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ABSTRACT Exiguobacterium sp. RIT 452 is of biotechnological importance given its
potential for antibiotic production. Bactericidal activity was detected using spent
medium extract in a disk diffusion assay against Escherichia coli. The genome con-
sists of 3,246 protein-coding sequences, including a variety of gene clusters involved
in the synthesis of antibacterial compounds.

Exiguobacterium is a genus of Gram-positive soil bacteria widely distributed in the
environment, from tropical (1) to polar regions (2). A number of species have been

sequenced and were shown to be extremophiles, such as hyperthermophiles, alka-
liphiles, halophiles, and psychrophiles (2–4). Other members of this genus have poten-
tial applications in the bioremediation of pesticides and metals and other applications
in the biotechnology industry (5–11). One strain was found to produce antimicrobial
compounds (1). A strain was isolated from the guts of mealworms, and it was shown
that the bacterium was able to degrade the plastic polymer polystyrene (12).

We embarked on a project to isolate and identify bacteria that are able to produce
bactericidal compounds from a pond located on the campus of the Rochester Institute
of Technology (RIT). The bacterium was isolated by directly plating 100 �l of pond
water sample on tryptic soy agar and growing it at 30°C under aerobic conditions. The
bacterium was initially identified using PCR amplification and nucleotide sequencing of
the 16S rRNA gene variable (V3/V4) regions using the following primers: 5=-CCTACGG
GNGGCWGCAG-3= and 5=-GACTACHVGGGTATCTAATCC-3=.

Genomic DNA was isolated from a 5-ml culture grown in tryptic soy broth using the
GenElute bacterial genomic DNA isolation kit (Sigma-Aldrich, USA) according to the
manufacturer’s protocol. For whole-genome sequencing, the genomic DNA was quan-
tified using a NanoDrop spectrophotometer, and the genomic DNA was processed
using the Nextera XT (Illumina) library preparation kit for sequencing using the MiSeq
Illumina platform at the Rochester Institute of Technology Genomics Facility. Adapter
trimming was done using the MiSeq Reporter software using the default parameters

TABLE 1 Summary of antiSMASH results for Exiguobacterium sp. RIT 452

Cluster
no.

Predicted
biosynthetic
metabolite

Coordinates
within the
genome % similarity to known cluster

1 Terpene 69899–90726 33 (with carotenoid_biosynthetic_gene_cluster)
4 Siderophore 505835–519165
9 Putative antibiotic 897206–908755 26 (with lugdunin_biosynthetic_gene_cluster)
20 Terpene 160337–181161
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(sequences with �90% sequence identity to adapter sequences were trimmed). The
trimmed reads were subsequently assembled de novo with Unicycler version 0.3.0b
(13). An assembly of 1.76 million Illumina paired-end reads generated 27 contigs with
a total length of 3,217,892 bp, an N50 value of 693,695 bp, and a GC content of 47.86%.
The National Center for Biotechnology Information (NCBI) Prokaryotic Genome Anno-
tation Pipeline (PGAP) predicted 3,246 protein-coding sequences, 5 rRNAs, and 67
tRNAs (14, 15).

A scan of the genome using the antibiotics and secondary metabolite analysis shell
(antiSMASH4.0) webserver showed evidence that the bacterium has 27 gene clusters
potentially encoding pathways for the synthesis of secondary metabolites, including
carotenoids, other terpenes, and possibly antibiotics (16). A summary of the results
highlights 4 of the 27 clusters (Table 1). With regard to the production of bactericidal
compounds, the antiSMASH in silico analysis was corroborated by a disk diffusion
inhibitory assay against Escherichia coli ATCC 25922 using ethyl acetate extract from
Exiguobacterium sp. RIT 452 (Fig. 1).

Data availability. This whole-genome project for Exiguobacterium sp. RIT 452
has been deposited in GenBank under accession number QXJB00000000. The
version described in this paper is the first version, QXJB01000000 (BioProject
number PRJNA489292; BioSample number SAMN09954399).
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