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OBJECTIVE—Insulin receptor (IR) translocates to the nucleus,
but its recruitment to gene loci has not been demonstrated. Here,
we tested the hypothesis that IR and its downstream mitogenic
transducers are corecruited to two prototypic insulin-inducible
genes: early growth response 1 (egr-1), involved in mitogenic
response, and glucokinase (Gck), encoding a key metabolic
enzyme.

RESEARCH DESIGN AND METHODS—We used RNA and
chromatin from insulin-treated rat hepatic tumor cell line ex-
pressing human insulin receptor (HTC-IR) and livers from lean
and insulin-resistant ob/ob glucose-fed mice in quantitative RT-
PCR and chromatin immunoprecipitation studies to determine
gene expression levels and associated recruitment of RNA poly-
merase II (Pol II), insulin receptor, and cognate signaling pro-
teins to gene loci, respectively.

RESULTS—Insulin-induced egr-1 mRNA in HTC-IR cells was
associated with corecruitment of IR signaling cascade (IR, SOS,
Grb2, B-Raf, MEK, and ERK) to this gene. Recruitment profiles of
phosphorylated IR, B-Raf, MEK, and Erk along egr-1 transcribed
region were similar to those of elongating Pol II. Glucose-feeding
increased Gck mRNA expression in livers of lean but not ob/ob
mice. In lean mice, there was glucose feeding-induced recruit-
ment of IR and its transducers to Gck gene synchronized with
elongating Pol II. In sharp contrast, in glucose-fed ob/ob mice, the
Gck recruitment patterns of active MEK/Erk, IR, and Pol II were
asynchronous.

CONCLUSIONS—IR and its signal transducers recruited to genes
coupled to elongating Pol II may play a role in maintaining produc-
tive mRNA synthesis of target genes. These studies suggest a
possibility that impaired Pol II processivity along genes bearing
aberrant levels of IR/signal transducers is a previously unrecognized
facet of insulin resistance. Diabetes 60:127–137, 2011

T
he insulin receptor (IR) is a member of a family
of receptor tyrosine kinases (RTKs) that include
the epidermal growth factor receptor, fibroblast
growth factor receptor, and several others (1).

Studies have shown that RTKs are translocated to the
nucleus upon stimulation, including fibroblast growth fac-
tor receptor (2,3) and epidermal growth factor receptor
(4). Importantly, there is evidence for recruitment of RTKs

to chromatin and gene loci, and for several RTKs the
recruitment increases transcription (2,5,6,7). RTKs are not
the only kinases found along genes. For instance, active
ERK1/2, MEK, p38, and AMPK are also recruited to genes
(8,9,10,11).

IR also translocates to the nucleus after binding its
ligand (12,13,14). For instance, mice fed a glucose meal
showed an increase in nuclear IR, which correlated with
the glucose-stimulated rise of serum insulin (13,15). The
fact that RTKs and the terminal mitogen-activated protein
kinases (MAPKs) can be inducibly recruited to chromatin
presents the possibility that canonical insulin signaling
pathways are recapitulated along gene loci. Here, we
provide the first evidence that not only the IR but also
most of the ERK cascade components, as well as ERK
dual-specificity phosphatase (16), are corecruited to in-
ducible genes.

RESEARCH DESIGN AND METHODS

Reagents. BSA (cat. no. A2153), salmon sperm DNA (cat. no. D1626), and
protein A (cat. no. P7837) were from Sigma, proteinase K was from Invitrogen
(cat. no. 25530-015), and Humulin N was from Eli Lilly. Matrix chromatin
immunoprecipitation (ChIP) 96-well polystyrene plates were from Corning
(Costar cat. no. 9018), and polypropylene plates were from Bioexpress
(T-3060).
Tissue culture and insulin treatment. HTC and HTC-IR cells were main-
tained and insulin treated as in ref (17) with the exception that 1 � 10�8 M
insulin was used.
Mice and glucose feeding experiments. Male C57BL/6 and ob/ob mice were
purchased from The Jackson Laboratory (Bar Harbor, ME) and were main-
tained, glucose fed, and killed as described previously (13). Blood was
collected just prior to sacrifice. Livers were removed after whole-animal
perfusion with sterile, cold PBS and flash frozen in liquid nitrogen. Blood
glucose was measured using One Touch Ultra system (LifeScan Inc.). Plasma
insulin levels were measured using the Linco insulin ELISA (Millipore). All
procedures were done in accordance with current National Institutes of
Health guidelines and approved by the Animal Care and Use Committee of the
University of Washington.
RNA extraction and cDNA synthesis. RNA was extracted from cell pellets
or tissue fragments using Trizol reagent as per the manufacturer’s protocol. To
synthesize cDNA, 400 ng of Trizol extracted total RNA was used in reverse
transcription reactions with 200 units of MMLV reverse transcriptase (Invitro-
gen) and random hexamers. RT reactions were diluted 100-fold prior to
running quantitative PCR (18).
Matrix ChIP. Chromatin shearing was done using either Misonix 3000
microprobe (1 ml IP buffer [8], six rounds of sonication power 5, 15 s, on ice)
or Diagenode Bioruptor (100 �l IP buffer, 30 rounds 30 s ON/30 s OFF, high
power, 4°C). The suspension was cleared by centrifugation at 12,000g (10 min
at 4°C), and the supernatant, representing sheared chromatin, was aliquoted
and stored at �80°C. ChIP assays were done using the Matrix ChIP platform
in 96-well microplates as described before (8,19). ChIP DNA samples were
assayed by quantitative PCR. PCR calibration curves were generated for each
primer pair from a dilution series of total rat or mouse sheared genomic DNA.
The PCR primer efficiency curve was fit to cycle threshold versus log (genomic
DNA dilutions) using an r2 best fit. DNA concentration values for each ChIP
and input DNA samples were calculated from their respective average cycle
threshold values. Final results are expressed as a fraction of input DNA (8).
Matrix ChIP PCR primers are shown in supplementary Table 1 and the list of
antibodies are shown in supplementary Table 2, available in an online appendix
at http://diabetes.diabetesjournals.org/cgi/content/full/db09-1806/DC1.
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RESULTS

Insulin stimulates egr-1 transcription in hepatocyte
culture. We examined expression of the mitogen-sensitive
immediate early gene, early growth response 1 (egr-1), as
a model of insulin-induced transcription in rat HTC-IR
cells overexpressing human IR (20). Figure 1A (left) shows
that the egr-1 transcript increased by �10-fold after 60 min
of insulin treatment. �-actin transcript levels did not
change (Fig. 1A, right).

To determine whether the increase in egr-1 transcript
was due to increased transcription, Matrix ChIP (8) for
polymerase II (Pol II) was used with primers to or near the
egr-1 locus. Pol II density increased within the body of the
gene beginning as early as 5 min after treatment (Fig. 1C).
Peak Pol II binding at the end of egr-1 coincided with the
beginning of the increase in its transcript, 10 min after
insulin treatment (Fig. 1A, left panel), suggesting that
transcription upregulation was at least partly responsible
for the induction of egr-1 transcript.
Insulin induces recruitment of the IR transducers to
the egr-1 locus in hepatocyte culture. We used anti-
bodies to the �-subunit of IR with Matrix ChIP to deter-
mine whether IR was recruited to egr-1 in insulin-treated
HTC-IR cells. IR was recruited to egr-1 within the tran-
scribed region, beginning 5 min after insulin treatment and
remaining at the same level for 15 min (Fig. 2C, row 1).

To determine whether the recruited IR was activated,
we used Matrix ChIP with an antibody to IR phosphory-
lated at tyrosine 1146, a site autophosphorylated upon
binding of the receptor to insulin (21). Interestingly,
phospho-IR had a large transient increase at both sites
within the coding region of egr-1, with kinetics similar to
those of Pol II (Fig. 2C, row 2). The insulin-induced total
and phospho-IR ChIP signals were much less intense in the
rat parental HTC cell line without human IR (20), while the
histone H3 lysine 27 trimethylation, H3K27m3, ChIP sig-
nals were the same (supplementary Fig. 1, available in an
online appendix). These results confirm that the antibod-
ies detect total and phospho-IR. The more robust insulin-
induced activation of IR at egr-1 in HTC-IR cells paralleled
higher levels of recruitment of Pol II and phospho-Erk
(supplementary Fig. 1), suggesting that these insulin-
induced changes were linked.

Upon activation and autophosphorylation of IR, the
insulin receptor substrates (IRSs) and Src homology 2
domain containing protein (Shc) are recruited to phospho-
tyrosines on the receptor and then become phosphory-
lated at tyrosines themselves (21,22). These IRSs recruit
several proteins including the transducing adapter, Grb2
(22). Grb2 in turn recruits the guanine-nucleotide ex-
change factor, SOS (21,23), which then activates Ras
(22,24). Several of these transducers including IRS-1 (25),
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FIG. 1. Insulin-induced early growth response 1, egr-1, expression, and Pol II recruitment in HTC-IR cells overexpressing IR. A: Serum-deprived
hepatocyte HTC-IR cells were treated with insulin (10�8 M) for 5, 10, 20, 30, and 60 min or left untreated. Total cellular RNA from these cells
was used in RT reactions with random hexamers. cDNAs were used in real-time PCR with primers to the last exon of egr-1 or the first exon of
gapdh. Data represent the mean � SEM of three independent experiments. B: Schematic of the egr-1 locus. Boxes represent exons (black boxes
are translated regions and white boxes are untranslated regions), the zigzag line represents an intron, and the straight line represents upstream
sequence. Regions amplified by egr-1 primers are represented by black bars. C: Cells were treated as in (A), cross-linked, and then used in ChIP
with antibodies to Pol II. ChIPed DNA was used in PCR with primers to �5.3 kb, �252 bp, �232 bp, and �3.1 kb with respect to the TSS of egr-1.
Data represent the mean � SEM for three independent experiments. (A high-quality color representation of this figure is available in the online
issue.)
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Shc (26), and Grb2 (27) have been found in the nucleus.
Thus, antibodies to IRS-1, Shc, Grb2, SOS, and Ras were
used next in Matrix ChIP to determine which if any of
these components of the insulin receptor complex were
recruited to egr-1. We observed recruitment of Grb2 and
SOS but not IRS-1, Shc, or Ras to the egr-1 gene (Fig. 2C,
rows 3 and 4). These data are the first example of
corecruitment of the IR and downstream signaling com-
ponents to a gene locus and, importantly, in a manner
associated with activation of the gene by insulin. The
failure to detect IRS-1, Shc, and Ras may reflect either

their absence at the egr-1 locus or that the antibodies used
do not work in ChIP assays.
Insulin induces the recruitment and activation of the
Raf–MEK–ERK MAPK pathway at the egr-1 locus in
hepatocyte culture. The fact that we were able to
demonstrate recruitment of SOS to egr-1 and that SOS
activates the ERK MAPK pathway through the small
GTP-binding protein, Ras, led us to probe recruitment of
the Raf–MEK–ERK pathway to egr-1. We used antibodies
to B-Raf phosphorylated at T598 and S601 (pB-Raf) (28),
MEK1/2 phosphorylated at S217/221 (pMEK), and ERK1/2
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FIG. 2. Insulin receptor signaling complex at the egr-1 locus in HTC-IR cells. A: Schematic of one arm of the IR signaling pathway including some
components of the IR signaling complex (highlighted) and MAPK pathway components. B: Schematic of the egr-1 locus. C: Cells were treated as
in Fig. 1A, cross-linked, and used in ChIP with antibodies to the � subunit of IR (IR-�), IR-� phosphorylated at Y1146 (pIR), Grb2, and SOS.
ChIPed DNA was used in PCR as in Fig. 1C. Data represent mean � SEM for three independent experiments.
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phosphorylated at T202 and Y204 (pERK) in Matrix ChIP.
All three phosphorylated kinases were transiently but
robustly recruited to both sites within the transcribed
region of egr-1 and with kinetics that were very similar to
those of the phosphorylated IR (Fig. 3B, rows 2, 4, and 6).
ChIP with antibodies to the total kinases, however,
showed less pronounced and less transient patterns (Fig.
3B, rows 1, 3, and 5).

The recruitment of insulin-induced signaling proteins to
an insulin-responsive gene suggests their involvement in

transcription. To examine the relationship between tran-
scribing Pol II and locus-bound kinases, we compared the
recruitment kinetics of the total and activated signaling
proteins with those of Pol II within the coding regions of
egr-1. To normalize the differing efficiencies of pulldown
for each antibody, we plotted the ratio of each protein’s
signal at each time point versus the signal at the last time
point (supplementary Fig. 2, available in an online appen-
dix). The nearly identical binding profile of active IR�,
kinases, and Pol II suggests that, after the recruitment of
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ChIPed DNA was used in PCR as in Fig. 1C. Data represent
mean � SEM for three independent experiments.
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IR and MAPK signaling components, the activation/deac-
tivation of the kinases is tightly coupled to IR, a chain of
events that are linked to RNA Pol II elongation. Compared
with the insulin-induced levels of binding of total kinases,
the phospho-kinase signals exhibited greater inducibility
and were short-lived (supplementary Fig. 2). The transient
nature of the phospho-kinase signals may reflect rapid
dephosphorylation by phosphatases that are recruited to
egr-1 in response to insulin. MKP-1 is a member of the
dual-specificity family of phosphatases that inactivate
Erk1/2 through dephosphorylation of its pThr202 and
pTyr204 residues (29) (Fig. 3A). MKP-1 is insulin-respon-
sive (30,31) and is found in the nucleus (32,33). ChIP
assays for MKP-1 revealed insulin-induced recruitment to
egr-1 (Fig. 3B, row 7). This, together with the correspond-
ing decrease in phospho-ERK, but not total ERK (5–10
min, 232-bp site), suggests the possibility that Erk1/2
found at the egr-1 locus is inactivated in situ and that at
least a fraction of the dephosphorylated Erk1/2 remains
bound to the gene.

The serum responsive factor activates egr-1 by binding
to several promoter elements (34). Matrix ChIP with an
antibody to serum responsive factor showed a high con-
stitutive and a small insulin-inducible component at the
�252 bp and �232 bp sites and no binding at the end of the
gene (Fig. 3, row 8). Thus, the trend toward higher levels
at the transcribed region of egr-1 was specific to the IR
signaling and MAPK proteins (Fig. 3B). Together, the
above evidence is the first to suggest the recruitment of an
entire activated MAPK pathway as well as cognate phos-
phatase at a gene in mammalian cells across the tran-
scribed region.
Increased recruitment of IR and the MAPK signaling
module to the Gck gene in livers of glucose-fed mice.
Glucose feeding of fasted mice was previously shown to
cause a rapid increase in serum glucose, serum insulin,
and nuclear translocation of IR (13). In the following
experiments, fasted C57BL/6 mice were fed a glucose meal
and killed at different times later. Figure 4B (top) shows
that serum glucose increased rapidly after glucose feeding,
peaking at 10 min and then returning to a level twofold
above fasted levels 50 min later. Serum insulin also
increased quickly, but more transiently (Fig. 4B, middle).
Insulin-stimulated expression of six insulin responsive loci
was then examined (Fig. 4B and data not shown) including
glucokinase (Gck) (Fig. 4A), an insulin-responsive gene
whose product is involved in glycolysis (35,36). Gck
mRNA was most robustly induced, with transcript levels
increasing ninefold 60 min after insulin treatment (Fig. 4B,
bottom). egr-1 had a large increase as well; however, this
was mostly due to high levels of transcript in the livers of
two mice, one at 20 and one at 30 min of glucose feeding
(data not shown), while the transcript in most mice
remained unchanged. Although the traditional view of IR
signaling describes two divergent pathways, the mitogenic
one transduced by B-Raf/MEK/Erk and the metabolic one
transduced by PI3K/Akt (22), it has become increasingly
apparent that MAPK pathways can also regulate metabolic
state (16). Gck was chosen to examine recruitment of Pol
II and signaling proteins because it had the highest, most
consistent increase in transcript levels.

To show that the increase in Gck transcript was due to
increased transcription, we used Matrix ChIP to determine
Pol II levels along the locus. Gck has two transcription
start sites (TSSs), 34,957 bp apart, with the downstream
site being the one used by cells in the liver (the length from

the start of the second TSS to the 3� end is 14,301 bp) (35)
(Fig. 4A). As expected, Pol II levels increased at the
second TSS and the 3� end of the gene (Fig. 4C, row 1). The
30-min peak at the 3� end of the gene coincided with
the first increase in Gck mRNA, suggesting that increased
transcription was at least partially responsible for Gck
induction (compare Fig. 4C, row 1, frame 3 with Fig. 4B,
bottom).

Next we looked at the recruitment of IR complex
components to Gck using Matrix ChIP. IR�, Grb2, and SOS
were recruited to the second TSS and 3� end of Gck (Fig.
4C, rows 2, 4, and 5). Importantly, the phosphorylated,
active form of IR� was more robustly induced than the
total receptor (Fig. 4C, row 3). These results are consistent
with those seen in cell culture Figures 2 and 3.

Next we used Matrix ChIP to probe the recruitment of
B-Raf, MEK, and ERK and their activated forms at the Gck
locus in liver chromatin. Similar to the results in cells, the
phosphorylated forms of all three kinases showed robust
increases at all of the transcribed regions of the gene with
kinetics similar to that of the phosphorylated insulin
receptor (Fig. 4C, rows 7, 9, and 11). Also, as with the
results in cells, ChIP with antibodies to the total kinases
showed smaller responses compared with phosphorylated
kinases (Fig. 4C, rows 6, 8, and 10). We also found a
transient increase in the levels of MKP-1 at the second TSS
and 3� end of Gck. These data confirm that the insulin-
induced recruitment and activation of the MAPK pathway
seen in hepatocyte culture also occurs during insulin-
induced expression of Gck in mammalian tissue.

Next, we compared Pol II and the phosphorylated
kinases at first TSS and second TSS of Gck to the profiles
at the TSS of gapdh, which, while highly expressed, was
not stimulated in response to feeding within the 60-min
time course (supplementary Fig. 3 [available in an online
appendix], first row, compare frame 3 to frames 1 and 2).
Interestingly, the constitutive Grb2, SOS, pB-Raf, pMEK,
and pERK but not the pIR� levels were much higher at
gapdh than at the Gck. Also, unlike the feeding-induced
increases in Grb2, SOS, and kinases seen at Gck, no such
responses were seen at gapdh (supplementary Fig. 3). This
result suggests that the glucose feeding-induced recruit-
ment/activation of these MAPK signaling proteins at Gck
but not gapdh is tightly coupled to the activated insulin
receptor. Moreover, the fact that a similar type of induc-
ible recruitment occurs in two different systems, one in
vitro along a gene mediating mitogenic responses (Figs.
1–3) and another one in vivo along a gene involved in
metabolism (Fig. 4), suggests that recruitment of IR/MAPK
pathway in a pattern resembling Pol II elongation could be
a general phenomenon of insulin-inducible genes.
Absence of feeding-induced Gck mRNA response in
ob/ob mice is associated with unsynchronized induc-
tion of IR-MAPK components at the Gck locus. Obese
(ob/ob) C57BL/6J mice are insulin resistant and have
higher nuclear insulin receptor levels in the liver (13).
Moreover, unlike the lean C57BL/6J mice, the ob/ob mice
express constitutively high hepatic Gck activity that is
unresponsive to either fasting or feeding (37,38). Thus,
comparison of the lean and obese strains provides an
opportunity to explore the relationship between direct
recruitment of IR and MAPK components and Gck gene
expression. We carried out side-by-side fasting followed
by glucose feeding and performed the same measurements
as in Fig. 4 in both lean and obese mice (Figs. 5–6).
Compared with fasting lean mice, fasting ob/ob mice had
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twice the serum glucose levels and �10-fold higher insulin
levels (Fig. 5A). The fasting Gck mRNA and Pol II levels
(Fig. 5A bottom and 5B, row 1) were also higher in the
livers of the ob/ob mice, suggesting higher rates of tran-
scription in the obese compared with the lean mice (Figs.

5A and B). The constitutive differences in Pol II levels at
Gck gene (Fig. 5B row 1) in lean and obese mice matched
the levels of IR (rows 2 and 3) and MAPK components
(rows 4–6), suggesting that the baseline transcription and
IR-MAPK activation is coupled in both strains. Histone H3
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each time point. (A high-quality color representation of this figure is available in the
online issue.)
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lysine 9 acetylation (H3K9/14Ac), a mark of open chroma-
tin, is typically high at the TSS and low at the 3� end of
actively transcribed genes (39). Interestingly, at the Gck

TSS, H3K9/14Ac but not H3 lysine 79 dimethylation
(H3K79m2) (Fig. 5B rows 7 and 8) (40), a mark associated
with transcription elongation, was higher in the ob/ob
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mice. Taken together, these results suggest that, at base-
line, in the ob/ob mice, the hepatic chromatin structure at
Gck is different from the lean mice and consistent with the
higher transcription rates.

After glucose feeding, the transient increase in serum
glucose was greater in the ob/ob mice but glycemic differ-
ences were not nearly as dramatic as the increases in
insulin levels, which were �25-fold higher in the obese
compared with the lean mice (Figs. 4 and 6A, middle).
Unlike in the lean mice, the ob/ob mRNA levels did not
respond to glucose feeding (Fig. 6A, bottom). Interestingly,
after glucose feeding the Gck mRNA levels in the lean
mice reached the unresponsive, constitutively high levels
in the obese mice. The absent mRNA response is in
agreement with the lack of induction in the 3� end Pol II
levels (Fig. 5C row 2), where unlike the lean mice, little or
no activation of IR and MAPK components was detected in
the ob/ob strain (Fig. 5C, row 3, and 6B, rows 2–6).

Remarkably, glucose feeding in ob/ob mice induced
second TSS Pol II, IR, and MAPK changes, but unlike the
lean mice, these changes appeared unsynchronized and
did not propagate to the 3� end of the gene (Fig. 6B, rows
1–6). These results show that, unlike the lean mice, in the
obese mice activation of Mek/Erk at Gck TSS is uncoupled
from its canonical activator, B-Raf.

In contrast to the IR/MAPK changes (Fig. 6B, rows 1–6),
the second TSS H3K9/14Ac levels in both lean and obese
mice were largely unaffected by glucose feeding (Fig. 6B,
row 7), indicating that this mark of open chromatin
remains stable even though Pol II, IR, and MAPK activities
are changing.

DISCUSSION

Here, using two inducible genes as examples, egr-1 in rat
hepatocyte cultures and mouse Gck in liver tissues, we
provide evidence that components of the IR signaling
complex and downstream ERK MAPK cascade are directly
recruited to insulin inducible loci. Our results suggest that
effective mRNA synthesis/processing depends on coordi-
nated activation of IR/MAPK cascade along Pol II tran-
scribed regions.
Nuclear translocation of IR. Nearly 25 years ago, Olef-
sky and coworkers demonstrated nuclear translocation of
IR and suggested that it may interact with specific targets
in the genome to mediate insulin’s long-term effects on
transcription (14). Our ChIP-based observations are con-
sistent with this and other previous IR nuclear transloca-
tion studies (14,15). Nuclear translocation of insulin has
also been demonstrated. Interestingly, insulin’s transit
through the nuclear pore may be independent of IR and
instead be mediated by other cytoplasmic proteins (41).
Using three different types of insulin antibodies, we could
not detect a ChIP signal specific to insulin at either egr-1
or Gck (data not shown). Thus, it is conceivable that a
large fraction of chromatin-bound IR is insulin-free.
Recruitment of IR and MAPK components to induc-
ible gene loci. The IR/MAPK kinetics that resemble the
Pol II pattern (Figs. 2–4, 6) suggest that these kinases
either dictate or follow the Pol II initiation/elongation at
the TSS. This raises the following question: what are the
functional implications for this synchrony? Because many
factors involved in chromatin rearrangements, gene tran-
scription, and RNA processing are regulated by phosphor-
ylation, coordinated action of signaling kinases at discrete
points of time and space likely plays a critical role in

synchronizing these events. The distribution of insulin-
responsive kinases in the nuclear milieu could be too
diffuse for the spatiotemporal specificity required to coor-
dinately induce these processes (42,43). Thus, precisely
timed recruitment and activation of kinases at induced
gene loci could provide the requisite spatiotemporal spec-
ificity. For example, activated IR could serve to bring
together and activate downstream components at target
genes in a spatiotemporal manner that matches Pol II
elongation. This tight spatiotemporal coupling would
serve to compartmentalize kinase signals to specifically
regulate productive Pol II mRNA synthesis from insulin-
responsive gene loci. The side-by-side comparison of Gck
responses in glucose-fed lean and obese mice lends further
support to this suggestion (Fig. 6).
Differences and similarities of IR/MAPK recruitment
to the Gck locus in lean and obese mice. Gck is a
critical regulator of glucose metabolism, including hepatic
control of glycogen synthesis and glycolysis (44). Thus, it
would not be surprising if a chronic hyperglycemic state in
the ob/ob mice were to trigger a homeostatic mechanism
that maintains elevated constitutive Gck transcription to
meet the metabolic burden posed by the high glucose load
(Fig. 5A). The higher Gck mRNA levels in ob/ob mice, at
least in part, reflect increased transcription as evidenced
by higher Pol II density (Fig. 5B, row 1). The higher rates
of transcription are further supported by the more open
chromatin structure revealed by H3K9/14Ac differences
between the two strains (Fig. 5B, row 7). The constitutive
IR and MAPK ChIP signals at Gck in the lean and obese
mice seem to match Pol II levels (row 1), suggesting that,
in both strains, fasting activities of Pol II, IR (rows 1–3),
and MAPK components (rows 4–6) are functionally cou-
pled. After glucose feeding, Gck mRNA and 3� end Pol II,
IR, and MAPK densities in ob/ob mice remained un-
changed. Interestingly, in lean mice, the mRNA and 3� end
values reached those of obese mice (Fig. 5C). This obser-
vation lends further support to the suggestion that 3� end
IR/MAPK cascade activities, coupled to Pol II, tune the
mRNA output from the Gck locus to match the glucose
load (Fig. 6A).

In sharp contrast to the strong similarity between IR/
MAPK activities and Pol II density at the 3� end during
fasting in lean and obese mice (Fig. 5B), the changes in the
levels of these proteins at the Gck TSS during feeding were
dramatically different between the two strains (Figs. 4C
and 6B). Specifically, the synchronous, feeding-induced
increase in TSS pIR/B-Raf/MEK/ERK activities and Pol II in
the lean mice (Figs. 4C and 6B) was absent in the ob/ob
strain (Fig. 6B). Instead, in the obese mice at the TSS,
there was a wave of Pol II, IR, and B-Raf activities, a
pattern different from the steady MEK and Erk increase.
The discrepant TSS kinase patterns in the obese mice
suggest that at least a fraction of the total pool of MEK/Erk
(rows 5 and 6) is uncoupled from the upstream activator,
B-Raf, at this site (row 4). The apparent B-Raf–MEK/Erk
uncoupling could reflect heterogeneous hepatocyte popu-
lations in the liver where activation of the MEK/Erk axis
could be mediated by alternative upstream MEK activators
such as C-Raf, A-Raf, or PAK (45,46,47).

Release of proximally paused Pol II, seen as a decrease
in ChIP signal at the TSS, is an important mode of
transcriptional activation (48). Whereas the initial feeding-
induced decline (10 min) in TSS Pol II density in the ob/ob
mice is consistent with this model (Fig. 6B, row 1), the
increase that follows (20 min) may represent de novo
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promoter initiation. Remarkably, the TSS Pol II wave does
not elongate to the 3� end; instead it seems that the
feeding-induced polymerase either falls off or is stalled
downstream. Thus, the unsynchronized activities of IR and
MEK/Erk at the Gck TSS in ob/ob mice may be associated
with low processivity (i.e., premature termination of RNA
synthesis) (49) of the feeding-induced Pol II wave. Taken
together, these observations are consistent with the sug-
gestion that coupled activation of IR/B-Raf/MEK/Erk along
a gene could play a role in productive mRNA synthesis by
Pol II.

In summary, we have shown for the first time that the IR
signaling complex and downstream ERK MAPK cascade
components are recruited and activated along insulin-
induced loci. These observations raise many questions
about how IR and the MAPK pathway are targeted to
insulin-responsive genes and the role of this recruitment.
Thus, it is clear that this facet of insulin- and IR-regulated
gene expression needs to be explored. In this regard, the
present study represents a new paradigm to study these
processes at the chromatin level in health and disease.
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