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1  | INTRODUC TION

Advanced distance sampling, using small 2‐person aircraft, has been 
successfully used to estimate brown and black bear (Ursus spp.) 
population size in Alaska (Becker & Christ, 2015). Schmidt, Wilson, 
Thompson, and Reynolds (2017) presented a case for three alter‐
native bear population estimators that can be applied to this data 
that they claim are less complex and more precise than the mark–
recapture distance sampling (MRDS) methods used by Becker and 
Christ (2015). Their first model is a conventional distance sampling 
(CDS) model based on a half‐normal detection function (hereafter 
referred to as “CDS_Hn”). The second model pools data from sev‐
eral bear surveys into a hierarchical Bayesian CDS model that uses 
a half‐normal detection function (hereafter referred to as “CDS_
HnBayes”), and estimates the population size of each study area. 
The third model is a Bayesian‐open population distance sampling 
model with a half‐normal detection function (hereafter referred to 
as “CDS_OpenHnBayes”). This model estimates pa, the proportion of 
the population in the searched area that is available to be detected 
to obtain the population estimate. All of these models use a half‐nor‐
mal detection function with no covariates and do not utilize mark–
recapture (MR) data. The first two models assume perfect detection 
for all bears, at a distance associated with the apex of detection, 
in order to obtain a population estimate. The half‐normal model 

discards distance data smaller than the distance of the detection 
apex, resulting in less data to fit the detection model. The lack of 
covariates causes all three models to assume all bears have the same 
probability of detection.

Unlike the three approaches proposed by Schmidt et al. (2017), 
the MRDS approach taken by Becker and Christ (2015) uses a two‐
piece normal detection function to take advantage of the whole 
dataset to model both sides of the detection apex. They do not as‐
sume perfect detection at some fixed distance but rather estimate 
this parameter with a mark–recapture model at the distance associ‐
ated with the apex of bear detection. In addition, covariates are used 
in both the distance (MCDS; Marques & Buckland, 2004) and the MR 
model to account for heterogeneity in bear detections. Combined 
these models form the MRDS model based on a 2‐piece normal dis‐
tribution (hereafter referred to as “MRDS_2PN”). The MR model 
used within the MRDS_2PN model assumes “point independence” 
(Borchers, Laake, Southwell, & Paxton, 2006) between the pilot and 
backseat observer.

We agree with Schmidt et al. (2017) that estimating bear abun‐
dance and density is difficult. We also agree that model assumptions 
are important and that the MRDS_2PN model is complex. One main 
premise of Schmidt et al. (2017) is that the estimation bias from re‐
moving covariates and mark–recapture data is small and better infer‐
ences about changes in population size can then be made using their 
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methods. They compare their model results with the “Becker‐Christ 
approach,” which is an MRDS model they created. Their “Becker‐
Christ approach” model contains no covariates in either the distance 
model (two‐piece normal detection function) or the point indepen‐
dence MR model. MRDS models are not pooling robust, and for this 
reason, covariate modeling is very important in these models (Laake 
& Borchers, 2004). This lack of covariates in the “Becker‐Christ ap‐
proach” creates a flawed MRDS model that is not equivalent to the 
MRDS‐PN model that uses covariates in modeling both the distance 
data and the MR data. Buckland, Rexstad, Marques, and Oedekoven 
(2015) consider MRDS models with no covariates (such as the 
“Becker and Christ approach”) to be so flawed that they do not con‐
sider them viable. For this reason, we disagree with the conclusions 
of Schmidt et al. (2017) that their models are “better” than those of 
Becker and Christ (2015). We feel the MR data and model cannot be 
eliminated and that covariates are required; they take a total error 
approach (Reynolds, 2012) that allows for biased estimates.

2  | IS MARK–REC APTURE DATA NEEDED?

The assumption of perfect detection on the transect line is listed 
as the most important assumption for CDS models (Buckland et al., 
2001). For aerial surveys of brown and black bears in Alaska, that 
use small 2‐person aircraft with straight (non‐bubble) windows, max‐
imum detection is achieved at a distance away from the transect line 
(Becker & Quang, 2009).

In determining if MR data are needed for distance sampling 
models, Borchers, Zucchini, and Fewster (1998) used the idea of cer‐
tainty of detection on the transect (apex of detection in the case of 
bears) as the determining criteria. MRDS models are needed if any 
uncertainty exists; this has become a standard practice for distance 
sampling models (Borchers, Buckland, & Zucchini, 2002). Certainty 
about perfect detection at the detection apex is extremely difficult 
to obtain when aircraft is used. Alpizar‐Jara and Pollock (1996) noted 
that the assumption of perfect detection “is especially violated when 
using aerial surveys to estimate population size for marine mammals 
and other wildlife populations.” Early development of MRDS mod‐
els was driven in part by developing models for aerially collected 
data. For aerially collected data, different MRDS models were devel‐
oped by Manley, McDonald, and Garner (1996) for polar bears (Ursus 
maritimus), Quang and Becker (1996) for Pacific and common loons 
(Gavua pacifica and G. immer), Quang and Becker (1999) for brown 
bears (Ursus arctos), Becker and Quang (2009) for brown bears, and 
Becker and Christ (2015) for brown and black bears (Ursus ameri‐
canus). These studies and others, such as (Laake, Dawson, & Hone, 
2008), make it clear that mark–recapture data are needed to assess 
the perfect detection assumption when surveying with aircraft.

A cautionary tale about ignoring the perfect detection assump‐
tion is contained in the results of Laake's (1999) survey of a known 
population. Laake used distance sampling on a known population 
of 150 wooden stakes driven into the ground at random distances 
from and along a 1‐km transect in sage brush habitat of the western 

United States. This transect was independently walked and surveyed 
by 8 different observers. The assumption of perfect detection on 
the transect seems reasonable for this survey. We consider the as‐
sumption of perfect detection on the stake transect line to be more 
reasonable than perfect detection of all bears approximately 100 m 
(the	detection	apex)	 from	an	aircraft	 flying	at	130	km/hr	 (80	mph)	
and 100 m above ground that frequently contains shrubs and trees. 
In the wooden stake data, the 8 CDS population estimates ranged 
from 85 to 164, the mean was 121 (SD	=	37.67)	resulting	in	a	bias	of	
−19.5%	for	the	mean	value.	Using	an	MRDS	model	with	point	inde‐
pendence, the mean value was 146 (SD	=	11.10)	with	a	bias	of	−2.7%	
for the mean value. These results illustrate the importance of inves‐
tigating the perfect detection assumption by fitting an MRDS model.

MRDS models use MR models with covariates to eliminate the 
assumption of perfect detection at the apex of detection (Laake & 
Borchers, 2004) needed by CDS models. Most MRDS models, in‐
cluding the Becker and Quang model (2009), assume all animals are 
detected independently between the two observers in the aircraft 
(pilot and observer) when modeling the MR data. Population esti‐
mates from MRDS models that assume full independence in detec‐
tions between observers can have sizable bias, which is caused by 
the failure of the sampling process to meet the full independence 
assumption (Laake, 1999; Laake & Borchers, 2004). Borchers et al. 
(2006) proposed an MRDS model that assumes independent animal 
detections only at the apex of the detection function to deal with 
this problem; they labeled this assumption “point independence.” 
Their point independence MRDS models assume the MCDS model 
gets the right detection shape and adjusts the probabilities of the 
MCDS model with a mark–recapture model calculated at the dis‐
tance at which detection is the highest. Laake and Borchers (2004) 
state that population estimates from MRDS models “obtained under 
the assumption of full independence will tend to be negatively bi‐
ased compared to estimates obtained under the assumption of point 
independence.” The MRDS_2PN model uses an MR model that as‐
sumes point independence (Becker & Christ, 2015) between the 
pilot and observer.

Schmidt et al. (2017) justify dropping the MR model with the 
statement: “marginal detection probabilities at the apex of the detec‐
tion function are quite high for both the pilot and observer (Becker & 
Christ, 2015; Becker & Quang, 2009; Walsh et al., 2010) suggesting 
that the joint pd may approach 1.0 in many cases.” The MR probabil‐
ity estimates used to correct the distance detection probabilities will 
be different for full independence versus point independent MRDS 
models (Borchers et al., 2006; Laake, 1999). Un‐modeled heteroge‐
neity in the MR model causes positive bias in the MR probability es‐
timates and negative bias in the population estimate (Borchers et al., 
2006; Buckland et al., 2015; Laake, 1999; Laake & Borchers, 2004). 
Using the stake data, an MRDS model with full independence had a 
lower	population	estimate	(range:	76–142,	mean	=	113,	SD = 17.85) 
than both the CDS model (mean = 121) and the MRDS model with 
point independence (mean = 146); this was caused by un‐modeled 
heterogeneity (Laake, 1999). To avoid this bias, Buckland et al. (2015) 
recommend the use of point independent MRDS models when the 
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assumption of perfect detection is not met. We have observed this 
bias in numerous brown and black bear datasets (E. Becker, unpub‐
lished data). We note the Becker and Quang (2009) population es‐
timate	of	618.4	brown	bears	(26.3	brown	bears/1,000	km2) is much 
lower than the MRDS_2PN model estimate of 746.1 (Table 2) due 
mainly to un‐modeled heterogeneity in the full independence model 
used by Becker and Quang (2009). Schmidt et al. (2017) are not justi‐
fied in dropping the MR data since 2 of their reported MR probabili‐
ties were calculated using a full independence MRDS model (Becker 
& Quang, 2009) and, as a result, are biased high due to un‐modeled 
heterogeneity.

We applied the MRDS_2PN model to four brown bear data‐
sets and obtained weighed mean mark–recapture probabilities that 
range from 0.828 to 0.952 (Table 1). The minimum of the individ‐
ual mark–recapture estimates for these surveys range from 0.418 
to 0.888. Black bear are generally more easily detected and have 
high MR probabilities (mean 0.926, minimum 0.644, Table 1, Becker 
& Christ, 2015). The Katmai brown bear dataset (2004, 2005) used 
by Quang (2005) to calculate an MRDS estimate under the full in‐
dependence assumption (Becker & Quang, 2009) was re‐analyzed 
with the MRDS_2PN model, and the estimated apex MR estimate 
was 0.928 (SE = 0.020) with a range of 0.504 to 0.969 for individual 
estimates. This is the same survey (Katmai 2004, 2005) that Schmidt 
et al. (2017) claim has mark–recapture estimates so close to 1 to jus‐
tify not using the mark–recapture data. These estimates indicate the 
perfect detection assumption is violated and MR data and modeling 
is needed. One might argue the uncertainty about the mean black 
bear MR estimate in Becker and Christ (2015) could justify assuming 
it is one, but a mean point estimate of 0.926 (SE	=	0.038)	is	not	close	
to 1 and the minimum individual estimate of 0.644 would indicate 
the survey methodology results in imperfect detection for some 
bears.

The Alaska Department of Fish and Game has conducted seven 
MRDS surveys for bears; the survey with the most open habitat was 
a brown bear survey in the northern Brooks Range. That study area 
was so open, vegetative cover could not be considered as a covari‐
ate, due to very small sample sizes for percent cover values greater 
than 0. Surprisingly, the apex MR estimate was 0.794 (SE = 0.086) 
with	a	range	of	0.253	to	0.936	for	 individual	estimates,	and	 is	 the	

lowest we have seen (E. Becker, unpublished data). This mark–recap‐
ture estimate indicates open terrain does not guarantee the perfect 
detection assumption is met for bear surveys using aircraft. Based on 
the results of MRDS modeling using the MRDS_2PN model, none of 
these seven surveys would meet the perfect detection assumption; 
further, that the results indicate MR data and modeling is needed 
to obtain population estimates. These surveys include three brown 
bear surveys conducted on the Alaska Peninsula, the geographic 
focus of Schmidt et al., 2017 (Table 1).

3  | POOLING ROBUSTNESS

The models proposed by Schmidt et al. (2017) ignored covariates 
and thus avoided MCDS models by taking advantage of a property 
of CDS models called “pooling robustness” (Buckland et al., 2015). 
Under pooling robustness, CDS models are not prone to bias due to 
un‐modeled heterogeneity. However, there are three cases in which 
the property of pooling robustness fails: (a) if detection, for all bears, 
at the apex of detection, is not true (Buckland et al., 2015); (b) if 
the study design incorporates stratified sampling with unequal sam‐
ple intensities (Buckland et al., 2015); and (c) if there are extreme 
levels of heterogeneity in levels of a covariate (Marques, Thomas, 
Fancy, & Buckland, 2007). The CDS_HBayes model violates case (b) 
because the pooled study areas are, in effect, strata for which sepa‐
rate estimates are desired and each has its own sample intensity. 
As previously documented, aerial surveys of brown and black bears 
in Alaska do not meet the perfect detection assumption [case (a)] 
which causes the failure of pooling robustness.

4  | ESTIMATED REL ATIVE BIA S

Using the apex of detection of the best fitting MRDS_2PN models 
for five bear surveys in Alaska would result in a left truncation of 
11.6%	to	27.2%	of	the	data	(Table	1)	if	a	half‐normal	distribution	was	
used instead. Comparing CDS models using a half‐normal distribu‐
tion with those of the best MRDS_2PN models to estimate relative 
bias would subject the results to the confounding effect of reduced 

Survey
Mean MR p 
(SE) Range MR pi

Half‐normal 
n left‐truncations (%)

Southcentral Alaska, Black Bear 
(Becker & Christ, 2015)

0.926	(0.038) 0.644, 1.000 64	(27.2%)

Southcentral Alaska, Brown Bear 
(Becker & Quang, 2009)

0.828 (0.045) 0.800, 0.871 28	(18.3%)

Southern AK Peninsula Brown Bear 
(Becker unpublished data)

0.876 (0.022) 0.418, 0.955 37	(13.8%)

Unimak Island, Alaska (Becker 
unpublished data)

0.952 (0.041) 0.888,	0.983 13	(11.6%)

Katmai National Park (2004, 2005) 
(Quang, 2005)

0.928 (0.020) 0.504, 0.969 90	(19.8%)

TA B L E  1   Mark–recapture parameter 
estimates for five aerial bear surveys 
conducted in Alaska
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sample size. In order to calculate only the relative bias from ignor‐
ing mark–recapture data and covariates, we compared the popula‐
tion estimate of a CDS model based on a 2‐piece normal distribution 
to the best MRDS_2PN model for five aerial bear surveys. We 
found that ignoring mark–recapture data and covariates resulted 
in	 a	 −17.4%	 to	 −21.4%	 bias	 compared	 to	 the	MRDS_2PN	models	
(Table 2). These results indicate the need for models, such as the 
MRDS_2PN model, that utilize covariates and mark–recapture data 
to obtain population estimates.

5  | AVAIL ABILIT Y

Schmidt et al. (2017) raise concerns about all bears being available to 
be sampled and proposed an availability model to determine the ex‐
tent of the problem. If a randomly placed transect can result in a bear 
being detected, then it is available to be detected by the sampling 
process. The only bears unavailable to be sampled are bears in dens; 
study areas with heavy canopy cover that preclude the observer see‐
ing the ground are inappropriate for these surveys. These surveys are 
conducted just prior to leaf‐out to minimize or eliminate the problem 
of bears remaining in their dens during the survey. The basic premise 
of distance sampling is that the detection shape can be correctly es‐
timated by the detection model and scaled correctly using either an 
assumption of perfect detection, or MR data to obtain the correct MR 
probabilities for estimating population size (Laake et al., 2008).

CDS and CDS_Hn models assume perfect detection at the apex. 
If this assumption is true and the detection function can be ade‐
quately modeled, then the availability of non‐den bears is not an 
issue, the population is estimated correctly (Buckland, 2001), and 
the complex CDS_OpenHnBayes model is not needed. Laake et al. 
(2008) state “as long as p(0) = 1, it does not matter why groups for 
x > 0 were missed.” Here, p(0) refers to the detection probability at 
the apex distance and x denotes distance. For MRDs models using 
point independence, Laake et al. (2008) point out that animals at the 
apex distance that are undetectable due to vegetation would be a 
source of bias. This is not availability bias if a randomly placed tran‐
sect can detect the animal, but rather a bias in the MR model.

Laake et al. (2008) stated that in aerial surveys, animals become 
undetectable from the transect, due to cover and terrain not allow‐
ing the animal to be sighted at farther distances. Like Laake et al. 
(2008), we find this condition generally occurs at the farther dis‐
tances in aerial distance sampling surveys. In aerial bear surveys, 
the detection apex distance usually occurs in the 100–125 m range 
(Table 2), so topography and vegetation at this distance would have 
to totally obscure the bear from every sighting angle for the bear to 
be a source of bias to the MR model. The 100–125 m distance range 
has good sighting angles, a sufficient height advantage, and suffi‐
cient time (as the plane flies by) to detect bears. For these reasons, 
the percentage of bears that are undetectable from the transect 
would be lowest at this distance.

We know of two instances of bears being missed in the ap‐
proximate range of the apex distance and the circumstances were TA
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documented to determine if the bears were detectable. In the first 
instance, five bear groups with a total of 14 bears were observed 
from a transect that included a whale carcass on a beach. In circling, 
these bear groups to obtain GPS locations and enumerate group size, 
an additional bear group of 1 was observed that was not detected 
from the transect at an approximate distance of 175 m. This bear 
was visible from this transect but missed by both pilot and observer; 
it would be an undetected bear that was available to be detected. 
The second instance involves a transect along a straw‐colored, long‐
grass mountainside with many dark trees lying on the ground from 
a past windstorm. This transect had gone up a valley and, after the 
transect was flown, the plane exited the valley by re‐flying the gen‐
eral route. At this time, a large, blond‐colored brown bear, with a dis‐
tinctive dark stripe on its back, was observed lying down along the 
previously searched mountainside. The bear was easily observed, 
so the observer decided to line up the flight path on the computer 
with the GPS location of the plane and re‐fly the transect section 
to determine why the bear was missed. At sighting angles outside 
the 70‐ to 110 degree (approximately) angle, the blond bear was 
readily detected due to its bear like outline. Once the steeper angle 
threshold (70–110) was encountered, the bear outline vanished and 
it instantaneously “became a downed log” (due to the dark streak on 
its back) in a straw‐colored, long‐grass field. It was estimated that 
the distance to the bear was in the 100–150 m range. This detect‐
able bear was probably missed by both pilot and observer searching 
the bear's location at search angles within the 70–110 degree range. 
This would be an undetected bear that was available to be detected. 
In the thousands of times, we have flown off transect to mark GPS 
locations of sighted bears or determine if a sighting was a bear, we 
have yet to encounter a situation where a bear was detected off 
transect at a distance associated with detection apexes and consid‐
ered to be undetectable from the transect. Based on our experience, 
including those detailed above, we feel the number of undetectable 
bears at apex distances is 0 or very close to 0. Bears that are unde‐
tected at the apex distance are estimated using the MR model.

6  | AVAIL ABILIT Y MODELING

Schmidt et al. (2017) propose the CDS_OpenHnBayes model to 
estimate pa (the probability a bear is available to be detected 
given it is in the study area) and claim using this estimate on a 
CDS half‐normal model will correct for missed bears. The CDS_
OpenHnBayes model is an open distance model with temporary 
immigration (Kery & Royle, 2016) which is based on an N‐mixture 
model that uses replicated count data (Royle, 2004), in this case 
survey days with different transects. Schmidt et al. (2017) list two 
assumptions; (a) population closure, and (b) “that the daily survey 
data adequately represented the study population available to 
be sampled each day.” They claim “variation in detection among 
survey dates would then reflect variation in pa.” Additionally, they 
claim “under this formulation, incomplete detection of available 
bears, at the apex of detection would be incorporated into the 

availability parameter.” They also point out that this model obtains 
an estimate of the super population versus a population snap‐shot 
if the closure assumption is violated.

We disagree that these populations are closed; brown bears have 
large home ranges and there is no geographic barrier to their move‐
ments into or out of the Katmai study area. We also disagree that 
these survey days will be representative. Bear density within a study 
area is not uniform, some small locations or transects exhibit a super 
abundance of bears (“nugget effect”). The Unimak Island brown bear 
survey had one transect on the coast that had five bear groups de‐
tected on it, for a total of 14 bears; the reason was this transect 
searched an area that included a recently washed up whale carcass 
which was being scavenged by many bears. The Katmai study area 
has thin strips of coastal sedge meadows containing an important 
brown bear food source during a time when food is generally scarce. 
These locations are so coveted by brown bears that they look more 
like a cattle ranch versus general bear habitat. The Katmai dataset 
had one transect in this coastal sedge meadow habitat from which 
13	bear	 groups	were	 detected	 containing	 a	 total	 of	 26	 bears,	 the	
next highest transect had eight groups containing a total of 12 bears. 
These “nugget effects” can occur by random chance or for biological 
reasons like those listed above, and are too rare to occur daily. The 
net effect is to cast serious doubt on the assumption that survey 
days are representative for these surveys.

Additional assumption problems include the fact that not all as‐
sumptions are listed. One additional assumption is that availability 
of individuals is independent over time. Barker, Schofield, Link, and 
Sauer (2018) point out another assumption which they refer to as 
the “constant p assumption.” N‐mixture model (such as the CDS_
OpenHnBayes model) has the assumption that individual detection 
probabilities are constant with respect to un‐modeled covariates 
(“constant p assumption”) (Barker et al., 2018).

Observers are often changed during the course of the survey; this 
will affect detection since the ability of observers is highly variable 
and, thus, availability will be confounded with observers and violate 
the assumption of the availability of individual bears is independent 
of time. Many observers and some pilots often gain a clearer bear 
search image after the first day or two of the survey, which would 
again confound bear availability with observer efficiency and thus 
violate the assumption of the availability of individual bears being 
independent of time. Differences in lighting can have a drastic im‐
pact on bear detection. On a day with good lighting, a bear in the 
shadows of a shrub patch of alders at 400 m can be easily detected. 
On a day with poorer light conditions, it is doubtful this bear can be 
detected at 400 m, in which case it would be classified as “tempo‐
rarily unavailable” in the context of an availability model. If bears in 
dens exist during a survey, an availability model will not incorporate 
them into the population estimate. The availability of bears in dens 
is also not independent of time, because knowing a bear is in a den 
increases the likelihood it will remain in the den on the following day. 
As previously stated, these surveys are designed to minimize this 
unavailability bias of bears in dens. These issues would indicate that 
the availability of individual bears is not constant over time.
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The use of covariates and mark–recapture data in our MRDS_2PN 
model indicates tremendous variability in bear detection probabil‐
ities with aerial distance sampling surveys. These detection prob‐
abilities vary due to covariates such as percent cover around the 
bear, search distance bin, bear activity, airplane speed, and others. 
Detection of bears will vary among individuals and also vary among 
multiple detections of the same bear on subsequent days. The 
CDS_OpenHnBayes model uses a constant detection probability, 
but aerial bear detections have been shown to differ due to many 
different covariates (Becker & Christ, 2015) which indicate these 
surveys cannot meet the “constant p assumption.” Additionally, 
there are covariates that affect detection but are very difficult to 
quantify and incorporate into a model. One such covariate would 
be lighting conditions which can greatly increase or decrease bear 
detection. The fact that not all covariates can be quantified makes it 
extremely doubtful that all heterogeneity can be entirely eliminated 
by modeling. Barker et al. (2018) conclude “fundamentally count 
data under imperfect detection can only reliably be used as indices.” 
In addition, they state that from “a mark‐recapture perspective, we 
show the loss of information that results from not marking animals is 
critical, making reliable statistical modeling of N and p problematic 
using just count data.” The use of covariates to model detection and 
MR probabilities and the presence of hard to quantify covariates in‐
dicate the sampling process contains heterogeneity in the detection 
probabilities. This heterogeneity results in the CDS_OpenHnBayes 
model being inappropriate for these surveys.

From	 figure	 3b	 in	 Schmidt	 et	 al.	 (2017),	 the	 super‐population	
estimate	 is	 approximately	3,000	bears	 for	 the	2004–2005	Katmai	
bear survey. For that same survey, we report a population estimate 
of 1,798.9 bears (Table 2). The difference between population and 
super population may account for some of this difference. The most 
parsimonious explanation would be the assumptions of the CDS_
OpenHnBayes model cannot be met by the aerial bear survey pro‐
cess and thus this model is inappropriate.

7  | ADDITIONAL MRDS_ 2PN CONCERNS

Schmidt et al. (2017) stated that because of high correlation be‐
tween effective search distance (ESD) (either binned or non‐binned) 
and distance, they did not include ESD in their analysis. The issue is 
not correlation but rather that MCDS models assume independence 
between the covariates and distance. Becker and Christ (2015) used 
9 bins for the ESD covariate to try and minimize this problem. Lately, 
we have used three bins {[0–0.6*w], (0.6*w‐w], (>w)}, where w de‐
notes the truncation distance; however, knowing ESD is in Bin 1 gives 
information on possible values for distance (y) since y	≤	ESD	<	0.6w 
for this bin. For this reason, we now use two bins {[0‐w], (>w)} and by 
doing so, create an ESD covariate that is independent of distance. For 
the brown bear survey results given in Table 2, binned ESD covariate 
was created using two bins as outlined above. The survey results 
of the black bear survey are from Becker and Christ (2015) which 
we chose not to reanalyze in order to avoid confusion. Population 

estimates listed in Table 2 for the MRDS_2PN model are from the 
best covariate model, based on AIC criteria (Buckland et al., 2015).

Schmidt et al. (2017) state the MRDS_2PN model requires “much 
larger	 sample	 sizes	 (i.e.,	 ≥150	 detections)”	 than	 the	 60–80	 detec‐
tions needed to fit a CDS model (Buckland et al., 2001). In fact, no 
minimum sample size requirements have ever been published for 
the MRDS_2PN model. For the Becker and Quang (2009) Gamma‐
based MRDS model, 150 observations were recommended to obtain 
specified precision goals (Thompson, Peirce, & Mangipane, 2010). 
In terms of fitting a model, 70–100 detections should be sufficient 
for either method. MR models require less data than that for fitting 
a detection function; since the models are fit separately, sample size 
requirements would be based on the needs of fitting the detection 
function.

Encounter rate is an important component of the variance of 
distance sampling models (Fewster et al., 2009). Unfortunately, we 
misinterpreted the Borchers et al. (2006) paper and omitted this 
component from our r‐code (Becker & Christ, 2015). All models, in‐
cluding Bayesian models, should incorporate the encounter rate into 
the variance estimate.

8  | DISCUSSION

Schmidt et al. (2017) took a total error approach (Reynolds, 2012) 
that allows for biased estimates to be considered. They reported 
very	small	bias	 (−9%	to	+2%)	of	 the	CDS_Hn	population	estimates	
to those from the Schmidt et al. (2017) created “Becker‐Christ ap‐
proach.” The lack of covariates in the “Becker‐Christ approach” 
causes un‐modeled heterogeneity in MR probabilities resulting in 
positive bias in the probability of detection and negative bias in the 
population estimate, and thus a flawed MRDS model (Buckland et 
al., 2015). Buckland et al. (2015) do “not consider MRDS models with 
no covariates other than distance,” such as the “Becker‐Christ ap‐
proach” due to the un‐modeled heterogeneity. A more appropriate 
model for this comparison would be the MRDS_2PN model (Becker 
& Christ, 2015) containing covariates which results in much larger 
bias	(−17%	to	–21%,	Table	2).	For	the	KATM	survey,	they	reported	a	
bias	of	+2%	and	we	report	a	bias	of	−17%	(Table	2).	Buckland	et	al.	
(2001) warn against selecting for models on the basis of precision 
at the expense of larger bias. They recommend that “the estimator 
be roughly unbiased, or at least that there is no reason to suppose it 
might be more biased than other robust estimators, before selecting 
on the basis of efficiency,” where efficiency denotes low variance. 
These recommendations would advocate for the selection of the 
MRDS_2PN model over the CDS‐Hn or CDS_HnBayes model.

Buckland et al. (2001) noted that “generally, as the number of 
parameters in a model increases the bias decreases but the sampling 
variance increases. A proper model should be supported by the par‐
ticular dataset and thus have enough parameters to avoid large bias 
but not so many that precision is lost (the Principle of Parsimony). 
The relative fit of alternative models may be evaluated using Akaike's 
Information Criteria” (AIC). The “precision gains” of the CDS_Hn and 
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CDS_HnBayes models over the “Becker‐Christ approach” is to be 
expected for three reasons. First, precision can be gained at the ex‐
pense of bias (Buckland et al., 2001). Second, a flawed model, the 
“Becker‐Christ approach” model, was used in the comparison. Third, 
the “Becker‐Christ approach” model had three additional parame‐
ters (one for the two‐piece normal and two for the MR model). If 
AIC was used to evaluate CDS versus MCDS models, MCDS models 
would have been selected (Table 2). In addition to ignoring model 
selection, Schmidt et al. (2017) did not assess model fit, although 
evidence of model convergence was provided. Buckland et al. (2001, 
2015) stress the importance of evaluating the model fit to the dis‐
tance data. Burnham et al. (2004) advocate goodness of fit tests, q–q 
plots, the Kolmogorov–Smirnov test, and the Cramer–von Mises test 
as ways to evaluate the fit of the detection model.

The Becker and Christ (2015) MRDS model (MRDS_2PN) uti‐
lizes covariates while the “Becker‐Christ approach,” constructed by 
Schmidt et al. (2017) did not contain covariates. Since MRDS models 
rely on MR data and use an MR model they are not pooling robust, 
and as a result, it is very important to incorporate covariates into the 
model (Borchers et al., 2006; Buckland et al., 2015; Laake & Borchers, 
2004). To date, aerial distance sampling of brown and black bears in 
Alaska has been unable to meet the assumption of perfect detection 
at the apex. We have demonstrated MR probabilities that are much 
smaller than 1 to backup this assertion. The perfect detection and 
pooling robustness assumptions of the CDS_HN and CDS_HnBayes 
models are violated by the current aerial bear survey methodology 
and these models are inappropriate for these surveys.

Distance sampling has been successfully used to estimate bear 
population size over large geographic areas (Becker & Christ, 2015). 
There are several ways to model this data. We view the availability 
modeling as having assumptions that are unlikely to be met by the 
current survey methodology. The assumptions associated with de‐
tection modeling using MRDS models seems more likely to be met 
by our current aerial surveys. Aerially collected distance sampling 
data have some unique properties that will drive the selection of the 
distance model. First, perfect detection cannot be assumed and an 
MRDS model will almost certainly be required. Second, the detec‐
tion distance data are unimodal for these bear surveys, and either 
the gamma (Becker & Quang, 2009) or the two‐piece normal detec‐
tion functions (Becker & Christ, 2015) are appropriate parametric 
models for this data. If one were willing to left truncate the data, a 
half‐normal detection function could be used. The use of a half‐nor‐
mal	detection	model	would	result	in	less	data	(12%t	to	27%,	Table	1)	
for modeling but would result in a simpler detection model, one less 
parameter than the two‐piece normal detection function (Becker & 
Christ, 2015). A point independence MRDS model can be fit with the 
r‐package mrds (Laake, Borchers, Thomas, Miller, & Bishop, 2018) 
when a half‐normal detection function is specified. An MRDS model 
that uses the gamma detection function (Becker & Quang, 2009) 
cannot be used with the point independence assumption (Becker & 
Christ, 2015); for this reason we do not recommend this approach.

To model our aerial distance sampling data, we chose the 
MRDS_2PN model over an MRDS model that uses a half‐normal 

detection function for three reasons. First, we preferred the ad‐
ditional	data	(12%	to	27%,	Table	1)	at	the	cost	of	only	1	additional	
parameter. Second, the use of density surface models (Hedley & 
Buckland,	 2004;	 Miller,	 Burt,	 Rexstad,	 &	 Thomas,	 2013),	 which	
model the results of the MRDS model to improve estimation 
precision, are complex models that benefit from using all avail‐
able data. Third, the distance selected for left truncation is often 
subjective, but this location (the apex of detection) is the most 
important location for model fit (Buckland et al., 2001) since the 
population estimate is based on estimated animal density at this 
location (Buckland et al., 2001; Laake et al., 2008); whereas in 
the MRDS_2PN model, this location is estimated as a parameter. 
One could take the approach of Schmidt et al. (2017) and use a 
two‐piece normal model to estimate the apex location; unlike 
their approach which did not use covariates, a full model selec‐
tion process among the various covariates would need to occur 
since the apex distance parameter changes with model selection. 
Our MRDS_2PN model minimizes left truncation data loss and the 
apex location is an estimated parameter while an MRDS model 
that uses a half‐normal detection function does not minimize data 
loss and often the left truncation distance is subjective.

We agree that the MRDS_2PN model is complicated but assert the 
additional components beyond those of a CDS model were needed to 
build models whose assumptions could be met by our current sampling 
scheme. We use the two‐piece normal detection function to avoid left 
truncation. Our analysis has documented the need for MR data and 
modeling. This in turn causes covariate modeling since pooling robust‐
ness does not hold in the absence of perfect detection. By applying 
the MR model only to the apex of detection (point independence), our 
models minimize the bias of impossible to detect bears at this distance 
because this is the best distance to detect bears. In contrast, a non‐
point independence approach, like a full independence MRDS model 
would use all the MR data to scale the detection function resulting 
in a higher percentage of impossible to see bears causing bias in the 
estimate. Laake et al. (2008) make a strong argument that animals are 
hidden in aerial surveys due to vegetation and topography, and that 
this is more likely to occur at larger distances.

For management agencies, like the Alaska Department of Fish 
and Game, unbiased estimates of population size are very import‐
ant because they allow hunter harvest to be directly compared to 
the population estimate to obtain estimates of hunter harvest rates. 
Estimates of hunter harvest rates are rarely available. When we can 
obtain them, they allow for a direct assessment of our harvest goals 
or desired population levels and help direct management changes 
if they are needed. The use of hunter harvest statistics with super‐
population estimates would be very difficult to interpret.

ACKNOWLEDG MENTS

We kindly thank three anonymous referees for their time and ef‐
forts, which greatly improved this manuscript. The senior author was 
supported by funds from Pittman‐Robertson grants to the Alaska 
Department of Fish and Game.



6164  |     BECKER and CHRIST

CONFLIC T OF INTERE S T

None declared.

DATA ACCE SSIBILT Y

This is a rebuttal paper so no data is provided. The data will be avail‐
able in future publications dealing with specific surveys.

ORCID

Earl Becker  https://orcid.org/0000‐0002‐9263‐163X 

R E FE R E N C E S

Alpizar‐Jara, R., & Pollock, K. H. (1996). A combination of line transect 
and capture‐recapture sampling models for multiple observers in ae‐
rial surveys. Environmental and Ecological Statistics, 3,	311–327.

Barker, R. J., Schofield, M. R., Link, W. A., & Sauer, J. R. (2018). On the re‐
liability of N‐mixture models for count data. Biometrics, 74,	369–377.	
https://doi.org/10.1111/biom.12734

Becker, E. F., & Christ, A. M. (2015). A unimodal model for double ob‐
server distance sampling surveys. PLoS ONE, 10,	e0136403.

Becker,	E.	F.,	&	Quang,	P.	X.	(2009).	A	gamma‐shaped	detection	function	for	
line‐transect surveys with mark‐recapture and covariate data. Journal 
of Agricultural, Biological, and Environmental Statistics, 14,	207–223.

Borchers, D. L., Buckland, S. T., & Zucchini, W. (2002). Estimating animal 
abundance, closed populations. London, UK: Springer.

Borchers, D. L., Laake, J. L., Southwell, C., & Paxton, C. G. M. (2006). 
Accommodating unmodeled heterogeneity in double‐observer dis‐
tance sampling surveys. Biometrics, 62, 1207–1220. https://doi.
org/10.1111/j.1541‐0420.2005.00493.x

Borchers, D. L., Zucchini, W., & Fewster, R. M. (1998). Mark‐recapture 
models for line transect surveys. Biometrics, 54, 1207–1220. https://
doi.org/10.2307/2533651

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. 
L., & Thomas, L. (2001). Introduction to distance sampling: Estimating 
abundance of biological populations. New York, NY: Oxford University 
Press.

Buckland, S. T., Rexstad, E. A., Marques, T. A., & Oedekoven, C. S. (2015). 
Distance sampling: Methods and applications. New York, NY: Springer 
International Publishing.

Burnham, K. P., Buckland, S. T., Laake, J. L., Borchers, D. L., Marques, T. 
A., Bishop, J. R. B., & Thomas, L. (2004). Further topics in distance 
sampling. In S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. 
Laake, D. L. Borchers, & L. Thomas (Eds.), Advanced distance sampling 
(pp.	307–392).	Oxford,	UK:	Oxford	University	Press.

Fewster, R. M., Buckland, S. T., Burnham, K. P., Borchers, D. L., Jupp, P. E., 
Laake, J. L., & Thomas, L. (2009). Estimating encounter rate variance 
in distance sampling. Biometrics, 65,	225–236.

Hedley, S. L., & Buckland, S. T. (2004). Spatial models for line tran‐
sect sampling. Journal of Agricultural, Biological, and Environmental 
Statistics, 9, 181–199.

Kery, M., & Royle, J. A. (2016). Applied hierarchical modeling in ecology. 
New York, NY: Academic Press.

Laake, J. L. (1999). Distance sampling with independent observers: 
Reducing bias from heterogeneity by weakening the conditional in‐
dependence assumption. In G. W. Garner, S. C. Amstrup, J. L. Laake, 
B. F. J. Manly, L. L. McDonald, & D. G. Robertson (Eds.), Marine mam‐
mal survey and assessment methods	 (pp.	 137–148).	 Rotterdam,	 the	
Netherlands: Balkema.

Laake, J. L., & Borchers, D. L. (2004). Methods for incomplete detection 
at distance zero. In S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. 
Laake, D. L. Borchers, & L. Thomas (Eds.), Advanced distance sampling 
(pp. 108–189). Oxford, UK: Oxford University Press.

Laake, J. L., Borchers, D., Thomas, L., Miller, D., & Bishop, J. (2018). mrds: 
Mark‐recapture distance sampling. R package version 2.2.0. Retrieved 
from https://CRAN.R‐project.org/package=mrds

Laake, J., Dawson, M. J., & Hone, J. (2008). Visibility bias in aerial sur‐
vey mark‐recapture, line‐transect or both? Wildlife Research, 34, 
299–309.

Manley, B. F. J., McDonald, L. L., & Garner, G. W. (1996). Maximum likeli‐
hood estimation for the double‐count method with independent ob‐
servers. Journal of Agricultural, Biological, and Environmental Statistics, 
1,	170–189.	https://doi.org/10.2307/1400364

Marques, F. F. C., & Buckland, S. T. (2004). Covariate models for the de‐
tection function. In S. T. Buckland, D. R. Anderson, K. P. Burnham, J. 
L. Laake, D. L. Borchers, & L. Thomas (Eds.), Advanced distance sam‐
pling	(pp.	31–47).	Oxford,	UK:	Oxford	University	Press.

Marques, T. A., Thomas, L., Fancy, S. G., & Buckland, S. T. (2007). 
Improving estimates of bird density using multiple‐covariate distance 
sampling. Auk, 124,	1229–1243.

Miller,	D.	L.,	Burt,	M.	L.,	Rexstad,	E.	A.,	&	Thomas,	L.	(2013).	Recent	de‐
velopments and future directions. Methods in Ecology and Evolution, 
4, 1001–1010.

Quang,	P.	X.	 (2005).	Unpublished Report: The 2004–2005 bear survey of 
region 9C. Presented to: Katmai National Park, November 2005.

Quang,	P.	X.,	&	Becker,	E.	F.	(1996).	Line	transect	sampling	under	varying	
conditions with application to aerial surveys. Ecology, 77,	1297–1302.	
https://doi.org/10.2307/2265601

Quang,	P.	X.,	&	Becker,	E.	F.	(1999).	Aerial	survey	sampling	of	contour	
transects using double count sampling technologies for aerial sur‐
veys. In G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, 
L. L. McDonald, & D. G. Robertson (Eds.), Marine mammal survey 
and assessment methods (pp. 87–97). Rotterdam, The Netherlands: 
Balkema.

Reynolds, J. H. (2012). An overview of statistical considerations in long‐
term monitoring. In R. A. Gitzen, J. J. Millspaugh, A. B. Cooper, & D. 
S. Licht (Eds.), Design and analysis of long‐term ecological monitoring 
studies	(pp.	23–53).	New	York,	NY:	Cambridge	University	Press.

Royle, J. A. (2004). N‐mixture models for estimating population size from 
spatially replicated counts. Biometrics, 60, 108–115.

Schmidt, J. H., Wilson, T. L., Thompson, W. L., & Reynolds, J. H. (2017). 
Improving inference for aerial surveys of bears: The importance of 
assumptions and the cost of unnecessary complexity. Ecology and 
Evolution, 7(13),	4812–4821.	https://doi.org/10.1002/ece3.2912

Thompson, W. L., Peirce, K., & Mangipane, B. A. (2010). Protocol for 
monitoring brown bears.‐Version 1.0: Southwest Alaska Inventory 
and Monitoring Network, Natural Resource Report NPS/SWAN/
NPR‐2010/275. National Park Service, Fort Collins, CO. Retrieved from 
https://science.nature.nps.gov/im/units/swan/assets/docs/reports/ 
protocols/wildlife/ThompsonW_2010_SWAN_BrownBearProtocol 
SOPs_2166736.pdf

Walsh, P., Reynolds, J., Collins, G., Russel, B., Winfree, M., & Denton, J. 
(2010). Application of a double‐observer aerial line‐transect method 
to estimate brown bear population density in southwestern Alaska. 
Journal of Fish and Wildlife Management, 1, 47–58.

How to cite this article: Becker E, Christ A. Rejection of 
Schmidt et al.'s estimators for bear population size. Ecol Evol. 
2019;9:6157–6164. https://doi.org/10.1002/ece3.5134

https://orcid.org/0000-0002-9263-163X
https://orcid.org/0000-0002-9263-163X
https://doi.org/10.1111/biom.12734
https://doi.org/10.1111/j.1541-0420.2005.00493.x
https://doi.org/10.1111/j.1541-0420.2005.00493.x
https://doi.org/10.2307/2533651
https://doi.org/10.2307/2533651
https://CRAN.R-project.org/package=mrds
https://doi.org/10.2307/1400364
https://doi.org/10.2307/2265601
https://doi.org/10.1002/ece3.2912
https://science.nature.nps.gov/im/units/swan/assets/docs/reports/protocols/wildlife/ThompsonW_2010_SWAN_BrownBearProtocolSOPs_2166736.pdf
https://science.nature.nps.gov/im/units/swan/assets/docs/reports/protocols/wildlife/ThompsonW_2010_SWAN_BrownBearProtocolSOPs_2166736.pdf
https://science.nature.nps.gov/im/units/swan/assets/docs/reports/protocols/wildlife/ThompsonW_2010_SWAN_BrownBearProtocolSOPs_2166736.pdf
https://doi.org/10.1002/ece3.5134

