified fatty acid (FA) profile, which, in turn,
might affect cardiac lipid composition [13].

Proper cardiac lipid composition is strongly correlated
with cardiac function and largely relies on proper cardioli-
pin (CL) content and species profile [14]. CL is the hall-
mark phospholipid (PL) of mitochondria that plays a role
in many mitochondrial processes, including respiration
and energy conversion. The heart is full of mitochondria,
and CL accounts for about 10-15mol% of all membrane
lipids. Changes in the CL pool due to either oxidation or
pathological remodeling cause mitochondrial dysfunctions
and trigger retrograde signaling pathways that are associ-
ated with a large number of cardiac diseases including dia-
betes [15]. It is widely accepted that the symmetric tetra-
linoleoyl (18:2) CL species, which constitutes up to 80%
of mammalian cardiac CL, is required for mitochondria to
work optimally in metabolically active tissues [16]. After
its initial biosynthesis, premature CL undergoes intensive
remodeling processes to produce maturated CL (Supple-
mentary Lipid Figure 1) [14, 15, 17–19]. In the first step
of maturation, the removal of a single acyl chain is
executed by a calcium-independent phospholipase A2 to
produce monolysocardiolipin (MLCL). Reacylation can be
carried out by CoA-dependent acyltransferases or a CoA-
independent reversible PL-lysoPL (LPL) transacylase called

tafazzin. Tafazzin itself lacks acyl chain preference; still, it is
believed to be the major enzyme involved in CL remodeling
to produce homo-acylated CL [16]. Mutations in tafazzin
cause abnormal molecular species of CL and the clinical
phenotype of Barth syndrome, a rare and often fatal x-linked
genetic disorder characterized by dilated cardiomyopathy,
skeletal myopathy, and neutropenia [20].

Although CL is known to be relatively resistant to dietary
manipulations, by “appropriate” interventions, the linoleoyl
chain can be replaced [21]. Fructose feeding might represent
such an intervention due to its highly lipogenic nature.
Therefore, our study is aimed at examining the effects of
fructose-enriched diet on the interplay of cardiac function,
cardiac lipidome and proteome, and oxidative stress and
apoptosis in a rat prediabetes model. To achieve this goal,
several methods and techniques were applied including con-
ventional blood tests, detailed serum analysis, enzymatic
assays, protein expression analyses, transthoracic echocardi-
ography, and high-performance mass spectrometry- (MS-)
based proteomics and lipidomics.

2. Materials and Methods

This investigation conformed to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals
(NIH Publication No. 85-23, Revised 1996) and was
approved by the Animal Research Ethics Committee of Uni-
versity of Szeged.

2.1. Experimental Design.MaleWistar rats (310–450 g, n = 16
in the entire study) were kept under controlled tempera-
ture with 12/12h light/dark cycles. Animals were divided
into two groups and were fed with the following diets
for 24 weeks: the control group (n = 8) was fed with a
standard laboratory chow, while the fructose-fed group
(n = 8) received a chow containing 60% fructose. Fasting
blood glucose was measured every 4 weeks, while at weeks
12, 16, 20, and 24 oral glucose tolerance tests (OGTT)
were performed. At week 20 and week 24, blood samples
were taken to measure serum parameters. At the end of
the feeding protocol, cardiac function was assessed by both
in vivo echocardiography and ex vivo working heart perfu-
sions (Figure 1). Following the perfusions, myocardial tis-
sue was harvested for biochemical analysis.

2.2. Transthoracic Echocardiography. Cardiac morphology
and function were assessed by transthoracic echocardiogra-
phy at week 24 as described previously [22–24]. Briefly, rats
were anesthetized with sodium pentobarbital (Euthasol,
40mg/kg body weight i.p.). Then, the chest was shaved,
and the rat was placed in a supine position onto a heating
pad. Two-dimensional, M-mode, and Doppler echocardio-
graphic examinations were performed by the criteria of
the American Society of Echocardiography with a Vivid
IQ ultrasound system (General Electric Medical Systems)
using a phased array 5.0–11MHz transducer (GE 12S-RS
probe). Data of three consecutive heart cycles were ana-
lyzed (EchoPac Dimension software; General Electric Med-
ical Systems) by an experienced investigator in a blinded
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manner. Systolic and diastolic wall thickness parameters
were obtained from parasternal short-axis view at the level
of the papillary muscles (anterior and inferior walls) and
long-axis view at the level of the mitral valve (septal and
posterior walls). The left ventricular diameters were mea-
sured by means of M-mode echocardiography from long-
axis views between the endocardial borders. Fractional
shortening (FS) was used as a measure of cardiac contractil-
ity (FS = ðLVEDD − LVESDÞ/LVEDD × 100). Functional
parameters including left ventricular end-diastolic volume
(LVEDV) and left ventricular end-systolic volume (LVESV)
were calculated on four-chamber view images delineating
the endocardial borders in diastole and systole. The stroke
volume was calculated as the difference of LVEDV and
LVESV. The ejection fraction (EF) was calculated according
to the formula ðLVEDV − LVESVÞ/LVEDV ∗ 100. Diastolic
function was assessed using pulse-wave Doppler across the
mitral valve from the apical four-chamber view. Early (E)
and atrial (A) flow velocities provide an indication of dia-
stolic function. Heart rate was also calculated using pulse-
wave Doppler images during the measurement of transvalv-
ular flow velocity profiles according to the length of 3 con-
secutive heart cycles measured between the start points of
the E waves. The mean values of three measurements were
calculated and used for statistical evaluation.

2.3. Working Heart Perfusion. Immediately after the echocar-
diography, cardiac performance was assessed in isolated
working rat hearts, as described earlier [25–27]. Anesthetized
rats were given 500U·kg−1 heparin intravenously. Hearts
were then isolated, and the aorta was cannulated and initially
perfused in Langendorff mode (at a constant pressure of
73mmHg, 37°C) with Krebs-Henseleit buffer containing
NaCl 118mM, NaHCO3 25mM, KCl 4.3mM, CaCl2
2.4mM, KH2PO4 1.2mM, MgSO4 1.2mM, and glucose
11mM, gassed with 95% O2 and 5% CO2 [22, 28]. Then,
the perfusion system was switched to working mode accord-
ing to Neely with recirculating buffer [28, 29]. Hydrostatic
preload and afterload were kept constant at 13mmHg and

73mmHg, respectively, throughout the experiments. Hearts
were subjected to 10min equilibration period before mea-
surement (n = 7 – 8). Cardiac functional parameters includ-
ing heart rate, coronary flow, aortic flow, cardiac output,
left ventricular developed pressure (LVDP) and its first deriv-
atives (dp/dt max and dp/dt min), and left ventricular end-
diastolic pressure (LVEDP) were measured. At the end of
the perfusion, the hearts were weighed, and the left and right
ventricles were separated. The right and left ventricles were
snap frozen in liquid nitrogen and stored at −80°C until they
were used for biochemical assays.

2.4. Measurement of Malondialdehyde Levels. In order to
measure the level of systemic and cardiac lipid peroxidation,
serum malondialdehyde and left ventricular tissue malon-
dialdehyde were assayed spectrophotometrically at 535nm
as described previously [27, 30]. Results are expressed as
nmol/mL serum and nmol/mg protein.

2.5. mRNA Expression Profiling by qRT-PCR. Quantitative
RT-PCR was performed with gene-specific primers to mon-
itor mRNA expression as described previously [24]. To
assess de novo lipid synthesis, expression of sterol regula-
tory element-binding transcription factor 1 (Srebf1),
stearoyl-CoA desaturase 1 (Scd1), stearoyl-CoA desaturase
2 (SCD2), fatty acid synthase (Fasn), acetyl-CoA carboxyl-
ase 1 (Acaca), carbohydrate-responsive element-binding
protein (Mlxipl), elongation of very-long-chain fatty acids
protein 6 (ELOVL6), fatty acid desaturase 1 (Fads1), and
fatty acid desaturase 2 (Fads2) were measured from liver
samples. To assess cardiac hypertrophy, expression of myo-
sin heavy chain α isoform (MYH6) and myosin heavy chain
β isoform (MYH7) was measured. RNA was isolated using
Qiagen RNeasy Fibrous Tissue Mini Kit (Qiagen, #74704)
from the liver and heart tissues. Briefly, 4μg and 2.2μg of
total RNA from liver and heart samples, respectively, were
reverse transcribed using iScript™ Advanced cDNA Synthe-
sis kit (Bio-Rad, 1725038), and specific primers and SsoAd-
vanced™ Universal SYBR® Green Supermix (Bio-Rad) were

0 4 8 12 16 20 24 Week

24 Week0 4 8 12 16 20

Control group

Fructose-fed 
group

Blood collection
OGTT

⁎

⁎

Echocardiography
⁎ Working heart perfusion

Figure 1: Experimental protocol. Male Wistar rats were divided into control (n = 8) and fructose-fed (n = 8) groups receiving either a
standard chow or a chow supplemented with 60% fructose, respectively, for 24 weeks. Fasting blood glucose measurement or oral glucose
tolerance test (OGTT) was performed every four weeks to monitor the development of prediabetic condition. At week 24, transthoracic
echocardiography was performed to monitor cardiac function and morphology. Then, the hearts of the animals were isolated and
mounted on a working heart perfusion system to measure hemodynamic and pressure parameters. After the perfusions, hearts were
frozen for measurement of biochemical parameters.
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used according to the manufacturer’s instructions. Hypo-
xanthine phosphoribosyltransferase 1 (Hprt1) was used as
control for normalization.

2.6. Lipidomics. Approximately 20mg of the powdered left
ventricle was directly extracted by adding 1mL of methanol
containing 0.001% butylated hydroxytoluene as an antioxi-
dant and 60μg di20:0 phosphatidylcholine as extraction
standard. After a 5min sonication in a water bath sonica-
tor, the mixture was shaken for 5min and centrifuged at
10000 × g for 5min. The supernatant was transferred into
a new Eppendorf tube and stored at −20°C until mass spec-
trometry (MS) analysis.

The solvents used for extraction and MS analyses were of
Optima LCMS grade from Thermo Fisher Scientific (Bre-
men, Germany) and liquid chromatographic grade from
Merck (Darmstadt, Germany). Lipid standards were pur-
chased from Avanti Polar Lipids (Alabaster, AL). All other
chemicals were from Sigma-Aldrich (Steinheim, Germany)
and were of the best available grade.

Mass spectrometric analyses were performed on an
LTQ-Orbitrap Elite instrument (Thermo Fisher Scientific,
Bremen, Germany) equipped with a robotic nanoflow ion
source (TriVersa NanoMate; Advion BioSciences; Ithaca,
NY, USA) as described in [31]. Further details of MS mea-
surements and lipid species annotation are given in the
Supplementary Methods.

2.7. Proteomics. Approximately 30mg of powdered left
ventricle tissue samples was homogenized in lysate buffer
(containing 2% SDS and 0.1M DTT in 0.1 Tris solution).
The homogenized samples were incubated at 98°C for
5min. Proteins were precipitated by the addition of
methanol/chloroform mixture (4 : 1) and were resuspended
in 8M urea. The total protein contents were determined
using BCA (Thermo) protocol. 20μg protein was digested
by trypsin (Thermo) using RapiGest (Waters) detergent to
enhance the digestion. In-gel fractionation was performed
for pooled sample. In-gel fractionated samples were also
digested by trypsin.

1D gel samples and pooled samples were measured in
DDA (data-dependent acquisition) using a 90min gradient
on a Waters nanoAcquity-Thermo Q Exactive Plus LC-MS
system to build a spectrum library of detectable peptides.
The individual samples were measured in DIA (Data Inde-
pendent Acquisition) mode for protein quantification with
the same LC gradient using the spectrum library. The
acquired data were analyzed with Encyclopedia [32] and sta-
tistically evaluated using Perseus [33] software. Enrichment
of significantly changing proteins according to subcellular
localization was carried out by Gene Ontology analysis
(https://www.ebi.ac.uk/QuickGO/). Pathway assignment
analysis of significantly altered proteins was performed with
Reactome (https://www.reactome.org) after assignment to
human genes, for higher annotation coverage. Further details
of proteomic analysis are given in the SupplementaryMethods.

2.8. Measurement of Serum and Pancreatic Insulin Levels.
Serum and pancreatic insulin levels were measured by an

enzyme immunoassay (Mercodia, Ultrasensitive Rat Insulin
ELISA) in order to verify the development of hyperinsuline-
mia and decreased pancreatic insulin content as a conse-
quence of beta cell damage in impaired glucose tolerance.
Insulin ELISA was carried out according to the instructions
of the manufacturer from either sera or homogenized pan-
creatic tissue samples of fructose-fed and control rats. Sera
were centrifuged (2000 g for 10min at 4°C) and kept at
-20°C until further investigation. Pancreata were removed,
trimmed free of adipose tissue, and weighed. Pancreata were
homogenized in 6mL cold acidified ethanol (0.7M
HCl : ethanol (1 : 3 v/v)) with an Ultra Turrax homogenizer
and were kept at 4°C for 24 h. Then, pancreas homogenates
were centrifuged (900 g for 15min at 4°C), and the superna-
tants were stored at 4°C. The pellet was extracted again with
3mL acidified ethanol for 24 h at 4°C. The supernatant
obtained after centrifugation was pooled with the previous
one and kept at -20°C until assayed [34, 35].

2.9. HOMA-IR Index. To estimate insulin resistance in
fructose-fed or control rats, the widely used HOMA-IR index
was calculated [34, 36, 37] by multiplying fasting serum insu-
lin (μU/mL) with fasting serum glucose (mmol/L) then
dividing by the constant 22.5, i.e., HOMA‐IR = ðfasting
serum insulin concentration × fasting serum glucose
concentrationÞ/22:5.
2.10. Measurement of Serum Lipid Levels. Serum cholesterol,
triglyceride, LDL, and HDL levels were measured at week 24
using a test kit supplied by Diagnosticum Zrt. (Budapest,
Hungary) as described previously [27].

2.11. 3-NT ELISA. A double-antibody sandwich ELISA kit
specific for 3-nitrotyrosine measurement was purchased
from Genasiabio (Shanghai, China). Left ventricles were
homogenized (Heilscher UP100H Ultrasonic Processor) in
Phosphate Buffer Saline (PBS) (pH 7.2–7.4) and then centri-
fuged at 3000 rpm for 20min at 4°C. Nitrotyrosine was mea-
sured according to the manufacturer’s instructions and
protocols, and optical densities (OD) were determined at
450 nm. Results were expressed as nmol/mg protein.

2.12. Measurement of Serum Laboratory Parameters. Urea
and creatinine levels in serum were quantified by kinetic
UV method using urease and glutamate dehydrogenase
enzymes and Jaffe method, respectively. The reagents and
the platform analyzers were from Roche Diagnostics. Serum
sodium, potassium, and chloride levels were determined by
indirect potentiometry using ion-selective electrodes at week
24. All reagents and instruments were from Roche Diagnos-
tics. Alanine aminotransferase (ALAT), aspartate amino-
transferase (ASAT), creatine kinase (CK), and lactate
dehydrogenase (LDH) enzyme activities were measured with
Roche UV assays standardized according to the recommen-
dations of IFCC (International Federation of Clinical Chem-
istry). Creatine kinase MB enzyme activities were determined
using an immunological UV assay of Roche.

2.13. Western Blot. To investigate changes of apoptotic pro-
teins, the standard western blot technique was used in case
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of Bax, Bcl-2, Bcl-xL, caspase-7, and caspase-3 with actin
or tubulin loading background. Left ventricular samples
(n = 8) were homogenized with an ultrasonicator (UP100H
Hielscher, Teltow, Germany) in Radio-Immunoprecipitation
Assay (RIPA) buffer (50mM Tris-HCl (pH 8.0)), 150mM
NaCl, 0.5% sodium deoxycholate, 5mM ethylenediamine
tetra-acetic acid (EDTA), 0.1% sodium dodecyl sulfate, 1%
NP-40 (Cell Signaling, Carlsbad, CA, USA) supplemented
with phenylmethanesulfonyl fluoride (PMSF). The crude
homogenates were centrifuged at 15000 × g for 30min at
4°C. After quantification of protein concentrations of the
supernatants using the BCA Protein Assay Kit (Pierce,
Rockford, IL, USA), 25μg of reduced and denaturized pro-
tein was loaded. Then, sodium dodecyl-sulfate polyacryl-
amide gel electrophoresis (SDS-PAGE) was performed
(10% gel, 50V, 4 h) followed by the transfer of proteins
onto a nitrocellulose membrane (20% methanol, 35V,
1.5 h). The efficacy of transfer was checked using Ponceau
staining. The membranes were cut horizontally into parts
corresponding to the molecular weights of Bax, Bcl-2, Bcl-
xL, caspase-7, caspase-3, actin, and tubulin. Membranes
were blocked for 1 h in 5% (w/v) bovine serum albumin
(BSA) and were incubated with primary antibodies in the
concentrations of 1 : 1000 against Bax (#2772), Bcl-2
(#3498), Bcl-xL (#2764), caspase-7 (#12827), caspase-3
(#14220), α-tubulin (#2144), and β-actin (#4970) overnight
at 4°C in 5% BSA. Then, the membranes were incubated
with IRDye® 800CW Goat Anti-Rabbit secondary anti-
body (Li-Cor) for 1 h at room temperature in 5% BSA.
Fluorescent signals were detected by Odyssey CLx, and
digital images were analyzed and evaluated by Quantity
One Software.

2.14. Statistical Analysis. Proteomic data are presented as
mean intensities ± CV, fold change, and p value. For proteo-
mic data, the statistical significance was tested using
unpaired Welch test. p < 0:05 and a fold change > 1:5 were
accepted as a statistically significant difference. Lipidomic
data are presented as mean ± SEM; statistical significance
was determined according to Storey and Tibshirani [38]
and was accepted for p < 0:05 corresponding to a false dis-
covery rate < 0:05. PCA analyses were performed using
MetaboAnalyst [39]. All other parameters are presented as
mean ± SEM, and significance between groups was determined
with two sample t-test or Mann-Whitney Rank Sum Test.

3. Results and Discussion

3.1. Prediabetes and Characterization of the Animal Model.
In the present study, male Wistar rats were fed with 60%
fructose-containing chow for 24 weeks to create a model of
prediabetes. We have chosen this model in order to examine
the effect of a moderate metabolic condition on the heart,
rather than looking at the effects of severely disturbed glucose
and lipid homeostasis seen for instance in genetically modi-
fied diabetes models (e.g., db/db or ob/ob mice) [40, 41]. In
order to verify the development of the prediabetic state, fast-
ing blood glucose was measured at every 4th week, and
OGTT was performed at weeks 12, 16, 20, and 24. Fasting

glucose levels were slightly but significantly higher in
fructose-fed rats at weeks 12, 16, 20, and 24 (Figure 2(a)).
OGTT area under the curve values were also significantly
increased in fructose-fed rats at weeks 16, 20, and 24
(Figure 2(b)). These results demonstrate the development
of prediabetes with impaired glucose tolerance in the present
model. HOMA-IR, a widely used indicator of insulin resis-
tance, was significantly higher in the fructose-fed rats at week
20, although no significant difference was detected in serum
insulin levels (Figure 2(c)). Pancreatic insulin level was sig-
nificantly higher in the fructose-fed group compared to con-
trols (Figure 2(e)). These data demonstrate the appearance of
a mild insulin resistance in our present model.

Although body weight increased in both groups during
the course of the study, by the end of 24-week feeding, the
weight of the fructose-fed rats was significantly smaller com-
pared to that of the control rats (Figure 3(a)). Weight gain
during the study was decreased in fructose-fed rats
(Figure 3(b)). Although liver weight was not significantly dif-
ferent in fructose-fed rats, the liver weight to body weight
ratio was increased (Table 1). Moreover, during the isolation
of organs, we have observed macroscopical signs of fatty
degeneration on the liver of fructose-fed animals. These
findings may indicate fatty degeneration in the liver due
to DNL initiated by fructose feeding. In fact, it has been
demonstrated that fructose may activate DNL due to its
rapid conversion to pyruvate bypassing the regulatory step
of glycolysis catalyzed by the phosphofructokinase-1
enzyme [42]. Compared to the effects of fat-supplemented
diet which leads to fat deposits both in the liver and adi-
pose tissue (liver as well as body weight gain), dietary fruc-
tose preferably increases lipid accumulation only in the
liver [42]. Fructose feeding may affect the metabolism of
skeletal muscle through metabolic stress. For instance,
Gatineau et al. showed that older rats fed with fructose-
containing diet lost significantly more lean body mass and
maintained more adipose tissue than control rats [43]. In
sucrose-fed rats, significantly lower diet-induced muscle
protein synthesis was observed compared to starch-fed rats
[43]. Additionally, excessive fructose consumption was
shown in the liver to increase production of substances
such as methylglyoxal, which leads to oxidative stress in
the muscle [44]. Activated DNL leads to endoplasmic retic-
ulum stress [45] and production of hepatokines, such as
fetuin-A [46], known to adversely affect muscle energy
metabolism and insulin sensitivity [47]. These findings
might explain decreased body weight gain in fructose-fed
rats in our present study. Despite the macroscopic signs
of fatty degeneration in the liver, neither serum lipid
parameters (triglycerides, total cholesterol, and LDL and
HDL cholesterol) nor liver enzymes (ALAT, ASAT) were
increased in fructose-fed rats (Table 2) indicating an early
stage of hepatic consequences.

To further characterize metabolic changes in the liver of
fructose-fed rats, we performed qRT-PCR. We examined
Srebf1 and Mlxipl transcription factors which regulate fatty
acid metabolism related genes. No difference was found
between control and fructose-fed group. We also examined
Acaca and Fasn. Acaca catalyzes the carboxylation of
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acetyl-CoA to malonyl-CoA, the rate-limiting step of fatty
acid synthesis. Fasn catalyzes the remaining steps of palmitic
acid synthesis. Fasn expression showed a tendency of
increase, while Acaca expression significantly increased in
fructose-fed rats (Figure 4(c)). These findings are consistent
with previous results and clearly indicate increased de novo

lipid synthesis in fructose-fed rats [48, 49]. ELOVL6 enzyme,
which catalyzes the first and rate-limiting reaction of long-
chain fatty acid elongation cycle, was also significantly
increased in fructose-fed rats. ELOVL6 enzyme is also known
to play an important role in nonalcoholic fatty liver disease
and steatohepatitis [50, 51] (Figure 4(h)).
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Figure 2: Prediabetic condition: (a) fasting blood glucose levels, (b) area under the curve (AUC) values for OGTT, (c) HOMA-IR index at
week 20, (d) serum insulin level at week 20, and (e) pancreatic insulin level at week 24. Values are mean ± SEM (n = 7‐8), ∗p < 0:05.
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Figure 3: Body weight and weight gain of control and fructose-fed rats. Values are mean ± SEM (n = 8), ∗p < 0:05.
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3.2. Heart Function and Morphology. To characterize
prediabetes-induced cardiac changes in fructose-fed rats,
transthoracic echocardiography was performed at week 24
to investigate cardiac function. Although the weight of the
animals was significantly lower in the fructose-fed group,
the heart weight and heart weight to body weight ratio were
not changed significantly (Table 1).

Echocardiographic parameters of morphology and func-
tion are shown in Table 3. To exclude the potential effect of
variations in cardiac mass, the morphological data were also
given after normalization to heart weight (Table 3). Wall
thicknesses and ventricular diameters were not changed sig-
nificantly due to fructose feeding (except for anterior wall
thickness) (Table 3). Although there was no difference in
heart rate, ejection fraction, and fractional shortening, the
E/A ratio was significantly smaller in fructose-fed rats indi-
cating the impairment of diastolic filling (Table 3). These
findings may suggest a very early manifestation of a mild
hypertrophy and diastolic dysfunction with preserved sys-
tolic function in prediabetic rats.

Following echocardiography, the hearts were isolated to
assess cardiac performance on a working heart perfusion sys-
tem. Left ventricular end-diastolic pressure significantly
increased, while cardiac output significantly decreased in
fructose-fed rats (Figure 5). However, HR, max and min

dp/dt, LVDP, and aortic systolic and diastolic pressures were
not changed between groups during working heart perfusion
(Table 4). These results demonstrate the appearance of a
mild diastolic dysfunction in prediabetic rats. It is well
known that left ventricular hypertrophy is more common
in diabetic patients and that 40-75% of patients with type 1
or type 2 diabetes have diastolic dysfunction [52, 53]. How-
ever, here we show that the deterioration of diastolic function
occurs much earlier than the development of overt diabetes.
These results are consistent with recent reports showing that
the development of diastolic dysfunction can precede com-
plete diabetes [6].

In order to assess cardiac hypertrophy at the molecular
level, mRNA expression of myosin heavy chain α isoform
(MYH6) and myosin heavy chain β isoform (MYH7) was
measured. We have found that cardiac MYH6 mRNA level,
consistent with myosin 6 protein level measured by proteo-
mics (Table 5), was increased in fructose-fed rats (Figure 6).
However, MYH6/MYH7 ratio did not differ significantly.
According to the literature [54–56], these data do not sup-
port cardiac hypertrophy in our fructose-fed rats.

It is known that clinical laboratory markers of myocardial
injury are increased in diabetic cardiomyopathy [57] and
serum ion parameters, especially potassium, can affect heart
function. Therefore, we measured serum ions (potassium,

Table 1: Isolated organ weights and isolated organ weight to body weight ratios at week 24 in both control and fructose-fed rats. Values are
mean ± SEM (n = 8), ∗p < 0:05.

Control Fructose-fed p value

Heart weight (mg) 1726 ± 79 1527 ± 71 0.083

Liver weight (mg) 13292 ± 538 12262 ± 467 0.170

Pancreas weight (mg) 1093 ± 111 1101 ± 467 0.951

Heart (mg)/body weight (g) 3:22 ± 0:14 3:36 ± 0:09 0:422
Liver (mg)/body weight (g) 22:7 ± 0:2 27:0 ± 0:4∗ ≤0.001

Pancreas (mg)/body weight (g) 2:04 ± 0:19 2:43 ± 0:11 0.095

Table 2: Parameters measured in serum collected at week 24 in both control and fructose-fed rats. Values aremean ± SEM (n = 8), ∗p < 0:05.

Control Fructose-fed p value

Serum triglyceride (mmol/L) 0:96 ± 0:12 0:94 ± 0:20 0.938

Serum cholesterol (mmol/L) 1:78 ± 0:14 1:61 ± 0:11 0.359

LDL (mmol/L) 0:45 ± 0:05 0:43 ± 0:08 0.830

HDL (mmol/L) 0:86 ± 0:08 0:76 ± 0:07 0.335

ALAT (U/L) 38:63 ± 3:35 35:00 ± 4:08 0.500

ASAT (U/L) 77:88 ± 4:05 73:29 ± 5:74 0.517

CK (U/L) 263 ± 46 245 ± 45 0.776

CKMB (U/L) 352 ± 75 256 ± 33 0.264

LDH (U/L) 334:86 ± 63:77 272:50 ± 37:36 0.437

Cl (mmol/L) 102:50 ± 0:78 102:63 ± 0:82 0.914

K (mmol/L) 6:33 ± 0:36 5:95 ± 0:57 0.588

Na (mmol/L) 141:63 ± 0:60 141:38 ± 0:78 0.802
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Figure 4: qRT-PCR results at week 24. Liver (a) Mlxipl expression, (b) Srebf1 expression, (c) Acaca expression, (d) Fasn expression, (e) SCD1
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sodium, and chloride) and enzyme markers of myocardial
injury (creatine kinase (CK), creatine kinase-MB (CK-MB),
and lactate dehydrogenase (LDH)). Neither serum ion
parameters nor markers of myocardial injury were changed
significantly in fructose-fed rats compared to controls
(Table 2).

3.3. Lipidomics. To characterize and elucidate the metabolic
changes in the prediabetic heart induced by chronically
applied fructose-rich diet, we performed high-performance,
comprehensive shotgun MS-based lipidomic analyses from
left ventricular whole membrane extracts. We have identified
and quantified approximately 200 lipid molecular species
encompassing 20 lipid classes (lipidomic data are summa-

rized in Supplementary Lipid Table expressed either as
lipid/protein or as mol% of membrane lipids or mol% of a
given lipid class). Because the optimal physical state of the
membrane is a prerequisite for proper functioning, in the fol-
lowing, we focus on membrane lipid compositional data. To
obtain an overview, mol% of membrane lipid values was sub-
jected to the nonsupervised multivariate statistics principal
component analysis (PCA). The clear separation of the sam-
ple sets into two nonoverlapping clusters (Figure 7) indicates
complex reshaping and metabolic rewiring of the whole lipi-
dome due to fructose feeding. Examining these alterations in
more detail and comparing the molecular species patterns for
the control and fructose groups revealed 100 statistically sig-
nificant differences (Supplementary Lipid Table).

Table 3: Left ventricular morphological and functional parameters examined by echocardiography at week 24 in both control and fructose-
fed rats. Values are mean ± SEM (n = 8), ∗p < 0:05.

Parameter (unit) View/mode Control Fructose-fed p value

Left ventricle morphology

Anterior wall thickness in systole (mm) Short axis/MM 3:59 ± 0:14 3:47 ± 0:12 0.506

Anterior wall thickness in diastole (mm) Short axis/MM 2:35 ± 0:04 2:00 ± 0:10∗ 0.012

Inferior wall thickness in systole (mm) Short axis/MM 3:38 ± 0:18 3:41 ± 0:07 0.871

Inferior wall thickness in diastole (mm) Short axis/MM 2:20 ± 0:11 2:01 ± 0:08 0.167

Posterior wall thickness in systole (mm) Long axis/MM 3:33 ± 0:30 3:13 ± 0:19 0.596

Posterior wall thickness in diastole (mm) Long axis/MM 2:22 ± 0:14 1:96 ± 0:11 0.155

Septal wall thickness in systole (mm) Long axis/MM 3:88 ± 0:18 3:55 ± 0:20 0.239

Septal wall thickness in diastole (mm) Long axis/MM 2:33 ± 0:10 2:05 ± 0:17 0.169

Left ventricular end-diastolic diameter (mm) Long axis/MM 6:85 ± 0:24 6:85 ± 0:21 0.996

Left ventricular end-systolic diameter (mm) Long axis/MM 3:07 ± 0:16 3:37 ± 0:20 0.270

Left ventricular end-diastolic volume (μL) 4CH 100:3 ± 20:6 90:3 ± 11:7 0.681

Left ventricular end-systolic volume (μL) 4CH 39:23 ± 9:04 36:23 ± 6:03 0.787

Left ventricular morphology/heart weight

Anterior wall thickness in systole (mm/g) Short axis/MM 1:96 ± 0:11 2:28 ± 0:06∗ 0.021

Anterior wall thickness in diastole (mm/g) Short axis/MM 1:27 ± 0:07 1:32 ± 0:06 0.596

Inferior wall thickness in systole (mm/g) Short axis/MM 1:96 ± 0:06 2:20 ± 0:11 0.079

Inferior wall thickness in diastole (mm/g) Short axis/MM 1:38 ± 0:10 1:34 ± 0:10 0.795

Posterior wall thickness in systole (mm/g) Long axis/MM 1:96 ± 0:20 2:05 ± 0:09 0.665

Posterior wall thickness in diastole (mm/g) Long axis/MM 1:21 ± 0:12 1:29 ± 0:06 0.559

Septal wall thickness in systole (mm/g) Long axis/MM 2:28 ± 0:14 2:34 ± 0:11 0.735

Septal wall thickness in diastole (mm/g) Long axis/MM 1:36 ± 0:06 1:73 ± 0:37 0.348

Left ventricular end-diastolic diameter (mm/g) Long axis/MM 3:86 ± 0:23 4:56 ± 0:27 0.067

Left ventricular end-systolic diameter (mm/g) Long axis/MM 1:81 ± 0:10 2:26 ± 0:20 0.082

Left ventricle function

E/A 4CH 1:21 ± 0:07 1:03 ± 0:02∗ 0.015

Ejection fraction (%) 4CH 60:96 ± 3:38 62:83 ± 2:32 0.666

Fractional shortening (%) Short axis/MM 49:57 ± 3:82 54:00 ± 3:60 0.414

MV E velocity (m/s) 4CH 0:81 ± 0:05 0:73 ± 0:06 0.358

MV A velocity (m/s) 4CH 0:71 ± 0:07 0:82 ± 0:06 0.260

Heart rate (1/min) 4CH 346:0 ± 12:9 349:6 ± 6:8 0.819
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One of the most noteworthy changes can be connected to
the CL remodeling system. It is known that under normal
conditions, the levels of LPLs are kept low in general, and
CL remodeling requires only trace amounts of MLCL [14].
Therefore, the significantly lowered level of matured CL in
parallel with the significantly increased amount of MLCL
(Supplementary Lipid Table), and consequently their
markedly increased ratio in the membrane (MLCL/CL,
Figure 8(a)), obviously report about an aberrant remodeling

process in the fructose-fed group as compared to the con-
trols. The ratio of MLCL/CL was found to be a more sensitive
indicator than the level changes of CL and MLCL in Barth
patients [58]. Furthermore, at the molecular species level,
we detected pronounced loss of the most abundant homo-
symmetric tetra18:2 species CL(72:8) (Figure 8(b)).

This was the most prominent change not only in the
context of membrane composition but also when considering
absolute values, i.e., the protein-normalized data displayed
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Figure 5: Cardiac function in isolated perfused hearts: (a) left ventricular end-diastolic pressure (LVEDP) and (b) cardiac output. Values are
mean ± SEM (n = 7‐8), ∗p < 0:05.

Table 4: Parameters measured by working heart perfusion at week 24 in both control and fructose-fed rats. Values aremean ± SEM (n = 7‐8).

Control Fructose-fed p value

Aortic flow (mL) 46:6 ± 3:7 37:4 ± 2:4 0.065

Coronary flow (mL) 24:6 ± 1:1 21:9 ± 1:2 0.121

Max dp/dt (mmHg/s) 5975 ± 330 6063 ± 212 0.832

Min dp/dt (mmHg/s) −3577 ± 222 −4090 ± 237 0.138

Aortic diastolic pressure (mmHg) 45:7 ± 1:7 42:1 ± 1:3 0.120

Aortic systolic pressure (mmHg) 110:3 ± 2:6 116:2 ± 1:5 0.121

LVDP (mmHg) 137:5 ± 6:0 139:5 ± 4:3 0.803

Heart rate (1/min) 279 ± 14 263 ± 24 0.554

Table 5: Alteration of selected cardiac proteins in fructose-fed rats by proteomic analysis. Values are expressed as fold change and p value.

Protein names Gene names Fold change p value

Alpha B crystallin Cryab 5.56 0.047

3-ketoacyl-CoA thiolase (mitochondrial) Acaa2 4.56 0.005

Alpha-aminoadipic semialdehyde dehydrogenase Aldh7a1 4.34 ≤0.001
60 kDa heat shock protein (mitochondrial) Hspd1 3.37 0.010

Myosin 6 MYH6 3.06 0.003

Peroxiredoxin-6 Prdx6 2.87 0.001

Superoxide dismutase [Mn] (mitochondrial) Sod2 -1.82 0.033

Protein disulfide-isomerase P4hb -3.40 0.001
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dramatic 45% decrease for CL(72:8) (from 28.5 to
15.7 nmol/protein mg; p < 0:05; Supplementary Lipid Table).
This observation is in full agreement with other literature
data obtained for either more severe diabetic and obesity
models [59, 60] or recorded in a more similar early-stage
fructose-induced type 2 diabetes study [61]. The loss in
CL(72:8) was paralleled by elevations in practically all other
asymmetric species independently on chain length and satu-
ration for the fructose-fed animals as opposed to the normal
chow diet (sum elevation from 2.82 to 4.35mol% of mem-
brane lipids, p < 0:05) (Figure 8(b)). This altogether resulted

in a dramatic drop of the CL “symmetry” factor in the fruc-
tose group calculated as the ratio of symmetric/asymmetric
species (Figure 8(c)). The major contributions to the increase
in asymmetry derived from species which contain one non-
18:2 acyl chain, i.e., from the 16:1 FA-containing CL(70:7;
16:1_18:2_18:2_18:2) species, from the CL(74:9) species
whose major component is the CL(18:2_18:2_18:2_20:3)
isobar, and from the CL(72:7) species corresponding to
CL(18:1_18:2_18:2_18:2). This is in correspondence with
the result observed in a fructose-induced early type 2 diabetic
rat model [61] but differs from more severe mouse models of
diabetes and insulin resistance/obesity. In the latter cases,
defective cardiac CL remodeling resulted in depletion of
16:1 and enrichment of the highly unsaturated docosahexae-
noic acid (DHA, 22:6 n-3) [17, 60], thereby essentially
increasing the propensity of CL to peroxidation. In our study,
the double bond index (DBI) of CL, a measure of unsatura-
tion, did not change significantly (Supplementary Lipid
Table). It can be partially due to the prediabetic nature of
the model but also due to the sizeable difference in cardiac
CL species composition between mouse and rat. Mouse
cardiac CL contains essentially more DHA [61–63]. There-
fore, it is more prone to ROS attack and peroxidation than
that of the rat CL. Nevertheless, we have to mention that
regarding fold increases of the individual CL species in
the fructose-fed animals compared to the controls, the
highest, ca. 10-fold elevations, was registered for DHA-
containing CL species (78:12, 18:0_18:2-20:4_22:6 (major))
and (78:13, 18:1_18:2_20:4_22:6), although their levels
barely reached the 0.1mol% of total CL value even in
the fructose group (Supplementary Lipid Table). It is
important to note here that we could not detect oxidized lipid
species either in CL or in other highly unsaturated and gener-
ally oxidation-prone lipid classes, such as plasmalogen phos-
phatidylethanolamine and phosphatidylserine. However, we
could detect “asymmetry” defects already in the MLCL spe-
cies profile; the major MLCL(54:6, tri18:2) species was
found to be significantly reduced whereas the not only
18:2-containing precursors were markedly elevated (Supple-
mentary Lipid Figure 2).
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Figure 6: qRT-PCR results at week 24. Heart (a) MYH6 expression, (b) MYH7 expression, and (c) MYH6/MYH7 ratio. Values are
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Another important feature of the lipidome alterations
was the general increase in lipid species with sum double
bond ðdbÞ = 1 that could be detected in all major membrane
PL classes in the fructose group as opposed the control
animals (sum of db = 1 9:3 vs. 6.9mol% of membrane lipids,
p < 0:05; Supplementary Lipid Table). The main contribu-
tors, which contain a saturated and a monounsaturated FA
leg, were collected in Figure 9(a). PL species with db = 2 pre-
dominantly contained a saturated FA in sn1 and a linoleoyl
(18:2) group in sn2 position of the glycerol backbone; these
can serve as potential acyl donors for the formation of
tetra18:2 CL for the tafazzin-catalyzed transacylation. In par-
allel with the elevation of species with db = 1, we detected sig-
nificant depletion in species with db = 2 in fructose-fed
animals (sum of db = 2 7:1 vs. 9.7mol% of membrane lipids,
p < 0:05; Supplementary Lipid Table); selected species are
demonstrated in Figure 9(b).

Changes in PL molecular species with highly unsaturated
acyl chains (db ≥ 4) showed fairly complex picture with sev-
eral significant alterations including both elevations and
decreases (Supplementary Lipid Table). It was reported that
the loss of tafazzin enzymatic activity in a Barth syndrome
mouse model also resulted in complex alterations of polyun-
saturated PL species [64]. Therefore, it is conceivable to sug-
gest that the intricate imbalance in polyunsaturated PL
species alters the biophysical and signaling properties of the
cardiac membrane.

Since we could not detect the elevation in serum triglyc-
eride levels due to fructose feeding, it is not surprising that
neither the total cardiac TG content changed significantly
(Supplementary Lipid Table). However, the prominent spe-
cies profile change of the TG pool is worth mentioning.
The robust relative increase in species containing saturated
and monounsaturated FAs, such as TG(50:1, 52:2, and
54:3), in parallel with significant reductions in more unsatu-
rated species, e.g., TG(52:4, 54:6, and 56:8) (Figure 9(c)) alto-
gether led to the decrease of the double bond index (DBI),
i.e., increase in saturation for cardiac TG (Figure 9(d)). Car-
diac TG saturation together with the monoene increase and

18:2 decrease in membrane PLs may indicate the upregula-
tion of DNL leading to a shift in FA profile towards the aug-
mentation of monounsaturated 18:1 (and 16:1) FAs.

A further interesting aspect of the complex lipidome
remodeling was the reshaping of the analyzed sphingolipid
(SL) pool, ceramide (Cer) and sphingomyelin (SM). Cer has
a central role in SL metabolism as well as it is known as a lipid
mediator of the eukaryotic stress response. Its role is mostly
associated with growth inhibition; the most studied being
its function as a proapoptotic molecule [65]. Serum Cers have
emerged as potential biomarkers of insulin resistance, diabe-
tes, and heart disease, but also, muscle, liver, or adipose tissue
Cers were shown to be associated with insulin resistance [66].
In our study, we measured small but significant elevation in
total cardiac Cer at membrane lipid compositional level
(approximately 30%; p < 0:05, Supplementary Lipid Table),
which could be attributed almost exclusively to the increases
in very-long-chain Cer-24 species Cer(42:2:2, d18:1/24:1 and
42:3:2, d18:2/24:1) (Figure 10(a)). It was reported that the
nature of the acyl chain in Cers influences their contribution
to the disease. Long-chain Cer-16 and Cer-18 often showed
stronger associations with disease pathologies than very-
long-chain Cer-24 [66]. Marchesini et al. reported that in
confluent MCF-7 cells cell cycle arrest but not apoptosis
was mediated by C24-Cer species [67]. It seems, therefore,
that the alterations in Cer in our model might contribute to
the observed cardiac dysfunction through changing the
membrane biophysical properties rather than inducing size-
able apoptotic signaling. SM is the major structural mamma-
lian SL which accumulates in liquid-ordered microdomains.
Its total level showed only an increasing tendency in the
membrane (p = 0:058), but its species compositions changed
completely (Figure 10(b) and Supplementary Lipid Table).
This may point to microdomain reorganization and hence,
again, to the modulation of the membrane physical state
and signaling properties due to fructose-rich diet.

Schlame et al. proposed that the acyl specificity of tafaz-
zin arises from the physical properties of the lipid environ-
ment and is born out of a transacylation equilibrium in
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Figure 8: Defects in cardiolipin remodeling. (a) Monolysocardiolipin to cardiolipin ratio (MLCL/CL). (b) Changes in CL species due to
fructose feeding. (c) CL symmetry factor calculated as the ratio of symmetric/asymmetric CL species. ESI-MS data are expressed as mol%
of membrane lipids or calculated from the corresponding values and presented as means ± SEM (n = 8), ∗p < 0:05.
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which the tissue-specific availability of FAs and the specific
packing conditions of lipids are manifested [18]. In line with
this proposal, our lipidomic data fully support the distur-
bance in tafazzin action in the prediabetic state as the very
first event leading to defective CL structural uniformity and
molecular symmetry. Nevertheless, several other options
may contribute to the observed changes. These include the
induction of phospholipase A2, which should increase the
level of LPLs. It is known to happen in the diabetic state
[68], and the registered increases in the relative levels of car-
diac MLCL and LPE (Supplementary Lipid Table) in our pre-
diabetic model might also reflect such an upregulation. In
addition, the upregulation of the acyl-CoA:lyso-CL-acyl-
transferase that lacks preference for the linoleoyl group [69]
as well as the downregulation of MLCL acyltransferase that
specifically catalyzes the synthesis of tetra18:2 CL [70] also
might play a role. However, these possibilities were reported
for harsher conditions of later stage diabetes or well-
developed oxidative stress induced by hyperthyroidism.

3.4. Proteomics. The complex changes in the heart detected
by lipidomics at the metabolite level in the prediabetic state
induced by chronic fructose feeding can be further mapped
and complemented by alterations that occur at the protein
level. Therefore, we performed comprehensive LC-MS-
based proteomic analysis from left ventricular extracts.

Altogether, 1406 proteins were identified with at least two
validate peptides from 1D-GE bands of pooled left ventricu-
lar samples. Using a spectral library built from those identifi-
cations, 802 proteins could be repeatedly quantified in
individual samples. Seventy-five different proteins were sig-
nificantly changed (p ≤ 0:05 and a minimum of 1.5-fold
change) in fructose-fed rats compared to control animals.
Out of these proteins, 49 were upregulated and 26 were
downregulated. Gene ontology analysis based on subcellular
localization revealed enrichments of proteins with significant
changes in different cell compartments including mitochon-
dria (n = 27), cytoplasm (n = 32), nucleus (n = 10), extracel-
lular space (n = 8), lysosome (n = 3), and Golgi apparatus
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Figure 9: Early signs of de novo lipogenesis induction. (a) Changes in phospholipid species with 1 double bond. (b) Changes in phospholipid
species with 2 double bonds. (c) Alterations in cardiac triglyceride (TG) species profile due to fructose feeding. (d) The double bond index
calculated for TG. PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: phosphatidylglycerol; PI: phosphatidylinositol. ESI-MS
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(n = 3) (Proteomic Table in the Supplementary Material).
The relation of these proteins to different biochemical path-
ways was further analyzed in Reactome (https://www
.reactome.org). The pathway analysis showed that most of
the significantly altered proteins are related to metabolism
(30 in pathways plus 9 interacting with some pathway pro-
teins). Several metabolic pathways are affected, including
the citric acid (TCA) cycle and respiratory electron transport
(n = 10 + 3), metabolism of proteins (n = 9 + 11), lipids
(n = 5 + 3), amino acids (n = 8), and carbohydrates
(n = 6 + 1) (for a complete list, see the Supplementary Prote-
omic Table). Significantly altered proteins related to mito-
chondria, extracellular matrix, histones, oxidative stress, or
apoptosis will be discussed in the following chapters.

3.5. Mitochondria. The proteomic analysis revealed changes
in several proteins associated to various mitochondrial meta-
bolic pathways due to fructose feeding (Table 6). These
altered proteins can be coupled to the pyruvate dehydroge-
nase complex, electron transport chain, transport processes,
and various metabolic pathways, such as the beta oxidation,
tricarboxylic acid cycle, or amino acid metabolism. Pyruvate
dehydrogenase complex plays a central role in the utilization
of glucose as an energy source. Pyruvate dehydrogenase
complex-related genes significantly decreased measured by
proteomic analysis. In contrast, some beta oxidation-related
proteins were increased. The first common point in the
breakdown of glucose and fatty acids, citrate synthase, was
also increased measured by proteomic analysis. These find-
ings may suggest a shift to fatty acid utilization in cardiac tis-
sue. We have also found both increased and decreased
proteins related to the electron transport chain and amino
acid metabolism.

3.6. Extracellular Matrix. We have found three extracellular
matrix-related proteins to be significantly increased and
another one to be decreased in the hearts of fructose-fed rats

as assessed by proteomic analysis (Table 7). The increased
proteins (prolargin, biglycan, and cathepsin D) may play a
role in coping mechanism of the heart to prevent severe
impairment. Prolargin was shown to be increased in a por-
cine model of ischemia/reperfusion injury [71]. Our group
had previously shown that biglycan protects cardiomyocytes
against hypoxia/reoxygenation injury [72, 73] and increases
the expression of several proteins related to cardioprotection
[74]. It has been also reported that myocardial cathepsin D
upregulation induced by myocardial infarction protects
against cardiac remodeling in mice [75]. Interestingly, galec-
tin-1, known to have a protective role in cardiac homeostasis
and postinfarction remodeling, is decreased in fructose-fed
rats [76]. These results support the activation of adaptive
mechanisms in the hearts of prediabetic rats.

3.7. Histones. Interestingly, expression of two histone pro-
teins (core histone macro-H2A.1 and histone H1.5) was
significantly increased in the hearts of fructose-fed rats.
Histones are involved in packing the DNA in the nucleus,
and mis-regulated histone expression is thought to lead to
aberrant gene transcription by altering the chromatin
structure [77].

3.8. Oxidative Stress and Apoptosis. Oxidative stress has a
major role in the development of diabetic cardiomyopathy
[7], and oxidative stress has been linked to the development
of cardiac dysfunction [27, 78]. Moreover, elevated hydrogen
peroxide production, elevated nitrotyrosine formation, and
decreased cardiac function were observed in a prediabetes
model induced by high-fat chow combined with a single
low-dose STZ [6]. In our mild prediabetes model induced
by fructose-enriched diet, there was no significant increase
in the levels of the peroxidation product malondialdehyde
in the serum or left ventricular tissue or in the cardiac level
of the nitrooxidative marker 3-nitrotyrosine as compared to
control values (Table 8).
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However, we have detected by proteomics the increase of
some oxidative stress-related enzymes from cardiac tissue,
which may suggest an initial stage of oxidative stress that
seems to be controlled by adaptive responses. We have found
that alpha-aminoadipic semialdehyde dehydrogenase was
increased in the hearts of fructose-fed rats (Table 5). Alpha-
aminoadipic semialdehyde dehydrogenase protects cells
from oxidative stress by metabolizing a number of lipid
peroxidation-derived aldehydes [79, 80]. We have found that
peroxiredoxin-6 was also increased in the fructose-fed group

(Table 5). This enzyme catalyzes the reduction of hydrogen
peroxide, short chain organic, fatty acid, and phospholipid
hydroperoxides. It also has phospholipase activity and can
therefore either reduce the oxidized sn2 fatty acyl group of
phospholipids (peroxidase activity) or hydrolyze the sn2
ester bond of phospholipids (phospholipase activity). It plays
a role in phospholipid homeostasis and in cell protection
against oxidative stress by detoxifying peroxides [81]. Mito-
chondrial superoxide dismutase decreased in fructose-fed
rats, and this result is consistent with the findings of Lappa-
lainen et al. showing that SOD2 decreased in the kidney of
STZ-induced diabetic rats [82].

Since increased apoptosis often contributes to cardiac dys-
function, in our present study, we also aimed to explore the
effect of prediabetes on apoptosis in the heart. We assessed
the expression of pro- and antiapoptotic proteins by western
blot. Prediabetes did not affect the expression of proapoptotic
caspase-7 and Bax in the left ventricles, while the antiapoptotic
Bcl-2 was downregulated, and thereby, the Bax/Bcl-2 ratio was
significantly increased in the fructose-fed group (Figure 11).

Similar to our results, a modest decrease in Bcl-2 has
been shown recently in another model of prediabetes
induced by a combination of high-fat diet and low-dose

Table 7: Alteration of selected extracellular matrix proteins in
fructose-fed rats by proteomic analysis. Values are expressed as
fold change and p value.

Protein names Gene names Fold change p value

Extracellular matrix

Prolargin Prelp 5.23 0.001

Biglycan Bgn 1.91 0.018

Cathepsin D Ctsd 1.52 0.001

Galectin-1 Lgals1 -3.23 0.005

Table 6: Alteration of selected mitochondrial proteins in fructose-fed rats by proteomic analysis. Values are expressed as fold change
and p value.

Protein names Gene names Fold change p value

Pyruvate dehydrogenase complex

Dihydrolipoyllysine-residue acetyltransferase component of pyruvate
dehydrogenase complex (mitochondrial)

Dlat -3.47 0.022

Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex Dbt -9.53 0.039

Electron transport chain

ETF-ubiquinone oxidoreductase (mitochondrial) Etfdh 3.13 0.004

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 Ndufa2 2.06 0.047

NADH-ubiquinone oxidoreductase chain 4 Mt-Nd4 1.59 0.007

Cytochrome c, testis-specific Cyct 1.56 0.011

Cytochrome b-c1 complex subunit Rieske (mitochondrial) Uqcrfs1 -1.95 0.001

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10 (mitochondrial) Ndufa10 -3.15 0.038

Amino acid metabolism

3-Hydroxyisobutyryl-CoA hydrolase (mitochondrial) Hibch 5.44 0.042

Isovaleryl-CoA dehydrogenase (mitochondrial) Ivd -1.90 0.004

Methylcrotonoyl-CoA carboxylase beta chain (mitochondrial) Mccc2 -2.18 0.046

Transport function

ADP/ATP translocase 1 Slc25a4 2.47 0.005

Voltage-dependent anion-selective channel protein 3 Vdac3 2.17 0.018

MICOS complex subunit Mic60 Immt 1.58 0.003

Beta oxidation

Enoyl CoA hydratase domain-containing 2 Echdc2 1.50 0.018

Electron transfer flavoprotein subunit alpha (mitochondrial) Etfa -1.94 0.001

Other

Malic enzyme Me3 4.27 0.022

Citrate synthase Cs 3.14 ≤0.001
Enoyl-[acyl-carrier-protein] reductase (mitochondrial) Mecr -1.61 0.029

Prohibitin-2 Phb2 -1.65 0.001
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STZ injection [6]. In our present study, we also found in
the proteomic results an increase in the antiapoptotic
mitochondrial 3-ketoacyl-CoA thiolase in the hearts of
fructose-fed rats (Table 5). We think that this alteration
is part of the coping mechanism which protects the cardi-
omyocytes against apoptosis. Indeed, it is known that 3-
ketoacyl-CoA thiolase abolishes BNIP3-mediated apoptosis
and mitochondrial damage [83]. It was shown that 3-
ketoacyl-CoA thiolase increased in the heart of STZ-
induced diabetic mice [84]. The -3.4-fold decrease in the
disulfide-isomerase protein level may also contribute to

the suppression of apoptosis (Table 5) [85]. The upregula-
tion of proapoptotic proteins and the downregulation of
antiapoptotic proteins have already been described in a
diabetic model in rodents [86, 87]. Our data suggest early
dysregulation of pro- and antiapoptotic proteins in predi-
abetes; however, they do not show high induction of apo-
ptosis. Furthermore, it is generally accepted that in type 1
and type 2 diabetes, the low levels of certain heat stress
proteins (e.g., Hsp70 and Hsp27) and their impaired
response to stress may contribute to the etiology of the
disease [88]. It is important to note that in the prediabetic

Table 8: Oxidative stress markers measured in serum and heart tissue in both control and fructose-fed rats. Values aremean ± SEM (n = 8).

Control Fructose-fed p value

Serum malondialdehyde (nmol/mg protein) 4:77 ± 0:43 4:03 ± 0:49 0.274

Cardiac malondialdehyde (nmol/mg protein) 1:27 ± 0:16 1:47 ± 0:22 0.482

3-Nitrotyrosine (nmol/mg) 190 ± 6:0 221 ± 20 0.164
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state, we could not detect any disruption of Hsps. Instead,
the Hsp60 and alphaB-Crystallin levels were markedly ele-
vated by 3.3- and 5.6-fold, respectively (Table 5).

4. Conclusion

This is the first comprehensive analysis of the effect of predi-
abetes on the lipidome and proteome of the heart and its rela-
tionship to impaired diastolic function in a nongenetic
rodent model. In our present study, chronically applied fruc-
tose intake led to the development of a prediabetic condition
characterized by slight hyperglycemia, glucose intolerance,
and insulin resistance (Figure 12).

This prediabetic state likely caused slight DNL induction
in the liver. DNL induction has the capacity to alter the
circulating accessible fatty acid (FA) pool for lipid biosyn-
thesis in other organs. Consequently, the cardiac lipidome
has been altered. The change was found to be comprehen-
sive, deep, and characteristic with main features of monoe-
noic FA enrichment, decrease in linoleic acid (18:2 FA),
complex changes in highly polyunsaturated lipids, and
reprofiling of sphingolipid species compositions. Recent
large-scale findings highlighted that the lower risk of type
2 diabetes was strongly associated with higher 18:2 FA bio-
marker levels [89, 90]. Linoleic acid was able to alleviate
the STZ-induced diabetic phenotype in mice by normalizing
FA metabolism and desaturation and correcting glucose and
insulin levels [91].

It is conceivable that the observed lipidomic changes ulti-
mately altered the biophysical properties of membrane lipids,
which, together with restricted substrate availability, led to
unproper CL remodeling in cardiac mitochondria. Dysregula-
tion of CL remodeling possibly contributed to the impairment
of several mitochondrial processes, as it was assessed by prote-
omic analysis, and finally could result in mild cardiac dysfunc-
tion. As mentioned previously, Barth syndrome shares
biochemical features, like increased CL molecular species
heterogeneity and increased MLCL/CL ratio, with ischemia,

hypothyroidism, heart failure, and aging [19, 92, 93]. More-
over, drastic CL remodeling was observed at early stages in
type 1 and type 2 diabetic hearts [19]. Evidences from prospec-
tive cohort studies and randomized trials have demonstrated
that high n-6 polyunsaturated FA (predominantly linoleic
acid) intake plays an important role in the dietary prevention
of cardiovascular diseases [94]. Altogether, it is well-
established that the loss and defective remodeling of CL alone
can provoke cardiac dysfunction but it is not sufficient to
induce diabetes [95]. However, the deprivation of 18:2
caused by the fructose-induced overproduction of nonessen-
tial FAs can be an important contributor to the development
of the disease. Moreover, as a consequence of the mitochon-
drial dysfunction, a vicious cycle can be initiated by ROS-
induced damage to mitochondrial components [96] at the
transition from the prediabetic to the diabetic stage.

Our data show that at this very early stage of prediabetes
there was no sizeable oxidative stress or apoptosis in the
heart. Instead, several active coping mechanisms were acti-
vated against the harmful consequences of fructose feeding
including the upregulation of enzymes responsible for the
removal of lipid peroxidation products and upregulation of
mitochondrial Hsp60.

Taken together, our study evidences that at the predia-
betic stage there are no clinically accessible signs to declare
a disease because the generally investigated serum parame-
ters do not report about lipotoxicity, cell damage, or substan-
tial hyperglycemia. Nevertheless, the results presented here
clearly demonstrate that the risk for progression of diabetes
and cardiovascular disease is silently present in the guise of
a complex cardiac lipid metabolic imbalance and altered pro-
teomic pattern. Prediabetes might represent a transient,
reversible, “decision-making” state in that process. The
nature of our nongenetic model implies that improper food
intake must persist chronically; the longer you apply the
higher the risk. Therefore, early intervention is important
to prevent the transition from prediabetes to more severe
disease stages.

No serum TG/Chol/LDL increase
No serum LDH increase

No sizeable oxidative stress
No sizeable apoptosis

No sizeable hypertrophy
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Figure 12: Summary of our findings.
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