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Introduction

Tumor homing peptides (THPs) (Kondo et al. 2021) are com-
pact, sequence-specific compounds that possess the extraor-
dinary capacity to specifically adhere to cancerous cells or 
tissues (Wu et al. 2022a). The exceptional characteristic of 
THP renders them important instruments in diverse domains 
of cancer research and therapy (Lu et al. 2017). THP can be 
employed for the targeted delivery of therapeutic medicines 
to tumor cells, thereby limiting harm to healthy cells and 
diminishing adverse effects (Lempens et al. 2011). Through 
the process of conjugating THPs to anticancer medications, 
nanoparticles, or other therapeutic payloads, these agents 
can be precisely directed towards tumors, thereby improv-
ing their effectiveness and minimizing harm to the rest of the 
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Abstract
Tumor homing peptides (THPs) have a distinctive capacity to specifically attach to tumor cells, providing a promising 
approach for targeted cancer treatment and detection. Although THPs have the potential for significant impact, their 
detection by conventional methods is both time-consuming and expensive. To tackle this issue, we provide LLM4THP, 
an innovative computational approach that utilizes large language models (LLMs) to quickly and effectively detect THPs. 
LLM4THP utilizes two protein LLMs, ESM2 and Prot_T5_XL_UniRef50, to encode peptide sequences. This allows 
for the capture of complex patterns and relationships within the peptide data. In addition, we utilize inherent sequence 
characteristics such as Amino Acid Composition (AAC), Pseudo Amino Acid Composition (PAAC), Amphiphilic Pseudo 
Amino Acid Composition (APAAC), and Composition, Transition, and Distribution (CTD) to improve the representation 
of peptides. The RDKitDescriptors feature representation approach transforms peptide sequences into molecular objects 
and computes chemical characteristics, resulting in enhanced THP identification. The LLM4THP ensemble strategy incor-
porates various features into a two-layer learning architecture. The first layer consists of LightGBM, XGBoost, Random 
Forest, and Extremely Randomized Trees, which generate a set of meta results. The second layer utilizes Logistic Regres-
sion to further refine the identification of sequences as either THP or non-THP. LLM4THP exhibits exceptional perfor-
mance compared to the most advanced methods, showcasing enhancements in accuracy, Matthew’s correlation coefficient, 
F1 score, area under the curve, and average precision. The source code and dataset can be accessed at the following URL: 
https://github.com/abcair/LLM4THP.
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body (Zhang et al. 2021). THPs can also function as imag-
ing agents for the visualization of cancers (Wu et al. 2022b). 
Researchers can non-invasively visualize the location, size, 
and changes over time of tumors by including fluorescent or 
radioactive markers into THPs. This information is crucial 
for the precise diagnosis of a medical disease, the evalua-
tion of its severity, and the assessment of the effectiveness 
of the treatment being provided (Li and Cho 2012). Simply 
said, tumor homing peptides provide a potent means for pre-
cise cancer treatment and detection. Their capacity to spe-
cifically adhere to tumor cells possesses significant potential 
for enhancing cancer treatment results and comprehension 
of the mechanism (Karami Fath et al. 2022).

Additionally, the function of binding of THPs is primar-
ily mediated by their capacity to recognize and interact 
with specific receptors or molecules on the surface of can-
cer cells. This selective binding is contingent on the amino 
acid composition and spatial conformation of the peptide 
sequence. The characteristics of THPs include high affinity, 
specificity, and the capability to penetrate biological barri-
ers. During the binding process, THPs typically exploit the 
abnormal glycosylation or protein expression on tumor cell 
surfaces, which is less common in normal cells, thereby 
achieving precise tumor cell targeting. Additionally, THPs 
are characterized by their biocompatibility and low immu-
nogenicity, which endows them with significant potential 
in applications such as drug delivery, diagnostic imaging, 
and cancer therapy. By delving into the binding mechanisms 
and characteristics of THPs, researchers can further refine 
these peptides to develop more effective strategies for can-
cer treatment.

Nevertheless, the identification of THPs by conventional 
experimental methods, such as phage display, might incur 
significant expenses and consume a considerable amount 
of time (Melssen et al. 2023). These procedures necessitate 
thorough laboratory work, which include peptide synthe-
sis, screening, and characterization (Sharma et al. 2013a). 
Moreover, the process of optimizing peptide sequences to 
improve tumor targeting can be intricate and involves mul-
tiple iterations (Li et al. 2019). Therefore, it is necessary to 
identify THP in a high-throughput way. Machine learning 
models can rapidly analyze large datasets and identify pat-
terns and relationships that are not apparent through manual 
analysis (Lin et al. 2015). In 2013, Centre et al. conducted 
an analysis on a dataset of experimentally validated THPs 
and non-THPs to uncover important compositional features 
and preferences for residues (Sharma et al. 2013b). These 
attributes are further utilized to construct SVM models 
(Jiang et al. 2020) employing several representations of the 
peptides, such as amino acid composition, dipeptide com-
position, and binary profile patterns. The results indicate 
that the model based on binary profile patterns obtains the 

maximum level of accuracy, especially when focusing on 
the N- and C-terminal residues of the peptides (Huttunen-
Hennelly 2010). In addition, TumorHPD is a user-friendly 
online server that utilizes these SVM models and offers 
tools for creating new THPs with enhanced tumor hom-
ing capabilities. In 2019, Shoombuatong et al. introduced 
a new computational model called THPep (Shoombuatong 
et al. 2019). This model uses a random forest classifier and 
various peptide features, such as amino acid composition, 
dipeptide composition, and pseudo amino acid composi-
tion, to predict tumor homing peptides (THPs). The model 
outperforms existing methods and its interpretability makes 
it a potentially valuable tool for researchers in the field of 
cancer therapeutics. Furthermore, to assist researchers in 
conducting experiments, the authors have developed a pub-
licly accessible web server for THPep. In 2021, He et al. 
introduce a new meta-learning model called Mutual Infor-
mation Maximization Meta-Learning (MIMML) (He et al. 
2022). The purpose of this model is to accelerate the process 
of identifying bioactive peptides, which are short chains of 
amino acids that have potential medicinal uses. MIMML 
utilizes the ideas of few-shot learning and meta-learning 
(Langdon et al. 2022) to effectively adjust to novel tasks 
with limited training data. MIMML uses a Text Convolution 
Neural Network (TextCNN) (Soni et al. 2023) to convert 
peptide sequences into feature vectors, capturing their hid-
den features. It then uses a prototypical network to gener-
ate class prototypes from these embeddings, allowing the 
model to classify new and unknown peptide sequences. In 
2022, Charoenkwan et al. introduced NEPTUNE (Charoen-
kwan et al. 2022b), an innovative computational method 
designed to precisely and efficiently identify tumor homing 
peptides (THPs) from sequence data on a wide scale. NEP-
TUNE is a stacked ensemble learning technique that uses 
several feature encoding approaches in conjunction with six 
well-known machine learning algorithms, including random 
forest, support vector machine, partial least squares, logis-
tic regression, extremely randomized trees, and k-nearest 
neighbor. Utilizing the probabilistic data obtained from 
the most effective baseline models. The integrated predic-
tion is derived from the ultimate meta-predictor. In 2022, 
Charoenkwan et al. introduced SCMTHP (Charoenkwan 
et al. 2022a), an innovative method for detecting and ana-
lyzing tumor homing peptides (THPs) by utilizing pre-
dicted propensity scores of amino acids. SCMTHP utilizes 
a score card approach (SCM) (Charoenkwan et al. 2020) 
to enhance the accuracy and comprehensibility of predic-
tions. The SCMTHP algorithm calculates propensity scores 
for 20 amino acids, which are subsequently utilized to dis-
cover physicochemical features (PCPs) that are informa-
tive and linked with THP bioactivity. In 2023, Guan et al. 
presented StackTHPred (Guan et al. 2023), an innovative 
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computational technique specifically developed for the 
detection of tumor-homing peptides (THPs). StackTHPred 
employs a stacking ensemble architecture that incorpo-
rates feature selection based on gradient boosting decision 
trees (GBDT) (Liu et al. 2022). The framework utilizes 
five broad protein descriptors, namely amino acid compo-
sition, pseudo-amino acid composition, physicochemical 
properties, BLOSUM62, and z-scale, to extract informative 
characteristics. The GBDT algorithm is used to efficiently 
choose features, which reduces computational complex-
ity and improves prediction accuracy. In 2024, Arif et al. 
introduced a new computational framework called THP-
DF(Arif et al. 2024), specifically developed for the precise 
detection of tumor homing peptides (THPs) on a wide scale. 
THP-DF employs a blend of sequential and deep learning 
characteristics. Initially, peptide sequences are encoded uti-
lizing a range of sequential characteristics. Afterwards, a 
BiLSTM (Bidirectional Long Short-Term Memory) (Huang 
et al. 2022) model is used, together with attention layers, to 
extract profound characteristics from these sequences. The 
deep features, as well as the sequential features, are com-
bined in an ensemble framework and used as input for a 
support vector machine (SVM) classifier to create THP-DF. 
Although current predictors show fair accuracy in identi-
fying THPs, there is much potential for improvement. An 
effective approach involves utilizing large language models 
(LLMs) to encode peptide sequences. LLMs have trans-
formed the field of natural language processing by captur-
ing complex patterns and relationships in textual material. 
By employing analogous methods to peptide sequences, it 
is possible to achieve more thorough and refined depictions, 
which may uncover profound understandings of THP func-
tioning. Hence, this work introduces a novel model named 
LLM4THP for the purpose of detecting THP. We employ 
large language models (LLMs) (Thirunavukarasu et al. 
2023) to create features by extracting relevant information 
from peptide sequences, including peptide sequence intrin-
sic features and molecular information features, to encode 
peptide sequences. The ensemble technique is utilized to 
construct LLM4THP, which consists of a two-layer learn-
ing architecture, using the embedding vectors as a founda-
tion. The first layer has four meta predictors: LightGBM 
(LGBM, referred to as M1), XGBoost (XGB, referred to as 
M2), Random Forest (RF, referred to as M3), and Extremely 
randomized trees (ERT, referred to as M4). The cross-prod-
uct of the embedding vectors [V1, V2, V3, V4, …, V7] with 

the meta predictors [M1, M2, M3, M4] produces a collec-
tion of outcomes known as VMs. These outcomes represent 
the predictive ability of each feature when combined with 
each model. The collection of predictions is further ana-
lyzed using Logistic Regression to enhance the differentia-
tion between THP and non-THP sequences. The result of 
LLM4THP is a classification that determines whether the 
input peptide sequence is a THP or a non-THP. This clas-
sification is based on the combined predictions from the 
ensemble model. LLM4THP is assessed using many mea-
sures and a user-friendly prediction model is developed for 
academic research purposes.

Data and methods

Data

In the current investigation, the dataset architecture was 
meticulously designed to encompass four distinct subsets 
for the purpose of training and evaluating the predictive 
model. The primary training dataset, denoted as TRP, was 
compiled with an equal representation of 490 tumor hom-
ing peptides (THPs) and 490 non-THP sequences. A smaller 
training subset, referred to as TRS, was also constructed 
with a balanced distribution of 350 THPs and 350 non-
THPs. To independent validation, two additional datasets 
were curated. The Primary independent test dataset (ITP) 
was assembled with 161 THPs and 161 non-THPs, while 
the smaller independent test dataset (ITS) comprised 119 
THPs and an equivalent number of non-THP sequences. 
These datasets were originally created and characterized in 
a prior study (Shoombuatong et al. 2019). The THP samples 
were meticulously selected from the TumorHoPe database 
(Kapoor et al. 2012), ensuring their experimental verifica-
tion as tumor-seeking peptides. Conversely, the non-THP 
counterparts were randomly selected from the SwissProt 
database (Bairoch 2000), which are not in TumorHoPe 
database without any overlap with THP dataset, providing 
a diverse and representative control group. A comprehen-
sive summary of the training and independent test datas-
ets, including the number of samples and their respective 
sources, is provided in Table  1. This structured approach 
to dataset curation facilitates a robust evaluation of the 
model’s performance across various conditions, enhancing 
the reliability and generalizability of the findings. Table 1. 
shows the training and test dataset for LLM4THP. And the 
distribution of peptide sequence length in Primary dataset 
and Small dataset is shown in Supplementary Figure S1.

Table 1  The training and test dataset
Training dataset Independent test 

dataset
Primary Small Primary Small

THP 490 350 161 119
non-THP 490 350 161 119
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including protein function prediction, binding site predic-
tion and protein-protein interaction prediction.

In this paper, Prot-T5_XL_UniRef50 is introduced to 
encode peptide sequences. For peptide sequences Seqp  with 
length L, Prot-T5_XL_UniRef50 can encode the Seqp  into 
a matrix with dimension L× 1024. Additionally, because 
of the different lengths of peptides, we get the mean of the 
above matrix along the length direction to get a vector with 
1024 dimensions. Therefore, following the above encoder 
methods, we can get a 1024-dimension vectors.

Molecular information encoding feature by SMILES  This 
research uses chemical attribute properties of peptides to 
encode peptide sequences. RDKitDescriptors (Katubi et 
al. 2023), a chemical attribute calculation library, is used, 
which provides a complete array of chemical descriptors 
tailored to peptides. These descriptors effectively capture 
peptides’ chemical and structural properties, making it eas-
ier to represent peptide sequences. RDKitDescriptors is a 
useful tool in computational biology for encoding peptide 
sequences. RDKitDescriptors can identify crucial molecular 
attributes such as molecular weight, hydrophobicity, hydro-
gen bonding potential, and topological indices. RDKitDe-
scriptors also store molecular structural information that 
determines their biological activity. Furthermore, RDKit-
Descriptors provide a standardized and well-documented 
set of descriptors for encoding THP sequences in a high-
throughput manner.

Therefore, in this study, RDKitDescriptors are introduced 
to determine peptides’ chemical information. The technique 
entails transforming a peptide sequence into a molecular 
object using the RDKit (Bento et al. 2020) Python library’s 
Chem.MolFromFASTA(seq) function, where seq represents 
the peptide sequence. Chem.MolToSmiles(mol) converts 
the molecular object into SMILES format (O’Boyle 2012). 
RDKitDescriptors is then used to calculate the chemical 
attribute of the peptide using the SMILES format input, 
returning a dictionary data structure containing 210 chemi-
cal attribute features. As a result, a peptide sequence of 
length L can be transformed into a 210-dimensional vector.

Peptide intrinsic sequence features  In this paper, we use 
Amino Acid Composition (AAC) (Bartas et al. 2021), 
Pseudo Amino Acid Composition (PAAC) (Naseer et al. 
2022), Amphiphilic Pseudo Amino Acid Composition 
(APAAC) (Wang et al. 2020)and Composition, Transition 

Methods

Peptide sequence encoding

Sequence encoding features by protein large language 
model  a. Evolutionary scale modeling 2  Evolutionar scale 
mody Scale Model 2 (Lin et al. 2023), abbreviated ESM2, 
is another protein large language model that uses a massive 
corpus of protein sequences to train a deep neural network 
architecture to capture the subtle evolutionary links and 
functional features of amino acids. ESM2 can construct 
highly informative and context-aware embeddings of pro-
tein sequences. The various hidden layer outputs in ESM2 
produce varying output dimensions. ESM2 has six alterna-
tive implementations, including esm2_t48_15B_UR50D 
(5120), esm2_t36_3B_UR50D (2560), esm2_t33_650M_
UR50D (1280), esm2_t30_150M_UR50D (640), esm2_
t12_35M_UR50D (480), and esm2_t6_8M_UR50D (320). 
esm2_t48_15B_UR50D indicates that this model has 
15 billion parameters and 48 attention layers trained on the 
UniRef50 (UR50D) protein dataset with 5120 output dimen-
sions. esm2_t33_650M_UR50D indicates that this model 
has 650 million parameters and 33 attention layers trained 
on the UniRef50 (UR50D) protein dataset with 1280 out-
put dimensions. Other ESM2 models use the same formats 
as the two mentioned above. Different ESM2 implements 
represent different output dimensions. For example, esm2_
t33_650M_UR50D can encode the Seqp  with sequence 
length L to a matrix with dimension L × 1280. Furthermore, 
due to the varying lengths of the peptides, we calculate the 
mean of the matrix along the length direction to obtain a 
vector with dimensions 1280. As a result, using the encoder 
methods described above, a peptide sequence can be con-
verted into 1280-dimensional vectors. In this research, we 
choose esm2_t33_650M_UR50D as an encoder to represent 
peptide sequence since its output can carry most encoded 
information in a not-too-high dimension vector.

b. Prot_T5_XL_UniRef50  Prot-T5_XL_UniRef50 (Praty-
ush et al. 2024) are the second pre-trained large language 
models for protein sequence representation. These T5-based 
models, trained on enormous protein sequence databases, 
can create informative representations for a variety of bio-
logical applications. The UniRef50 dataset (Suzek et al. 
2015) contains over 90  million protein sequences. Both 
models use extra-large architecture, which has deeper and 
wider neural networks than the original T5 model, allow-
ing Prot-T5_XL_UniRef50 to capture more complicated 
patterns and correlations within protein sequences. Prot-
T5_XL_UniRef50’s powerful pre-trained representations 
can be fine-tuned for a variety of downstream applications, 
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lowest level of hydrophilicity) to 1 (representing the highest 
level of hydrophilicity).

The APAAC begins by determining the amino acid com-
position of the protein sequence and classifying the amino 
acids into hydrophilic and hydrophobic categories. APAAC 
computed the PHI and PH scores for each amino acid in 
the protein sequence. The construction of APAAC involved 
the consideration of the PHI and PH values of neighbor-
ing amino acids within a predetermined window, which was 
focused around a given place in the peptide sequence. The 
APAAC feature vector was constructed by amalgamating 
the amino acid composition, PHI, and PH scores in the pep-
tide sequence. The APAAC encoding approach can be used 
to extract the amino acid composition and location-specific 
features of peptide sequences. For this investigation, we 
employed APAAC to convert a peptide sequence into a vec-
tor of 26 dimensions.

d. Composition, transition and distribution  The Composi-
tion-Transition-Distribution (CTD) feature has been exten-
sively utilized in numerous studies focused on predicting 
proteins. The CTD is physical-chemical features which 
can capture the distribution of amino acids based on their 
physicochemical properties, such as polarity, hydropho-
bicity, and charge and this encoding scheme is particu-
larly effective for THPs because it reflects the sequence’s 
propensity to interact with the tumor microenvironment, 
which is crucial for their homing ability. CTD considers 
the uneven distribution of amino acids along the peptide 
sequence, which can affect their binding affinity to tumor-
specific receptors or other molecular targets. For instance, a 
higher presence of hydrophobic amino acids may enhance 
the peptide’s ability to penetrate the lipid bilayer of can-
cer cells, while an increased number of hydrophilic resi-
dues might facilitate interactions with hydrophilic regions 
on the cell surface. Moreover, the transition aspect of the 
CTD descriptor is important for understanding how amino 
acids change from one type to another along the sequence, 
which can impact the peptide’s conformation and its overall 
interaction with the tumor tissue. The distribution of these 
transitions can provide insights into the structural flexibil-
ity or rigidity of the peptide, which may be essential for 
its targeting specificity. Therefore, CTD is introduced to 
encode peptide sequence to identify THP. The classifica-
tion of 20 types of amino acids into seven groups is based 
on the levels of Dipole and volume scale. For example, 
G1 = {A,G, V } , G2 = {I, L, F, P} , G3 = {Y,M, T, S}
, G4 = {H,N,Q,W} , G5 = {R,K} , G6 = {D,E}
, G7 = {C} . Therefore, it is feasible to employ a binary 
space (V, F ) to represent a protein sequence. Where V is 
the vector space of the sequence features, and each feature 

and Distribution (CTD) (Meher et al. 2018) as intrinsic 
sequence features to encode peptide sequence.

a. Amino acid composition  AAC calculated the frequency 
of each amino acid type in a protein or peptide sequence. 
The frequency calculation for all 20 natural amino acids 
(ACDEFGH-IKLMNPQRSTVWY) was shown in follow-
ing Formula:

f (t) =
N(t)

N
, t ∈ { A,C,D, . . .,Y}

Where N(t) was the count of amino acids in class t, and N 
was the length of the protein or peptide sequence. In this 
study, we used AAC to encode an amino acid sequence to a 
20-dimensional vector.

b. Pseudo-amino acid composition  PAAC feature encoding 
method considered the frequency of each amino acid and 
the influence of sequence order on the amino acid sequence. 
The calculation method was shown in following Formula:






θi =
∑N−d

i=1

(Pi − Pi+d)
2

Np

Xc(i) =
Ni

1 + ω ×
∑30

i=1 θi

XClambdai =
ω × θi

1 + ω ×
∑30

i=1 θi

Here, θi  represented the number of factors related to 
sequence order, Pi was the property value of the i-th amino 
acid, and Np  was the number of attributes, and Ni  was the 
appearance of the i-th amino acid and ω  was a parameter 
set to 0.05. In this study, we used PAAC to encode an amino 
acid sequence to a 23-dimensional vector.

c. Amphiphilic pseudo amino acid composition  APAAC, 
unlike prior methods, incorporates the physicochemi-
cal properties of amino acids, specifically hydrophilic-
ity (PHI) and hydrophobicity (PH) (Li et al. 2016). The 
APAAC approach was utilized to enhance the acquisition 
of additional peptide sequence information. The 20 natu-
rally occurring amino acids exhibit PHI and PH values that 
show their interaction with water molecules. The pH values 
ranged from 0 (indicating the lowest level of hydrophobic-
ity) to 1 (indicating the highest level of hydrophobicity), 
whereas the PHI values varied from − 1 (representing the 
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In brief, using the peptide sequence encoding method, we 
obtain the encoding vectors for, ESM2 (1280 dimensions), 
Prot-T5_XL_UniRef50 (1024 dimensions) and peptide 
intrinsic sequence features including AAC (20 dimensions), 
PAAC (23 dimensions), APAAC (26 dimensions) and CTD 
(343 dimensions). After the encode by SMILES, a peptide 
sequence is encoded by RDKitDescriptors to 210 dimen-
sions vector. Based on the encoding features, we will build 
LLM4THP to distinguish THP and non-THP.

Construction of LLM4THP

In this study, we introduce LLM4THP (Fig. 1), a new com-
putational model for identifying THP.

In the development of LLM4THP, an ensemble strategy 
is adopted to learn the predictive power of multiple models. 
For the construction of features, we utilize large language 
models (LLMs) capable of extracting valuable informa-
tion from peptide sequences and molecular SMILES 

Vi  represents a sort of triad type. F is the frequency vector 
corresponding to V, and the value of the i-th dimension of 
F (fi) is the frequency of type Vi  appearing in the protein 
sequence. For the amino acids that have been catalogued 
into seven classes, the size of V should be 343 (7 × 7× 7)

; However, the value of fi  correlates to the length (number 
of amino acids) of protein. In general, a long protein would 
have a large value of fi , which complicates the comparison 
between two heterogeneous proteins. To solve this problem, 
we defined a new parameter, di, by normalizing fi  with 
di =

(fi−min(f1,f2,...,f343))
max(f1,f2,...,f343) .

 
Therefore, we get AAC for 20-dimensional vector, PAAC 
for 23-dimensional vector, APAAC for 26-dimensional 
vector and CTD for 343-dimensional vector for a peptide 
sequence. And we merge AAC, PAAC, APAAC and CTD as 
peptide intrinsic sequence features with a fused 412-dimen-
sional vector.

Fig. 1  The integrated pipeline of LLM4THP
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SE=
TP

TP+FN

SP= FP
FP+TN

ACC=
TP+TN

TP+TN+FP+FN

F1=
2 × TP

2 × TP + FP+FN

MCC =
(TP×TN)− (FP×FN)√

(TP+FN)(TN+FP)(TP+FP)(TN+FN)

In the context of binary classification, true positives (TPs) 
and true negatives (TNs) denote the instances where THPs 
and non-THPs are correctly identified, respectively. Con-
versely, false positives (FPs) and false negatives (FNs) rep-
resent misclassifications.

Results

Showing the performance of each encoding features

In this study, we introduce LLM4THP, a novel two-layer 
stack model, which incorporates two distinct large lan-
guage models (LLMs) encoding features (ESM2 and 
Prot_T5_XL_UniRef50) alongside molecular descriptors 
derived from RDKit and a suite of sequence inner encod-
ing features including AAC, PAAC, APAAC, and CTD. 
These features collectively facilitate the transformation of 
peptide sequences into hybrid vectors. Subsequently, to 
assess the efficacy of our feature combination, we imple-
ment Uniform Manifold Approximation and Projection 
(UMAP) (Armstrong et al. 2021) to project the LLM4THP 
encoding features into a three-dimensional space, visually 
depicting the distribution of THP and non-THP within both 
training and test datasets. As illustrated in Fig. 2, the UMAP 
visualization reveals discernible boundaries between THP 
and non-THP instances, suggesting a robust discriminative 
capacity of the integrated features. The distinct distributions 
of LLM encoding features, molecular information features, 
and sequence inner encoding features provide empirical 
evidence supporting the utility and informativeness of our 
chosen encoding strategy.

Additionally, we concatenate all encoding features and 
apply UMAP for dimensionality reduction, projecting the 
aggregate feature set into a three-dimensional space for 
both the training and test datasets. This visualization strat-
egy is employed to manifest the discriminative power of the 
concatenated feature set. Figure  3 elucidates the resultant 

representations. This approach yields two distinct types of 
information: the first derived from the peptide’s internal 
sequence, and the second from the molecular information 
represented by SMILES. The peptide sequence is trans-
formed into vector representations using ESM2 and Prot_
T5_XL_UniRef50, resulting in two vectors V1 and V2 with 
dimensions of 1280 and 1024, respectively. Additionally, 
the peptide inner sequence features are also represented by 
AAC, PAAC, APAAC and CTD called V3, V4, V5 and V6 
respectively. Besides, the peptide sequence is converted into 
a SMILES string format through the RDKit software, which 
is then encoded into a vectors V7 with 210 dimensions.

These seven embedding vectors collectively encode the 
peptide sequence, serving as the foundation for the feature 
encoding phase. Building upon these vectors, the ensemble 
strategy is implemented to create LLM4THP, which com-
prises a two-layer learning architecture. The initial layer 
consists of four meta predictors: LightGBM (LGBM, desig-
nated as M1), XGBoost (XGB, designated as M2), Random 
Forest (RF, designated as M3), and Extremely randomized 
trees (ERT, designated as M4). The cross-product of the 
embedding vectors [V1, V2, V3, V4, V5, V6, V7] with the 
meta predictors [M1, M2, M3, M4] yields a set of results 
termed VMs, which reflects the predictive capabilities of 
each feature in conjunction with each model. This ensemble 
of predictions is then processed by Logistic Regression to 
refine the distinction between THP and non-THP sequences. 
The ultimate output of LLM4THP is a classification that 
determines whether the input peptide sequence is a THP or 
a non-THP, based on the aggregated predictions from the 
ensemble model. Finally, LLM4THP is evaluated by mul-
tiple metrics and a user-friendly prediction is implemented 
for academic research. Figure  2 shows the workflow of 
LLM4THP.

Evaluation metrics

In this study, we adopted a suite of eight established per-
formance metrics to comprehensively evaluate the efficacy 
of the LLM4THP predictive model. These metrics include 
Precision, Sensitivity (SE), Specificity (SP), accuracy 
(ACC), F1-score (F1), Matthew’s correlation coefficient 
(MCC). Additionally, Area Under the Receiver Operat-
ing Characteristic curve (AUROC) and Area Under the 
Precision-Recall Curve (APROC) are also used to evaluate 
LLM4THP performance. The area enclosed by the AUROC 
and the coordinate axes is called AUC and the area enclosed 
by the PRROC and the coordinate axes is called AP. The 
calculations for these metrics are defined as follows:

Precision=
TP

TP+FP
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Fig. 2  The distribution of each encoding 
feature on training and test dataset
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evaluated, such as E + S, E + P, and E + P + S, among oth-
ers. First, E + P + S + R emerges as the top-performing fea-
ture set, achieving the highest scores across most metrics. 
Notably, it attains the highest MCC (0.7488), F1 (0.8782), 
AUC (0.9528) and AP (0.9532), demonstrating its superior 
ability to distinguish between THP and non-THP. This sug-
gests that integrating diverse information sources, including 
embeddings, sequence features, and chemical descriptors 
can enhance the model’s performance significantly. Addi-
tionally, ESM2 embeddings (E) and Prot_T5_XL_Uni-
Ref50 embeddings (P) perform comparably, with E slightly 
outperforming P in most metrics. This indicates that both 
embedding methods effectively capture relevant information 
from the sequences. However, the significant improvement 

mappings, where it is evident that the chosen features are 
capable of effectively delineating between THP and non-
THP instances, underscoring the robustness of our feature 
selection approach in identifying THP.

The cooperation effect of encoding features to 
identify THP

Table  2. presents a comprehensive comparison of vari-
ous feature sets for identifying THP on primary dataset, 
measured by multiple performance metrics. The features 
include ESM2 embeddings (E), Prot_T5_XL_UniRef50 
embeddings (P), sequence features (S), and RDKit descrip-
tors (R). Additionally, combinations of these features are 

Table 2  The results of feature cooperation effect on primary test dataset
Features Precise SP SE ACC MCC F1 AUC AP
E 0.8423 0.7846 0.9000 0.8423 0.6892 0.8509 0.8610 0.8048
P 0.8239 0.8076 0.9000 0.8538 0.7107 0.8602 0.9030 0.8647
S 0.8108 0.7846 0.9230 0.8538 0.7145 0.8633 0.8920 0.8318
R 0.8270 0.8230 0.8461 0.8346 0.6694 0.8365 0.8806 0.8358
EP 0.8428 0.8305 0.9076 0.8692 0.7406 0.8740 0.9023 0.8647
ES 0.8163 0.7923 0.9230 0.8576 0.7215 0.8664 0.9313 0.8986
ER 0.8057 0.7923 0.8615 0.8269 0.6554 0.8327 0.9014 0.8676
PS 0.8108 0.7846 0.9225 0.8538 0.7145 0.8633 0.9384 0.9085
PR 0.8260 0.8153 0.8769 0.8461 0.6936 0.8507 0.9216 0.8999
EPS 0.8321 0.8153 0.9151 0.8653 0.7344 0.8717 0.9341 0.9052
EPR 0.8156 0.8000 0.8846 0.8423 0.6870 0.8487 0.9191 0.8983
PSR 0.8417 0.8307 0.9000 0.8653 0.7325 0.8698 0.9418 0.9220
EPSR 0.8439 0.8307 0.9153 0.8730 0.7488 0.8782 0.9528 0.9532
Note ESM2 (E), Prot_T5_XL_UniRef50 (P), Sequence features (S), RDKitDescriptors (R)

Fig. 3  The distribution of combined features on training and test dataset
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the overall accuracy (ACC), RDKitDescriptors (R) stands 
out with a score of 0.8404, suggesting that it is the most 
effective at classifying instances correctly across both posi-
tive and negative classes. This is further supported by its 
high AUC and AP scores, indicating that RDKitDescriptors 
is particularly adept at distinguishing between positive and 
negative instances. Additionally, The Matthew’s correlation 
coefficient (MCC) provides a balanced measure of the mod-
el’s performance, considering both true positives and true 
negatives. Here, the RDKitDescriptors feature (R) again 
emerges as a strong contender, with an MCC of 0.6833, 
which is higher than the other features, reflecting its overall 
effectiveness to identify THP on small dataset. Besides, all 
features exhibit strengths in various aspects of predictive 
performance, the RDKitDescriptors feature (R) stands out 
as the most informative and useful for the small test data-
set, offering high specificity, accuracy, and discriminative 
power.

Threshold for identification THP

Furthermore, to select the appropriate threshold for identi-
fying THP, we examine the various thresholds to see which 
one is best for predicting THP. Figure 4 depicts the MCC 
and F1-score distributions across various thresholds on the 
primary test dataset and small test dataset. Figure 4 shows 
that when the threshold is set to 0.5, the MCC and F1-score 
increase, indicating that the 0.5 threshold is appropriate for 
discriminating between THP and non-THP. As a result, in 
this paper, if the prediction probability is more than 0.5, the 
peptide sequence is considered THP, else it is not.

Comparison with other ensemble strategies

Table 4 presents a comprehensive comparison of three pop-
ular ensemble strategies including voting, averaging, and 

observed with the combined E + P feature set suggests that 
they complement each other, providing a more compre-
hensive representation of the data. For Sequence features 
(S) and RDKit descriptors (R) individually exhibit moder-
ate performance, with S performing slightly better than R. 
However, their combination (S + R) significantly enhances 
performance, indicating a synergistic effect. Besides, the 
results demonstrate the importance of feature combina-
tion in achieving optimal performance. Adding sequence 
features (S) to E or P improves performance, highlighting 
the value of incorporating biological information. Further, 
the addition of RDKitdescriptors (R) to E + P + S yields the 
best results, suggesting that integrating chemical properties 
is crucial for this task. Therefore, E + P + S + R emerges as 
the most effective feature set, demonstrating the importance 
of integrating embeddings, sequence features, and chemical 
descriptors for comprehensive representation and improved 
predictive ability.

From Table 3, we can find The ESM2 feature (E) dem-
onstrates a commendable balance between precision and 
sensitivity, with respective values of 0.8314 and 0.7872, 
culminating in a robust F1-score of 0.8087, which suggests 
that ESM2 is adept at both identifying true positives and 
minimizing false negatives, a critical trait for models where 
the cost of missing a positive instance is high. The Prot_
T5_XL_UniRef50 feature (P), while slightly less precise 
than ESM2, exhibits a similar sensitivity, with an F1-score 
of 0.7821. This indicates that while Prot_T5_XL_UniRef50 
may not be as adept at identifying true positives as ESM2, 
it maintains a respectable balance between precision and 
recall. For Sequence features (S) and RDKitDescriptors 
(R) both show high specificity (SP), with values of 0.8510 
and 0.8829, respectively. This high specificity indicates that 
these features are effective at correctly identifying nega-
tive instances, which is particularly valuable in contexts 
where false positives are undesirable. When considering 

Table 3  The results of feature cooperation effect on small test dataset
Features Precise SP SE ACC MCC F1 AUC AP
E 0.8314 0.8404 0.7872 0.8138 0.6285 0.8087 0.8372 0.7959
P 0.8235 0.8404 0.7446 0.7925 0.5878 0.7821 0.8479 0.8079
S 0.8409 0.8510 0.7872 0.8191 0.6396 0.8131 0.8749 0.8487
R 0.8720 0.8829 0.7978 0.8404 0.6833 0.8333 0.8619 0.8408
EP 0.8255 0.8404 0.7553 0.7978 0.5979 0.7888 0.8563 0.8184
ES 0.8539 0.8617 0.8085 0.8351 0.6711 0.8306 0.8843 0.8642
ER 0.8720 0.8829 0.7978 0.8404 0.6833 0.8333 0.8787 0.8615
PS 0.8505 0.8617 0.7872 0.8244 0.6507 0.8176 0.8847 0.8723
PR 0.8452 0.8617 0.7553 0.8085 0.6405 0.7977 0.8760 0.8590
EPS 0.8426 0.8510 0.7978 0.8244 0.6798 0.8196 0.8942 0.8858
EPR 0.8390 0.8510 0.7765 0.8238 0.6894 0.8266 0.8747 0.8556
PSR 0.8470 0.8617 0.7659 0.8238 0.6805 0.8144 0.8914 0.8848
EPSR 0.8470 0.8617 0.7985 0.8391 0.7056 0.8372 0.9081 0.9119
Note ESM2 (E), Prot_T5_XL_UniRef50 (P), Sequence features (S), RDKitDescriptors (R)
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Compared with state-of-the-art methods

Table 5 presents a comprehensive comparison of the pro-
posed LLM4THP model with five state-of-the-art methods 
(StackTHPred, SCMTHP, MIMML, NEPTUNE) on a pri-
mary test dataset. The evaluation metrics used include Pre-
cision, Specificity, Sensitivity, Accuracy, MCC, F1 Score, 
AUC, and AP. The results indicate that LLM4THP achieves 
superior performance across most metrics compared to the 
other methods. Specifically, LLM4THP demonstrates the 
highest values for Precision, Specificity, F1 Score, AUC, 
and AP, highlighting the effectiveness in accurately iden-
tifying target homologs, which suggests that the proposed 
model’s utilization of two-layer stacking ensemble learn-
ing, along with the integration of multiple features, con-
tributes to improve predictive capability. In terms of ACC, 
MCC, F1, AUC and AP, LLM4THP shows improvement 
by 2.3–4.61%, 4.63–8.79%, 2.22–3.95%, 1.94% to 3.46 
and 2.7–5.91%. Furthermore, LLM4THP exhibits a com-
petitive performance in Sensitivity, Accuracy, and MCC, 

stacking for the task of distinguishing between THP and 
non-THP. The results, measured across a range of perfor-
mance metrics including precision, specificity, sensitivity, 
accuracy, MCC, F1-score, AUC, and AP, reveal more dif-
ferences between the strategies depending on the dataset 
size. In the case of the primary dataset, which is presumably 
larger and more diverse, stacking emerges as the superior 
strategy across all metrics, demonstrating the potential of 
this approach to use the complementary strengths of indi-
vidual models to achieve higher performance. Voting and 
averaging also exhibit competitive results, with averaging 
slightly outperforming voting in terms of AUC and AP. 
Besides, on the small dataset, stacking maintains its domi-
nance, suggesting that the strategy is particularly effective 
in extracting valuable information from limited data. In 
contrast, averaging and voting exhibit more comparable 
performance on the smaller dataset, with voting slightly out-
performing averaging in terms of precision and specificity. 
Therefore, in this paper we utilize stacking strategy to build 
LLM4THP.

Table 4  The comparation with different ensemble strategy
Dataset Strategy Precise SP SE ACC MCC F1 AUC AP
Primary Voting 0.8024 0.8312 0.8742 0.8345 0.7012 0.8445 0.9112 0.8945

Averaging 0.8212 0.8104 0.8905 0.8512 0.7214 0.8546 0.9145 0.9156
Stacking 0.8439 0.8307 0.9153 0.8730 0.7488 0.8782 0.9528 0.9532

Small Voting 0.8142 0.8214 0.7416 0.7914 0.6512 0.8029 0.8578 0.8471
Averaging 0.8089 0.8179 0.7342 0.8045 0.6812 0.8012 0.8446 0.8064
Stacking 0.8470 0.8617 0.7985 0.8391 0.7056 0.8372 0.9081 0.9119

Table 5  The results of compared with state-of-the-art methods on primary test dataset
Methods Precise SP SE ACC MCC F1 AUC AP
StackTHPred 0.7852 0.7538 0.9000 0.8269 0.6609 0.8387 0.9257 0.9059
SCMTHP 0.7986 0.7692 0.9153 0.8423 0.6920 0.8530 0.9182 0.8941
MIMML 0.8370 0.8307 0.8692 0.8500 0.7005 0.8528 0.9277 0.9074
NEPTUNE 0.8226 0.8076 0.8923 0.8500 0.7025 0.8560 0.9334 0.9262
LLM4THP 0.8439 0.8307 0.9153 0.8730 0.7488 0.8782 0.9528 0.9532

Fig. 4  The threshold distribution to identify THP
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of 0.8470, specificity of 0.8617, sensitivity of 0.7985, accu-
racy of 0.8391, and an MCC of 0.7056. Notably, LLM4THP 
excels with an F1-score of 0.8372, AUC of 0.9081, and an 
AP of 0.9119, indicating a well-balanced model that effec-
tively minimizes both false positives and false negatives. 
For improvement, in terms of SE, ACC, MCC, F1, AUC 
and AP, LLM4THP shows improvement by 0.07–3.26%, 
0.94–4.66%, 4.47–11.97%, 1.31–5.04%, 2.56–4.0% and 
2.86–4.49%. The superior performance of LLM4THP can 
be attributed to its sophisticated ensemble strategy, which 
harnesses the complementary strengths of individual mod-
els to enhance overall predictive accuracy. This is particu-
larly evident in the AUC and AP scores, where LLM4THP 
significantly outperforms the other methods, suggesting its 
exceptional ability to discriminate between THP and non-
THP. The comparative analysis of the small test dataset 
underscores the superiority of our proposed LLM4THP 
method over existing state-of-the-art approaches. The out-
standing performance of LLM4THP across multiple metrics 
highlights the potential as a leading model to identify THP, 
offering a robust and reliable solution.

To further elucidate the distinctions between the 
compared approaches on a smaller test dataset, Fig.  6 
depicts the Receiver Operating Characteristic (ROC) and 

demonstrating the ability to balance the detection of true 
positives and true negatives. Overall, the comparison results 
in Table 5 provide compelling evidence of the effectiveness 
and robustness of the LLM4THP model for predicting THP 
on primary test dataset.

Furthermore, to highlight the differences between each 
comparison approach, Fig. 5 shows the AUC and PR curves. 
Figure 5 shows both the AUC curve and the PR curve of 
LLM4THP when compared to other approaches, indicating 
that LLM4THP has a greater ability to distinguish between 
LLM4THP and non- LLM4THP.

Besides, we also compare LLM4THP with other state-of-
the-art methods on small test dataset listed in Table 6. Among 
the compared methods, StackTHPred, SCMTHP, MIMML, 
NEPTUNE, and our proposed method, LLM4THP, each 
demonstrates unique strengths and areas of improvement. 
StackTHPred and SCMTHP show competitive perfor-
mance with precision scores of 0.8390 and 0.8089, respec-
tively, and AUC values of 0.8825 and 0.8681, respectively. 
MIMML, with a precision of 0.8314 and an AUC of 0.8798, 
also holds a strong position in terms of predictive accuracy. 
However, the method that stands out with the most promis-
ing results is our proposed LLM4THP. LLM4THP achieves 
the highest scores across several metrics, with a precision 

Table 6  The results of compared with state-of-the-art methods on small test dataset
Methods Precise SP SE ACC MCC F1 AUC AP
StackTHPred 0.8390 0.8510 0.7765 0.8138 0.6294 0.8066 0.8825 0.8809
SCMTHP 0.8089 0.8191 0.7659 0.7925 0.5859 0.7868 0.8681 0.8670
MIMML 0.8314 0.8404 0.7872 0.8138 0.6285 0.8087 0.8798 0.8807
NEPTUNE 0.8522 0.8617 0.7978 0.8297 0.6609 0.8241 0.8785 0.8833
LLM4THP 0.8470 0.8617 0.7985 0.8391 0.7056 0.8372 0.9081 0.9119

Fig. 5  The AUC curve and PR curve of each comparing method on primary test dataset
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The comparation between LLM4THP and other 
methods

Based on the above results, we summary the differences and 
advantages of LLM4THP for other compared methods, and 
the results are listed in Table 7. We can find LLM4THP use 
more comprehensive features and more powerful classifica-
tion and get better performance. Therefore, the main contri-
bution of LLM4THP is following:

(1) The combined encoding capabilities of a large lan-
guage model, intrinsic features of peptide sequences, and 
molecular information all contribute to the identification of 
THP.

(2) The two-layer ensemble technique demonstrates ben-
eficial to accuracy and robustness in distinguishing between 
THP and non-THP.

Precision-Recall (PR) curves. This visualization reveals 
the discriminatory power of each method in distinguishing 
between true positives and false positives. As observed in 
Fig.  6, LLM4THP consistently demonstrates the highest 
area under the ROC curve (AUC) and PR curve, surpassing 
the performance of the other approaches. This indicates that 
LLM4THP possesses a greater ability to accurately classify 
instances as either THP or non-THP.

Furthermore, Fig. 7 depicts the forecasting probability of 
each compared approach. The lighter color, the lower the risk 
of THP, and the darker the color, the higher the probability. 
Figure 7 shows that LLMTMP is darker in the THP area and 
lighter in the non-THP part than the other approaches. The 
visualization of the prediction distribution demonstrates that 
LLM4THP can predict THP more accurately.

Fig. 7  The predicting probability distribution of each compared method on primary test dataset and small test dataset

 

Fig. 6  The AUC curve and PR curve of each comparing method on small test dataset
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toxicity. THPs also can be used as imaging agents to visual-
ize tumors. By attaching fluorescent or radioactive labels to 
THPs, researchers and clinicians can non-invasively visual-
ize tumor location, size, and progression. This information 
is crucial for diagnosis, staging and monitoring treatment 
response. In brief, tumor homing peptides offer a powerful 
tool for targeted cancer therapy and diagnosis. Their ability 
to selectively bind to tumor cells holds immense potential 
for improving cancer treatment outcomes and understand-
ing of the mechanism. However, discovering THPs through 
traditional experimental approaches, such as phage display, 
can be costly and time-consuming. These methods require 
extensive laboratory work, including peptide synthesis, 
screening, and characterization. Additionally, the optimiza-
tion of peptide sequences to enhance tumor targeting can be 
a complex and iterative process. Therefore, it is necessary 
to identify THP in a high-throughput way. Machine learning 
models can rapidly analyze large datasets and identify pat-
terns and relationships that are not apparent through manual 
analysis, which significantly reduces the time and effort 
required to discover and validate potential THPs.

Therefore, in this paper, we proposed a new computa-
tional method to identify THP, called LLM4THP. For the 
construction of features, we utilize large language models 
(LLMs) capable of extracting valuable information from 
peptide sequences, peptide sequence intrinsic features and 
molecular information features to encode peptide sequences. 
LLMs have revolutionized natural language processing by 
capturing intricate patterns and relationships within text 
data. Applying similar techniques to peptide sequences could 
lead to more comprehensive and nuanced representations. 
Leveraging large language models (LLMs) to encode pep-
tide sequences, two protein large language model including 
ESM2 and Prot_T5_XL_UniRef50 is introduced to encode 
peptide sequence. ESM2 and Prot_T5_XL_UniRef50 can 
enhance peptide sequence representation and show supe-
rior performance to identify THP. Furthermore, pervious 
study has shown that peptide inner sequence features are 
also competitive information to identify THP. Therefore, we 
employ Amino Acid Composition (AAC), Pseudo Amino 
Acid Composition (PAAC), Amphiphilic Pseudo Amino 
Acid Composition (APAAC) and Composition, Transi-
tion and Distribution (CTD) as intrinsic sequence features 
to encode peptide sequence. Furthermore, we find a new 
feature representment method called RDKitDescriptors 
shows higher performance to identify THP as well. RDKit-
Descriptors entails transforming a peptide sequence into a 
molecular object using the RDKit Python library’s Chem.
MolFromFASTA(seq) function, where seq represents the 
peptide sequence. Chem.MolToSmiles(mol) converts the 
molecular object into SMILES format. RDKitDescriptors is 
then used to calculate the chemical attribute of the peptide 

(3) The experimental results reveal that LLM4THP out-
performs the other approaches that were compared.

Discussion

Tumor homing peptides (THPs) are small, sequence-spe-
cific molecules that have the remarkable ability to selec-
tively bind to tumor cells or tissues. This unique property 
makes THP invaluable tools in various areas of cancer 
research and treatment. THPs can be used to deliver thera-
peutic agents directly to tumor cells, minimizing damage 
to healthy cells and reducing side effects. By conjugating 
THPs to anticancer drugs, nanoparticles, or other thera-
peutic payloads, these agents can be specifically targeted 
to tumors, enhancing their efficacy and reducing systemic 

Table 7  The differences and advantages of compared methods
Names Features Methods Advantages Limitations
StackTH-
Pred

AAC, PAAC, 
PHYC, 
BLOSUM62, 
Z-Scale.

GBDT, 
Stacking 
Ensemble 
Archi-
tecture, 
ET, RF, 
GBDT

Interpret-
ability

Overreli-
ance on 
Features,

SCMTHP AAC, 
Propensity 
Scores

SCM, 
GA, PCPs

Simplicity Without 
higher Gen-
eralization

MIMML Embedding 
Technique, 
Convolu-
tion Kernel 
and Mutual 
Information.

Meta-
Learning 
Paradigm, 
Joint 
Optimiza-
tion

Mutual 
Information 
Maximization

Overfitting 
Risk

NEPTUNE AAC, DPC, 
AAIndex, 
APAAC, 
CTD, PAAC, 
PCP and RS.

Stacking 
Ensemble 
Learning, 
SVM, 
GA, SAR

Feature 
Optimization

Complexity 
of model

LLM4THP ESM2, AAC, 
PAAC, 
APAAC and 
CTD, RDKit-
Descriptors, 
Prot_T5_XL_
UniRef50,

Stacking 
Ensemble 
Learning, 
Light-
GBM, 
XGBoost, 
RF, ET

Protein large 
language 
embed-
ding model, 
SMILES 
property, 
Stacking 
Ensemble 
Learning

More 
computation

Note Amino Acid Composition (AAC), Pseudo-Amino Acid Com-
position (PAAC), Physicochemical Properties (PHYC), Dipeptide 
Composition (DPC), Amino Acid Index (AAIndex), Amphiphilic 
Pseudo-Amino Acid Composition (APAAC), Composition Transition 
and Distribution (CTD), Physicochemical Properties (PCP), Reduced 
Protein Sequences (RS), Gradient Boosting Decision Tree (GBDT), 
Extremely Randomized Trees (ET), Random Forest (RF), Scoring 
Card Method (SCM), Genetic Algorithm (GA), Physicochemical 
Properties (PCPs), Support Vector Machine (SVM), Self-Assess-
ment-Report (SAR)
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of large language models (LLMs) to extract meaningful 
information from peptide sequences, employing ESM2 and 
Prot_T5_XL_UniRef50 to enhance peptide sequence rep-
resentation. Additionally, the method incorporates intrin-
sic sequence features such as Amino Acid Composition 
(AAC), Pseudo Amino Acid Composition (PAAC), Amphi-
philic Pseudo Amino Acid Composition (APAAC), and 
Composition, Transition, and Distribution (CTD). A new 
feature representation method, RDKitDescriptors, is intro-
duced, demonstrating superior performance in identifying 
THPs by transforming peptide sequences into molecular 
objects and calculating chemical attributes. The ensemble 
strategy of LLM4THP, with its two-layer learning archi-
tecture, combines the predictive capabilities of four meta 
predictors including LightGBM, XGBoost, Random For-
est, and Extremely randomized trees with logistic regres-
sion to refine the classification of THPs. This approach has 
been rigorously evaluated and demonstrated a significant 
improvement over state-of-the-art methods in various met-
rics, including Accuracy, Matthew’s correlation coefficient, 
F1 score, Area Under the Curve, and Average Precision. In 
all, LLM4THP represents a significant advancement in the 
field of computational biology, particularly in the discovery 
of THPs, and has the potential to greatly enhance the devel-
opment of targeted cancer therapies and diagnostic tools.
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using the SMILES format input, returning a dictionary 
data structure containing 210 chemical attribute features to 
encode peptide sequence. In all, we from three views to con-
struct feature space to represent THP and these features get 
a contributive effect to identify THP. Building upon these 
embedding vectors, the ensemble strategy is implemented 
to create LLM4THP, which comprises a two-layer learning 
architecture. The initial layer consists of four meta predic-
tors: LightGBM (LGBM, designated as M1), XGBoost 
(XGB, designated as M2), Random Forest (RF, designated 
as M3), and Extremely randomized trees (ERT, designated 
as M4). The cross-product of the embedding vectors [V1, 
V2, V3, V4, …, V7] with the meta predictors [M1, M2, M3, 
M4] yields a set of results termed VMs, which reflects the 
predictive capabilities of each feature in conjunction with 
each model. This ensemble of predictions is then processed 
by Logistic Regression to refine the distinction between 
THP and non-THP sequences. The ultimate output of 
LLM4THP is a classification that determines whether the 
input peptide sequence is a THP or a non-THP, based on the 
aggregated predictions from the ensemble model. Finally, 
LLM4THP is evaluated by multiple metrics and a user-
friendly prediction is implemented for academic research. 
Additionally, LLM4THP is compared with other state-of-
the-art methods and show better performance. LLM4THP 
outperformance other compared methods in terms of ACC, 
MCC, F1, AUC and AP with improvement by 2.3–4.61%, 
4.63–8.79%, 2.22–3.95%, 1.94% to 3.46 and 2.7–5.91% on 
primary test dataset and 0.07–3.26%, 0.94–4.66%, 4.47–
11.97%, 1.31–5.04%, 2.56–4.0% and 2.86–4.49% on small 
test dataset. Therefore, the main contribution of LLM4THP 
is following: (1) The integrated encoding features from 
large language model, peptide sequence intrinsic features 
and molecular information contribute to identify THP; (2) 
The two-layers ensemble strategy show high accuracy and 
robust to distinguish THP and non-THP; (3) Experiment 
result indicate LLM4THP get better performance than other 
compared methods. Additionally, the source code and data-
set are available at https://github.com/abcair/LLM4THP.

Conclusion

In conclusion, the paper presents a novel computational 
approach, LLM4THP, designed to identify Tumor Homing 
Peptides (THPs) with high accuracy and efficiency. THPs, 
due to their unique ability to selectively bind to tumor cells, 
are significant in cancer research and treatment, offering 
targeted delivery of therapeutic agents and aiding in non-
invasive tumor imaging. The traditional discovery methods 
for THPs are laborious and costly, necessitating a high-
throughput alternative. LLM4THP leverages the power 
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