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Abstract

Pure nucleotide precursor pools are a prerequisite for high-fidelity DNA replication and the suppression of mutagenesis and
carcinogenesis. ITPases are nucleoside triphosphate pyrophosphatases that clean the precursor pools of the non-canonical
triphosphates of inosine and xanthine. The precise role of the human ITPase, encoded by the ITPA gene, is not clearly
defined. ITPA is clinically important because a widespread polymorphism, 94C.A, leads to null ITPase activity in
erythrocytes and is associated with an adverse reaction to thiopurine drugs. We studied the cellular function of ITPA in HeLa
cells using the purine analog 6-N hydroxylaminopurine (HAP), whose triphosphate is also a substrate for ITPA. In this study,
we demonstrate that ITPA knockdown sensitizes HeLa cells to HAP-induced DNA breaks and apoptosis. The HAP-induced
DNA damage and cytotoxicity observed in ITPA knockdown cells are rescued by an overexpression of the yeast ITPase
encoded by the HAM1 gene. We further show that ITPA knockdown results in elevated mutagenesis in response to HAP
treatment. Our studies reveal the significance of ITPA in preventing base analog-induced apoptosis, DNA damage and
mutagenesis in human cells. This implies that individuals with defective ITPase are predisposed to genome damage by
impurities in nucleotide pools, which is drastically augmented by therapy with purine analogs. They are also at an elevated
risk for degenerative diseases and cancer.
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Introduction

The human genome is constantly attacked by exogenous or

endogenous DNA damaging agents. An accumulation of DNA

damage increases genome instability and mutagenesis, which

predisposes cells to neoplasia, as well as degenerative diseases

[1,2]. A prominent cause of endogenous DNA damage decreasing

the fidelity of DNA replication is contamination of the nucleotide

precursor pool with non-canonical nucleotides [3,4]. These

contaminants of the precursor pool include deoxy- and ribonu-

cleoside triphosphates of inosine (ITP/dITP), xanthine (XTP/

dXTP), 8-oxo-guanine (8-O-GTP/8-O-dGTP) and others, gener-

ated either as byproducts of cellular metabolism or by deamination

or oxidation of bases in natural nucleotides. Non-canonical

nucleotides contain analogs of the normal nitrogen bases (base

analogs), which gives some of them the unique property of

ambiguous base pairing during replication [5,6,7]. Incorporated

base analogs in DNA are repaired by the cellular repair systems,

which can result in the accumulation of DNA breaks [8,9]. If base

analogs in DNA escape the repair systems, their capacity for

ambiguous base pairing will lead to the accumulation of mutations

in the subsequent replication rounds [10,11]. Taking into

consideration the harmful effects of base analog incorporation, it

is not surprising that cells have developed elaborate enzymatic

systems that protect from base analog-induced DNA damage

[12,13]. These systems function at two levels. The first level

involves the interception of non-canonical nucleotides in the

precursor pool and their cleavage into di- or monophosphates.

The second level involves detection of improper bases after

incorporation and their direct removal from DNA. The former is

achieved by a class of enzymes called nucleoside triphosphatases

(NTPases) [3]. One such NTPase is evolutionary conserved

Inosine Triphosphate Pyrophosphatase (ITPA) [14].

ITPA is a human ITPase, whose function is to cleave inosine

triphosphate (ITP) and xanthine triphosphate (XTP) as well as

their deoxyribose forms into monophospates. This prevents the

incorporation of the nucleotide inosine (dITP), which contains the

base analog hypoxanthine, and dXTP into DNA [15]. ITPA is

expressed in many human tissues [15,16]. The importance of

ITPases is underscored by severe genome instability phenotypes

caused by deletion of the ITPA homologs in bacteria, yeast and

mice. A mutant of the bacterial ITPase, rdgB, is synthetically lethal

in combination with defects in recombination [8,9,17]. The

deletion of the budding yeast ITPase, HAM1, results in a drastic

elevation of mutagenesis induced by the model purine base analog

hydroxylaminopurine (HAP) [18]. The most severe phenotype for
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ITPase deletion is observed in mice. The majority of the progeny

with ITPase knockout (genotype Itpa2/2) are inviable [19]. The

mice that survive suffer from growth retardation and die before

weaning from cardiac failure. Fibroblasts obtained from the

ITPase knockout mice accumulated DNA single-strand breaks and

chromosomal abnormalities [20]. Therefore, in bacteria, yeast and

mice, the ITPase function plays an important role in maintaining

genomic integrity.

The precise cellular function of the human ITPase, ITPA, is not

clearly defined. There is a polymorphism in the ITPA gene in the

human population. Several alleles cause atypical ITPase activity

[21,22,23]. Clinically, the most relevant polymorphism is the

ITPAc.94C.A missense mutation that results in a substitution of

proline with threonine at position 32 (P32T). The allelic frequency

of this mutation ranges from 5 to19%, with the highest frequency

found in the Asian population [22]. Homozygotes for the P32T

mutation have no ITPase activity in erythrocytes, whereas

heterozygotes have approximately one-fourth ITPase activity.

Although ITPA deficiency in humans appears to be benign, the

administration of thiopurine therapy leads to adverse drug

reactions in these individuals [21,24,25].

To analyze the role of ITPA in human cells, we forced

nucleotide pool contamination by 6-hydroxyadenine (hydroxyla-

monipurine, abbreviated HAP). The dHAPTP is as good a

substrate for ITPA as ITP or XTP [26]. HAP is a potent mutagen

that can mispair with C or T and induce GC to AT and AT to GC

transitions [27,28]. Unlike most mutagens, HAP in non-recombi-

nogenic in yeast and its mutagenic action is independent of

translesion synthesis DNA polymerase, Pol f [29,30]. Nevertheless,

it is clastogenic in mammalian cells [31]. Most likely, HAP is

activated to deoxynucleoside triphosphate by a combination of

salvage and de novo purine biosynthesis pathways [26], but

definite genetic identification of the responsible enzymes has only

been obtained for the first step, conversion of the base to HAPMP

by phosphoribosyltransferases in bacteria and yeast (Stepchenkova

and Schaaper, personal communication and [32]). The dHAPTP

is readily incorporated into DNA by the replicative DNA

polymerases of bacteria and eukaryotes [27,33]and is repaired in

bacteria by the same systems as dITP and dXTP [9], thereby

enabling us to extrapolate the results obtained with HAP to

natural base analogs. Thus, the use of HAP provides us with a

good tool to investigate the protective effects of ITPA against

nucleotide pool contamination.

In this study, using the cervical carcinoma cell line HeLa and

HAP as a model, we demonstrate that ITPA knockdown sensitizes

human cells to base analog-induced DNA breakage, mutagenesis

and apoptosis. These phenotypes can be rescued by overexpress-

ing the yeast ITPase, HAM1, in the ITPA knockdown cells. Our

data suggest that ITPA plays a critical role in protecting human

cells against the cytotoxic, genotoxic and mutagenic effects of base

analogs. This implies that individuals with defective ITPase are at

an elevated risk for degenerative diseases and cancer.

Results

HAP incorporation into DNA of HeLa cells
It is known that hypoxanthine bases accumulate at a detectable

level in RNA and in DNA in Itpa knockout mice [19,20]. To find

whether HAP is present in DNA of treated HeLa cells, we studied

the appearance of endonuclease V-cleavable sites. HAP in DNA is

recognized by the product of the bacterial nfi gene, EndoV protein

[9]. The enzyme cuts the second bond 39 to the modified base and

leaves free 39 OH groups [34,35]. Such DNA will be a substrate

for nick translation and therefore, the incorporation of label by E.

coli DNA polymerases I would be proportional to the quantity of

such nicks [36]. We found that the number of EndoV cleavable

sites tremendously increases in DNA isolated from HeLa cells

grown in the presence of HAP (Fig. 1). This means that after

24 hours there is a substantial proportion of HAP in DNA, which

was not removed by DNA repair in human cells. We previously

detected DNA breaks, presumably being intermediate products of

repair of HAP, in the Comet assay after the same 24 hours [37].

While sensitive Comet assay detects some breaks, most HAP is still

present in DNA at this time. Massive removal of HAP achieved by

EndoV in vitro produces a strong signal in nick-translation assay.

HAP treatment triggers apoptosis in HeLa cells
Previously, it has been reported that HAP treatment results in

chromosomal fragmentation in human epidermoid cells [38]. This

effect appears to be cell line specific, because HAP did not induce

a chromosomal catastrophe in HCT116 cells [37]. This suggests

that HAP is potentially capable of causing devastating DNA

damage in human cells, but this is realized only under certain

conditions. We examined whether HAP treatment triggered

apoptosis in human cells. To do this, we determined the effects

of increasing doses of HAP on the viability of HeLa cells after

24 hours or 48 hours of treatment (Fig. 2A). After staining the cells

with Hoechst dye, we enumerated the number of apoptotic nuclei

by fluorescence microscopy. No effects of HAP treatment were

seen after 24 hours. After 48 hours of HAP treatment, we found

that 35% of the cells were apoptotic at a dose of 1.32 mM, while

42% of the cells underwent apoptosis at 1.98 mM. This increase is

significant (p,0.01) as compared to the 16% apoptosis observed at

these doses after 24 hours of treatment. The two-fold increase in

apoptotic cells observed after 48 hours of treatment suggests that

Figure 1. HAP treatment leads to the appearance of EndoV
sensitive sites in HeLa DNA. We extracted genomic DNA from HeLa
cells grown with or without HAP. Treatment of this DNA with bacterial
EndoV creates 39 nicks, which are substrates for nick-translation
(BioProbeH Nick translation kit with bio-16-dUTP (Enzo Life Sciences))
as described in Materials and Methods. A. Agarose gel electrophoresis
of nick-translated DNA from HeLa cells. 1- from untreated cells; 1a –
from untreated cells digested with DNase; 2 – from cells grown in
2.64 mM HAP; 3- from untreated cells, DNA incubated with Endo V; and
4 - from cells grown in 2.64 mM HAP, DNA incubated with Endo V. B.
Detection of newly synthesized biotinylated DNA separated by alkaline
agarose electrophoresis. 1- from untreated cells; 2 – from cells grown in
2.64 mM HAP; 3- from untreated cells, DNA incubated with Endo V; and
4 - from cells grown in 2.64 mM HAP, DNA incubated with Endo V.
doi:10.1371/journal.pone.0032313.g001
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HAP is cytotoxic to human cells, but cell divisions are necessary

for HAP to exert its cytotoxic effects.

By immunostaining of the whole cells as well as by immunoblot

we have shown that HAP treatment causes an induction of the

ITPA protein production in HCT116 cells [37]. We confirmed

that this was the case for HeLa cells as well. We observed that

ITPA protein levels were elevated after 24 hours as well as

48 hours after HAP treatment (Fig. 2B). The mechanism is

Figure 2. Effects of HAP treatment on apoptosis and ITPA levels in HeLa cells. (A) HAP treatment causes apoptosis in HeLa cells after
treatment for 24 or 48 hours. By two-way ANOVA, ptime = 0.001 and pconcentration = 0.0046. **p,0.01 by Bonferroni multiple comparison post test for
column analysis comparing means for 24 hours vs. 48 hours. (B) HAP treatment leads to the increase of ITPA protein levels in HeLa extracts following
treatment for both 24 hours and 48 hours. Western blots were performed as described in Materials and Methods. P- pure ITPA protein, C- untreated
control, DMSO – solvent only. (C) HAP treatment does not increase levels of ITPA transcripts. The analysis was performed as described in Materials and
Methods. HAP treatment was for 24 hours. Mr – 100 bp ladder.
doi:10.1371/journal.pone.0032313.g002
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unclear, but it does not occur at the level of transcription, as

demonstrated by RT-PCR (Fig. 2C). The induction of the ITPA

protein levels appeared to be more prominent after 48 hours. The

increase of ITPA protein production in response to HAP

treatment is consistent with the idea of a high demand for ITPA

when the precursor pool is contaminated with dHAPTP.

HAP-induced apoptosis occurs through the intrinsic
pathway

Apoptosis can occur by two pathways: either the extrinsic

pathway that involves death receptors or the intrinsic pathway that

occurs through the mitochondria. The intrinsic pathway can be

blocked by the overexpression of the anti-apoptotic protein Bcl-xL

[39]. To examine which pathway was involved in the case of HAP

treatment, we assayed for apoptosis following a 48-hour HAP

treatment of HeLa cells overexpressing Bcl-xL (henceforth referred

to as HeLa-xL) [40]. As evident from Fig. 3A, the HeLa-xL cells

were protected from HAP-induced apoptosis. We confirmed the

protection of HeLa-xL cells from HAP-induced apoptosis by

performing immunoblots for PARP cleavage, a hallmark of

apoptosis [41]. No PARP cleavage (Fig. 3B) was observed in

HeLa-xL cells, in a sharp contrast with HeLa cells.

HAP treatment causes an accumulation of DNA strand
breaks prior to the onset of apoptosis

Deletion of the E. coli ITPase, rdgB, results in the generation of

DNA breaks and chromosome fragmentation due to the excision

of hypoxanthine by Endo V [8,9,17]. We have previously shown

that HAP induces DNA breaks in human cells [37]. Most likely,

HAP in DNA is processed in a manner similar to the processing of

hypoxanthine by either the human homolog of Endo V or some

other yet to be identified enzymes. One possible candidate could

be the AAG glycosylase, which can excise hypoxanthine [42]. The

observation that HAP is capable of inducing apoptosis raised the

possibility that the breaks we observe reflect the onset of apoptotic

destruction of the nucleus. The HeLa-xL cells provided us with a

good tool for distinguishing between the two scenarios. As Bcl-xL

overexpression blocks apoptosis, we rationalized that DNA breaks

occurring during the repair of HAP incorporated into DNA would

not be affected by Bcl-xL overexpression and therefore could be

distinguished from DNA breaks caused by the process of apoptosis

itself. In the latter case, Bcl-xl overexpression would block the

appearance of DNA breaks as apoptosis itself is suppressed. We

studied the effect of increasing doses of HAP on the formation of

DNA breaks by alkaline comet assay after 24 hours of HAP

treatment in both cell lines. In prior experiments, this was a time

point where HAP treatment did not cause more than 16%

apoptosis. We observed that both cell lines accumulated similar

levels of DNA breaks (Fig. 3C). These data suggest that HAP

treatment does generate DNA breaks upstream to apoptosis.

ITPA knockdown cells are hypersensitive to HAP-induced
apoptosis

To investigate the role of ITPA in protecting against HAP-

induced cytotoxicity, we made stable knockdowns of ITPA by

transfecting HeLa with plasmids expressing shRNA that targeted

the ORF of ITPA. We obtained an efficient knockdown of ITPA

(Fig. S1). The ITPA knockdown cells were viable, indicating that it

is not an essential gene. Upon treatment with HAP for 24 hours,

30–50% of ITPA knockdown cells underwent apoptosis (p,0.001

for 0.66 mM, p,0.0001 for 1.32 mM and 1.98 mM) (Fig. 4). In

control HeLa cells, comparable levels of apoptosis were observed

only after 48 hours of treatment. No statistically significant

differences were observed for the untransfected and non-targeting

shRNA transfected controls. Thus, ITPA knockdown sensitizes

cells to HAP-induced apoptosis. Hydrogen peroxide treatment is

known to induce DNA breaks in HeLa cells and subsequently

cause apoptosis [43,44]. Therefore, we used this as a positive

control for our apoptosis assays to determine if HAP-induced

hypersensitivity to apoptosis was specific for ITPA knockdown. We

found that hydrogen peroxide treatment caused the same level of

apoptosis in all three cell lines. Taken together, our data suggest

that ITPA plays an important role in protecting HeLa cells against

HAP-induced apoptosis.

Suppression of HAP-induced apoptosis by
overexpression of ITPA or HAM1

In prior experiments we found that ITPA protein production

was induced in response to HAP treatment (Fig. 2B). This

suggested a putative role of ITPA in protecting against the harmful

effects of HAP. Moreover, we found that ITPA knockdown made

cells hypersensitive to HAP-induced apoptosis. To further establish

the protective role against HAP-induced apoptosis, we determined

whether overexpression of ITPA or its yeast ortholog, HAM1,

protected HeLa cells from HAP-induced apoptosis. We transfected

HeLa cells with two constructs where ITPase genes were under a

strong constitutive promoter. One expresses ITPA-GFP, encoding

for a fusion of ITPA with the GFP protein, another expresses

HAM1-GFP, encoding for a fusion of Ham1 with the GFP protein.

The production of both fusion proteins was confirmed by

immunoblot (Fig. S2A). We compared the apoptotic response at

a HAP dose of 1.98 mM for 48 hours. This dose of HAP caused

42% of the cells to undergo apoptosis (Fig. 3A). As compared to

the cells transfected with vector alone, ITPA overexpressing cells

were protected from HAP-induced apoptosis (Fig. 5A, p,0.01). A

similar level of protection was also observed in the case of HAM1

overexpression (p,0.05).

We have shown that the expression of wild-type ITPA as well

as HAM1 could efficiently rescue cells from apoptosis caused by

HAP treatment, suggesting that the yeast protein functions in the

foreign environment (Fig. 5A). Therefore, we rationalized that the

high expression of HAM1 should be able to complement the

defects caused by ITPA knockdown in those cells as well. We

anticipated that HAM1 would not be inhibited by shRNA

targeting ITPA. We confirmed the expression of the HAM1

construct and consequent protein production in the knockdown

cells by immunoblot (Fig. S2B). When we treated the transfec-

tants with 1.98 mM HAP for 48 hours, we found that

approximately 57% of cells transfected with the vector only

underwent apoptosis. However, cells transfected with the vector

expressing HAM1 were resistant, with only 13% undergoing

apoptosis (Fig. 4B) (p,0.0001). Thus, HAM1 complemented the

defect seen in the case of ITPA knockdown, proving that the

differences in the HAP sensitivity of normal and ITPA

knockdown cells are due to one gene, ITPA.

ITPA knockdown leads to elevated levels of HAP-induced
DNA breaks

We had previously demonstrated that human dermal fibroblasts

with endogenous ITPA-P32T (associated with null ITPase activity

in erythrocytes, as discussed in the Introduction) accumulated

more DNA breaks than the control fibroblast cell line with a wild-

type ITPA [37]. The availability of ITPA knockdown HeLa cells

transfected with control vector or vector expressing the yeast

HAM1gene allowed us to study the effects of HAP in nearly

isogenic cell lines. We assayed for levels of DNA breaks by alkaline

Human ITPA in Genome Stability and Apoptosis

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e32313



Figure 3. HAP-induced apoptosis occurs through the intrinsic pathway. (A) Protection from HAP-induced apoptosis by overexpression of
Bcl-xL. Both HeLa and HeLa-xL cell lines were treated with increasing doses of HAP for 48 hours and the percentage of apoptotic cells was
determined by Hoechst staining. By two-way ANOVA, pcell line,0.0001 and pconcentration = 0.009. **p,0.01,***p,0.001 by Bonferroni multiple
comparison post test for column analysis comparing means for HeLa vs. HeLa-xL hours. (B) Confirmation of protection from HAP-induced apoptosis
by Bcl-xL overexpression by immunoblot for PARP cleavage. HAP induced dose-dependent cleavage of PARP in regular HeLa cells but not in HeLa
cells overexpressing Bcl-xL. PAPR cleavage product is marked as cl89. (C) HAP treatment results in similar levels of DNA breaks in HeLa and HeLa+Bcl-
xL cell lines (p.0.05).
doi:10.1371/journal.pone.0032313.g003

Human ITPA in Genome Stability and Apoptosis

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e32313



comet assay at low doses of HAP. At these doses, we did not expect

any HAP-induced apoptosis, which would otherwise confound the

interpretation of the data since apoptosis itself causes DNA

fragmentation. We found that ITPA knockdown cells and ITPA

knockdown cells transfected with the empty vector accumulated

more DNA breaks than the knockdown cells overexpressing

HAM1 at low doses of HAP treatment (0.066–0.66 mM) (Fig. 6).

At higher doses of HAP, the comet tails in the knockdown cells

were too large to be precisely quantified. In the HAM1

overexpressing a knockdown cell comet tail at higher doses ranged

from 13 to 20%, which is slightly less that in the original HeLa,

Fig. 3C. No statistically significant difference in levels of DNA

breaks was observed in response to hydrogen peroxide treatment

in the three cell lines.

ITPA knockdown in HeLa cells elevates HAP-induced
mutagenesis

In addition to triggering apoptosis, we anticipated that

contamination of the nucleotide precursor pools with non-

canonical nucleotides could lead to elevated mutagenesis. HAP

has been shown to be mutagenic and carcinogenic in mammalian

cells [45,46]. It is known that the disruption of the HAM1 gene in

the budding yeast S. cerevisiae causes hypermutagenesis in response

to HAP treatment [18]. We therefore investigated whether this

Figure 4. ITPA protects against HAP-induced apoptosis. ITPA knockdown sensitizes cells to HAP-induced apoptosis. As compared to the
control and non-targeting shRNA transfected cells, ITPA knockdown cells undergo approximately 30–50% apoptosis upon HAP treatment for
24 hours. Hydrogen peroxide treatment (0.1 mM, four hours) was used as a positive control. The difference between control cells and cells with the
ITPA knockdown is highly significant (***p,0.001, ****p,0.0001). There was no difference between the control versus the non-targeting cell lines in
all HAP doses tested. No significant difference in hydrogen peroxide-induced apoptosis was observed for all three cell lines.
doi:10.1371/journal.pone.0032313.g004

Figure 5. ITPase overexpression suppresses HAP-induced cytotoxicity. (A) Effect of overexpression of the ITPA and the gene encoding yeast
ITPase, HAM1, on HAP-induced apoptosis in HeLa cells. Differences are significant (*p,0.05, **p,0.01). (B) Overexpression of the yeast HAM1 could
rescue ITPA knockdown cells from hypersensitivity to HAP-induced apoptosis (****p,0.0001, n.s., not significant).
doi:10.1371/journal.pone.0032313.g005

Human ITPA in Genome Stability and Apoptosis
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phenotype would be seen in ITPA knockdown human cells as well.

We determined that HAP-induced mutant frequencies at the

HPRT locus (6-thioguanine resistance). The viability of HeLa cell

lines with or without ITPA knockdown was not affected by HAP

treatment. No statistically significant differences were observed

between the untransfected and shRNA-transfected cells in the

absence of HAP treatment. HAP was clearly mutagenic for HeLa

cells, increasing mutant frequency three-fold at 0.1 mM and 13-

fold at 1 mM (Suplementary Table 1). Next we compared HAP-

induced mutant frequencies for HeLa and ITPA knockdown cells

as described in Materials and Methods. We found that ITPA

knockdown cells were more sensitive to HAP-induced mutagenesis

at high doses as compared to the untransfected cells (p,0.01)

(Fig. 7). This suggests that ITPA plays a role in the protection from

HAP-induced mutations.

Discussion

An understanding of the role of ITPA in human cells is

important because several alleles representing polymorphism in

the ITPA gene are associated with the onset of thiopurine therapy-

related diseases. We probed the function of ITPA by determining

whether the enzyme protected HeLa cells against the harmful

effects of the model purine analog, HAP.

Previous reports have shown that HAP treatment results in

severe genotoxic stress to cells. HAP treatment causes chromo-

somal fragmentation and mutagenesis in human cells and in

Syrian hamster embryo cells [31,38]. We propose that HAP

incorporated into the DNA of human cells (Fig. 1) is being

repaired, intermediates of the repair cause breaks and these

persisting breaks cause apoptosis.

We found that HAP treatment induced apoptosis in HeLa cells.

The manifestation of apoptosis was prominent after 48 hours of

treatment (Fig. 2A). This is in contrast to genotoxicants directly

damaging DNA, like UV irradiation or hydrogen peroxide, which

induce apoptosis within 4–6 hours of treatment [40,43]. The

delayed response suggests that HAP needs to be activated to

dHAPTP and incorporated into DNA during replication in order

to exert its cytotoxic effects. At present, the exact pathway of HAP

activation in human cells is not known. We propose that it could

be similar to the hypothetical pathways proposed for bacteria and

yeast [26,32]. As HAP treatment is indicative of the effects of

nucleotide pool contamination, our data imply that elevated

Figure 6. ITPA protects against HAP-induced DNA breaks. Alkaline comet assay data reveals that as compared to the control and non-
targeting shRNA-expressing cell lines, ITPA knockdown cells accumulated elevated levels of DNA breaks after 24 hours of treatment with HAP. At
high doses of HAP, the sizes of the comet tails in the ITPA knockdown cells were too large to be quantified. The assay was performed at lower doses
of HAP treatment in order to obtain measurable comet tails. As compared to the cells with vector, the overexpression of HAM1 suppressed the
accumulation of HAP-induced DNA breaks in the ITPA knockdown cells. Statistical differences were measured by one-way ANOVA followed by Dunns
multiple comparisons for column analysis. By two-way ANOVA, p = 0.008. Post-test analysis revealed differences (p,0.05) for knockdown versus
knockdown+HAM1 and knockdown+vector versus knockdown+HAM1. No difference in levels of DNA breaks was observed for hydrogen peroxide
treatment for all three cell lines.
doi:10.1371/journal.pone.0032313.g006

Figure 7. ITPA protects against HAP-induced mutagenesis. The
data represent the induced HPRT mutant frequency for the HAP-treated
control and ITPA knockdown cells. At a low dose (0.1 mM) of HAP
treatment for 24 hours the difference between cell lines was not
significant but at dose 1 mM ITPA knockdown cells were more sensitive
to HAP mutagenesis. (**p,0.01, n.s., not significant).
doi:10.1371/journal.pone.0032313.g007
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nucleotide pool contamination and the subsequent incorporation

of base analogs into DNA causes apoptosis in human cells.

What is the mechanism underlying HAP cytotoxicity in human

cells? Using an analogy to experiments with bacteria, one

possibility is the generation of relatively long-lived single strand

DNA breaks as intermediates during the repair of HAP in DNA.

These breaks are converted to double strand breaks when the

replication fork encounters the discontinuity in the template

[9,47,48].

The incorporation of thiopurines into DNA causes DNA breaks

and subsequent apoptosis due to incomplete mismatch repair

[49,50]. An elevated level of the incorporation of 8-oxoG into

DNA triggers the accumulation of single-strand DNA breaks,

which results in cell death in mouse cells [51,52]. The situation

with 8-OG in mammalian cells is thus different from bacteria,

where no chromosomal DNA fragmentation occurs in the mutT

mutants [53]. It is possible that clastogenicity of base analogs

depends on the relative efficiency of the repair systems responsible

for their removal from DNA. We propose that HAP-induced

apoptosis is caused by persisting DNA breaks. We found that HAP

treatment triggered the accumulation of DNA breaks, which later

led to apoptosis in HeLa cells but not in HeLa-xL cells.

Presumably, these DNA breaks could be caused by the inefficient

excision of HAP from DNA by an uncharacterized glycosylase or

nuclease. Endo V has been shown to play a key role in this process

in E.coli lacking the ITPase gene, rdgB [9]. Orthologs of the nfi gene

encoding for endonuclease V have been characterized in mice and

found in the human genome [34,35,54]. The mouse enzyme was,

however, was 50 times less active than the bacterial Endo V. The

variants of human enzyme have been purified but no endonucle-

ase activity was detected (Waisertreiger, unpublished, R. Dalhus,

personal communication). The exact mechanism of HAP and

hypoxanthine repair in humans remains to be determined.

We found that knocking down ITPA by shRNA sensitized cells

to HAP-induced apoptosis (Fig. 4). The knockdown cells per se are

viable, thereby indicating that ITPA is not an essential gene in

human cells. Overexpression of the yeast HAM1 in the knockdown

cells rescued them from the cytotoxic effects of HAP. The

knockdown cells accumulated more DNA breaks, which were

suppressed in knockdown cells that overexpressed HAM1 (Figs. 5B

and 6). Thus, ITPA prevents the accumulation of HAP-induced

DNA damage. In passages of mouse embryonic fibroblasts, a

spontaneous increase in production of the NUDIX protein,

NUDT16, suppressed the genome instability phenotypes associat-

ed with Itpa deletion, thus suggesting a functional redundancy

between Itpa and NUDT16 [20]. Here, we did not observe any

redundancy for ITPA function. Although NUDIX proteins are

found in human cells, it is possible that they are activated under

special conditions. It is also possible that ITPA knockdown by itself

is insufficient to activate the expression of NUDIX genes in human

cells in a relatively limited number of passages. Another possibility

is that the functional redundancy between NUDIX genes and ITPA

is specific to mice. Collectively, we have shown that ITPA plays a

critical role in preventing HAP-induced apoptosis. This implies

that ITPA could play a role in protecting against the incorporation

of dITP/dXTP as well.

Thiopurines like azathioprine are commonly used immunosup-

pressive or anti-cancer drugs that exert their cytotoxic effects by

being converted into active nucleotides, which are then incorpo-

rated into DNA. ITPA is capable of destroying nucleoside

triphosphate of 6-MP [55]. A number of reports link chronic

immunosuppression/therapy with thiopurines like azathioprine

and the onset of therapy-induced cancer. One of the mechanisms

by which thiopurines bring about immunosuppression is by

causing the death of cytotoxic T lymphocytes, which is elicited

by the persistence of DNA breaks [50,56]. It is plausible that the

mechanism of cytotoxicity is similar for thiopurines and HAP.

Increased DNA damage can force cells to undergo either apoptosis

or senescence in order to prevent the passage of damaged DNA to

progeny cells. While apoptosis is critical for tissue homeostasis,

increased apoptosis is harmful because it can lead to organ

damage and degeneration. Elevated levels of DNA breaks and

apoptosis have been implicated as one of the causes of

degenerative diseases such as diabetes, arthritis, and cardiac

failure as well as neurodegenerative diseases like Alzheimer’s

disease, Huntington’s disease and Parkinson’s disease [57,58]. The

increased apoptosis observed in the ITPA knockdown cells in

response to HAP treatment is clinically relevant because it raises

the possibility that individuals with ITPase deficiency could be at

risk of developing therapy-induced organ damage and degener-

ation.

Therapy-induced cancer is a serious side effect of long-term

thiopurine-mediated immunosuppression [50,56]. In transplant

recipients, a decade long exposure to thiopurines like azathioprine

is associated with the onset of cancers such as leukemia and

squamous cell carcinomas. Moreover, there is a putative

association between P32T ITPA, prolonged azathioprine therapy

and the onset of carcinoma [59]. We have shown that ITPA

knockdown results in increased HAP-induced mutagenesis. This is

in line with our previous findings in yeast wherein HAP treatment

in yeast with a HAM1 mutation resulted in two orders of

magnitude higher mutagenesis as compared to their wild-type

counterparts [18,29]. In human cells, however, ITPA knockdown

did not result in such a dramatic phenotype as was observed with

yeast. The situation resembles the discrepancies in magnitude of

the effect of the absence of 8-oxoguanine triphosphatase in

bacteria (mutT is a very strong, up to 1000-fold, mutator [60]) and

mice (Mth2/2 cells possess a very weak two-fold mutator

phenotype [61]). In spite of this relatively small effect on the

mutation rates, the deletion of Mth1caused an accumulation of 8-

oxoguanine in DNA and resulted in an increase in tumors in mice.

In our study, ITPA plays a more prominent role in prevention of

apoptosis that mutagenesis caused by HAP, suggesting that

different pathways lead to these events. It is also possible that

the yeast ham 1 mutant hypermutability maybe a very special case,

because yeast possess neither a molybdenum cofactor-dependent

pathway of HAP destruction [62,63], nor Endo V. Elevated levels

of DNA breaks and the increase in HAP-induced mutant

frequencies observed in the case of ITPA knockdown provide a

possible link between ITPA deficiency and a predisposition to

therapy-related and spontaneous cancer caused by intrinsic base

analogs.

We have demonstrated that the elevated nucleotide pool

contamination by nucleotides containing HAP, and by extrapo-

lation, endogenous hypoxanthine and xanthine, causes high levels

of apoptosis in human cells which, if unchecked, could lead to the

onset of degenerative diseases. We have uncovered the critical role

of ITPA in maintaining the stability of the genome and apoptosis in

human cells. Based on the data obtained in this study and concepts

generated with model systems, we propose the following model for

the role of ITPA in human cells (Fig. 8). In the presence of

functional ITPA, the accumulation of non-canonical nucleotides

like dITP, dXTP or dHAPTP is prevented due to the ITPase

activity. This precludes the accumulation of base analogs

hypoxanthine, xanthine or HAP into DNA and helps maintain

the genome stability. In the absence of functional ITPase, non-

canonical nucleotides accumulate in the precursor pool and base

analogs are incorporated into DNA by the replicative DNA
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polymerases. Repair of base analogs results in the accumulation

of DNA single-strand breaks, which are converted to double-

strand breaks during replication. This triggers apoptosis and

increased levels of apoptosis contribute to the onset of

degenerative diseases. In the absence of repair, base analogs

persist in DNA, causing errors in replication. This leads to the

accumulation of mutations, which predisposes individuals to

cancer development. Overall, the findings from this study suggest

that ITPA is an important factor in the maintenance of genome

stability and protection from the onset of therapy-induced

degenerative diseases and cancer.

It is also worth mentioning that, in some cases, the defect of

ITPA could be a benefit in special situations, because the

condition prevents hemolytic anemia in hepatitis C patients

treated by ribavirin [64]. This might partially explain why ITPA-

P32T allele is retained in population and demands further studies

of the role of ITPA and its variants in humans.

Materials and Methods

Cells and cell culture
HeLa cervical carcinoma cell line and its derivative overex-

pressing Bcl-xL (HeLa-xL) were described previously [40]. Both

cell lines were cultivated in DMEM (Invitrogen, U.S.A.)

containing 10% fetal bovine serum (FBS, Gibco) at 37uC in a

5% CO2 atmosphere.

Chemicals
The base analog 6N-hydroxylaminopurine (HAP) was obtained

from MP Biologicals Inc. U.S.A. Stocks of HAP were prepared in

DMSO and heated slightly to facilitate dissolution of HAP

powder. Hydrogen peroxide (H1009) was obtained from Sigma

Co (St. Louis, MO). Doses of HAP used in the experiments ranged

from 0.066 mM to 1.98 mM, which corresponded to concentra-

tions of 10 mg/mL to 300 mg/mL.

Transfection of human cells and generation of stable cell
lines

Transfection experiments were carried out using Lipofectamine

LTX reagent (Invitrogen, U.S.A.) according to the manufacturer’s

instructions. Plasmids for the expression of shRNA against ITPA

(Cat # KH0744P) were purchased from SABiosciences (MD). The

shRNA encoded by these plasmids target the ORF of ITPA. HeLa

cells were transfected by the four plasmids individually and

assayed for knockdown efficiency by immunoblot and HAP

cytotoxicity by Hoechst staining. As per the instructions provided

by the manufacturer, the two plasmids with the highest

knockdown efficiency were selected for creating cell lines with

stable ITPA knockdown. In this case, 1 mg each of plasmids 1 and

2 were used for co-transfection and stable maintenance of plasmids

was achieved by selection for puromycin resistance. Stable

transfectants were cultivated in DMEM+10% FBS+3 mg/mL

puromycin for at least one week before proceeding with further

experimentation. ITPA stable knockdown typically lasted for about

three weeks.

Plasmid construction
DNA fragments with ITPA and HAM1 were PCR-amplified

from previously constructed bacterial expression plasmids

Figure 8. Model for the protective role of ITPA against HAP-induced genotoxicity and mutagenesis. In the presence of functional ITPA,
the accumulation of non-canonical nucleotides like dHAPTP is abrogated by the ITPase, thereby preventing their incorporation into DNA. In the
absence of functional ITPase, dHAPTP accumulates in the precursor pool and is incorporated into DNA by the replicative DNA polymerases. Grey
circles represent HAP accumulation in DNA. Slow excision of base analogs by an unknown nuclease/glycosylase results in the accumulation of single-
strand DNA breaks, which triggers apoptosis. Increased levels of apoptosis contribute to the onset of degenerative diseases. In the absence of repair,
HAP persists in DNA causing incorrect pairing with T or C, thus leading to the accumulation of mutations, which predisposes individuals to the
development of cancer.
doi:10.1371/journal.pone.0032313.g008
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[65,66,67]. Both ORFs were cloned into the EcoRI-BamHI sites

of the mammalian expression vector pEGFP-C1 in frame with

GFP.

Antibodies
Antibody against PARP (#9542) was purchased from Cell

Signaling. Antibody against b-Actin (A5441) was purchased from

Sigma Co (St. Louis, MO). Antibody against GFP (SC9996) was

purchased from Santa Cruz Biotechnology Inc. The polyclonal

antibody against ITPA was developed in–house [67].

Immunoblotting
HeLa cells were harvested by scraping with plastic scrapers and

pelleted at 1000 g at 4uC. The cell pellets were washed twice to

remove traces of medium. Lysates were prepared by resuspending

the harvested cell pellets in NP-40 lysis buffer containing 0.1 mM

PMSF, 16 HALT protease inhibitor cocktail (Fisher Scientific)

and 1 mM sodium orthovanadate. Protein concentrations in the

lysates were determined by a Bradford assay (Biorad). Separation

of proteins was done by SDS PAGE. The amount of lysate

corresponding to 50 mg of protein was boiled in Laemmli’s buffer

containing 0.1 M DTT and then loaded onto a 4–20% Tris-

Glycine gel (Invitrogen, U.S.A.). Resolved proteins were trans-

ferred onto a PVDF (Millipore) membrane and blocked in 5%

non-fat dry milk/16 PBST for 20 min. Thereafter, membranes

were incubated with the appropriate dilution of the primary

antibody with shaking overnight at 4uC. Membranes were washed

three times in 16 PBST for 10 min each and incubated with

appropriately diluted HRP-linked secondary antibody (Fisher

Scientific) for one hour at room temperature. The membrane

was washed three times in 16PBST for 15 min each, and signals

were detected by Immobilion Western chemiluminescent HRP

substrate (ECL, Millipore), according to the manufacturer’s

instructions.

RT-PCR
Total RNA was extracted using RNeasy Kit (Qiagen). The

cDNA was synthesized from 2 mg of RNA using the Superscript

III first strand cDNA synthesis kit (Invitrogen), according to the

manufacturer’s instructions. The part of the ITPA transcript was

amplified using the primers 59-TCATTGGTGGGGAAGAA-

GATC-39 and 59AAGCTGCCAAACTGCCAAA-39. PCR am-

plification using these primers gives 550 bp of product. The

primers 59-TCCACCACCCTGTTGCTGTA-39 and 59-ACCA-

CAGTCCATGCCATCAC-39 were used for amplification of the

part of the housekeeping gene GAPDH transcript to give a product

of 108 bp.

Quantification of the levels of apoptosis
Apoptosis was quantified according to nuclear morphology by

using Hoechst 33342 at 1 mg/mL (Molecular Probes). Three

different viewing areas were randomly chosen for each experi-

ment. Pictures containing approximately 300 cells were taken for

each Hoechst stained viewing area. The percentage of cells

undergoing nuclear condensation was calculated for each viewing

area. At least three independent experiments were quantified for

each data point.

Alkaline comet assay for assessing accumulation of DNA
breaks

Comet assay with HAP was described previously. All of the

required chemicals were purchased from Trevigen, Inc. (U.S.A.)

[37].

Determination of the frequency of HAP-induced HPRT
mutants

Parent HeLa cells and ITPA knockdown cells were plated at a

density of 10 million cells per 10 cm dish. Cells were allowed to

attach overnight, following which the growth medium was

replaced with fresh medium or by medium with the appropriate

dose of HAP. Cells were incubated for 24 hours and then the

treatment medium was replaced with normal growth medium for

24 hours to allow for phenotypic expression of 6-TG resistant

mutants. Cells were then trypsinized and 107 cells were plated

onto twenty 10 cm dishes containing growth medium supple-

mented with 6 mg/mL 6-thioguanine (Sigma, St. Louis, MO) at a

density of 56105 cells per plate. For plating efficiency, cells were

plated in three plates with normal growth medium at a density of

56102 per plate. After two weeks, cells were fixed with 70%

ethanol and stained with 5% Giemsa solution in PBS. Colonies

were counted macroscopically for plating efficiency. For 6-TG

resistance, colonies were counted using an inverted light

microscope at 106magnification. Aggregates of 50 cells or more

were scored as a colony. Mutant frequency was calculated using

the formula of Glaab and Tyndall (49):

MF~number of 6TG{resistant colonies=

10000000 � Plating efficiency=1500ð Þð Þ:

This experiment was repeated three times with three consecutive

passages of cells. In every experiment we determined the induced

mutant frequency, where the background mutant frequency of

untreated cells was subtracted from the frequency of mutants in

the HAP treated cultures. Spontaneous mutant frequencies in

these experiments ranged from 100 to 50061027, which is

consistent with the published data for HeLa and it derivatives [68].

Statistical analyses
Each experiment was repeated independently at least twice. All

data are expressed as mean +/2SEM of several experiments.

Statistical analysis was performed using Graphpad PRISM

software (PRISM, CA). Unless otherwise indicated, statistically

significant differences between means were estimated using two-

way ANOVA to compare concentrations and cell lines. The

Bonferroni multiple comparison post-test was used to analyze

differences between groups. Values were considered statistically

different if the probability of the difference by random fluctuation

was less than 0.05.

Supporting Information

Figure S1 ITPA knockdown in HeLa cells. HeLa cells

stably expressing shRNA against ITPA were immunoblotted for

the level of ITPA protein. Cells expressing shRNA against ITPA

showed an almost complete inhibition of ITPA protein produc-

tion.

(TIF)

Figure S2 ITPases overproduction in HeLa cells. Immu-

noblot for eGFP in cells transfected with constructs expressing

either ITPA or HAM1 as GFP fusion proteins. Cells transfected

with vector showed a lower molecular weight band of 27 kDa

corresponding to the molecular weight of eGFP. Cells transfected

with the ITPA-GFP and HAM1-GFP showed higher molecular

weight bands of approximately 50 kDa, corresponding to the

weights of the two GFP fusions with ITPases. We show the

immunoblot for eGFP in ITPA knockdown cells. HeLa cells with
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ITPA knockdown were transfected with constructs encoding for

Ham1 as a GFP fusion protein.

(TIF)

Table S1 Frequencies of spontaneous and HAP-induced
HRPT mutants in HeLa cells.
(DOC)
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