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Abstract

Objective: Our objective is to forecast the number of coronavirus disease 2019 (COVID-19)
cases in the state of Maryland, United States, using transfer function time series (TS) models
based on a Social Distancing Index (SDI) and determine how their parameters relate to the
pandemic mechanics.
Methods: Amoving window of 2 mo was used to train the transfer function TS model that was
then tested on the next week data. After accounting for a secular trend and weekly cycle of the
SDI, a high correlation was documented between it and the daily caseload 9 days later. Similar
patterns were also observed on the daily COVID-19 cases and incorporated in our models.
Results: In most cases, the proposed models provide a reasonable performance that was, on
average, moderately better than that delivered by TS models based only on previous observa-
tions. Themodel coefficients associated with the SDI were statistically significant formost of the
training/test sets.
Conclusions:Our proposed models that incorporate SDI can forecast the number of COVID-19
cases in a region. Their parameters have real-life interpretations and, hence, can help understand
the inner workings of the epidemic. Themethods detailed here can help local health governments
and other agencies adjust their response to the epidemic.

The rapid, global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has caused hundreds of thousands of deaths. Although social distancing is considered a key
measure to reduce the spread of the virus,1 the exact impact of day-to-day social distancing
on viral spread remains unclear.

Since the report of the first confirmed case of coronavirus disease 2019 (COVID-19) in
Maryland on March 5, 2020,2 more than 334,000 cases and 6,700 deaths have been reported.3

OnMarch 16, 2020, the state government implemented restrictions on gatherings and closure of
educational facilities and on March 30, 2020, a stay at home order was imposed. The Maryland
Transportation Institute (MTI) implemented the Social Distancing Index (SDI) to measure the
extent residents and visitors are practicing social distancing.3 To date, studies have evaluated the
efficacy of social distancing strategies to reduce the magnitude of the epidemic,4 but models that
accurately forecast daily caseloads based on social mobility patterns are yet to be explored.

In this article, we proposed to use a sequence of time series (TS) models to forecast and
further understand the relationship between social distancing and the COVID-19 daily case-
load. Our analysis of transfer function TS models can accomplish this objective because they
present a dependable way to analyze data in which the current value of variable, eg, daily
COVID-19 cases in Maryland depends on its previous values and those of other predictors,
such as SDI. Other TS models have been used to accurately analyze this and previous pan-
demics.5 However, to our knowledge, this is the first attempt to develop a TS model that
includes a social distance measure to predict daily COVID-19 cases. The magnitude of the
COVID-19 epidemic makes it worthwhile to keep exploring any possible way to improve
the models that can predict its behavior.

Methods

Data used in this study covered the timeframe from March 5, the day the first COVID-19 case
was reported in Maryland, to June 1. OnMay 26, demonstrations against police violence started
in Minnesota and spread all over the country in the next days. There exists anecdotal evidence
that, due to use of preventivemeasures, such as facemasks, thesemassive gatherings changed the
relationship between social distancing and COVID-19 cases6; hence, we decided not to include
information on or beyond this date in the creation of the models.
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The variables included in our study are:

• Primary exposure variable of interest: Daily Social Distancing
Index (SDI)3: SDI is an integer from 0 (no social distancing) to
100 (all residents are staying at home and no visitors are entering
Maryland). The social distancing index is computed from 6
mobility metrics by this equation: SDI= 0.8*[% staying home
þ 0.01*(100 - %staying home)*(0.1*% reduction of all trips com-
pared with pre-COVID-19 benchmarkþ 0.2*% reduction of
work tripsþ 0.4*% reduction of nonwork tripsþ 0.3*% reduc-
tion of travel distance)]þ 0.2*% reduction of out-of-county trips.

• The weights are chosen based on share of residents and visitor
trips; what trips are considered more essential, and the principle
that higher SDI scores should correspond to fewer chances for
close-distance human interactions and virus transmissions.

• Outcome variable: Daily COVID-19 cases: Number of new daily
COVID-19 cases according to the New York Times.2

In TS, a general transfer function can be used to describe the
relationship between an input and an output series.7 We propose
to use a transfer function TS model with the following 3-step pro-
cedure to relate the input daily SDI to the output COVID-19 cases
series7 while accounting for the secular trend and weekly cycles of
the exposure and outcome variables:

• Step 1: Fit an autoregressive integrated moving average (ARIMA)
model to the independent variable SDI.This step helps to find pat-
terns that need to be removed from the independent variables
before we study its relationship with the outcome. An ARIMA
model is defined by its parameters (p,d,q) where p represents
the order of autoregression, and q the order of themoving average.
The parameter d is the degree of difference, eg, d= 1 means that,
instead of the original SDI series, wewould use (SDIt – SDIt-1).We
used plots of autocorrelation function (ACF) and partial ACF
(PACF) to determine the values of these parameters, which is
well-known procedure applied in many published works.5,7

• Step 2: Remove the patterns from the input series SDI and com-
pute the cross-correlation with the daily and imported COVID-19
cases. This step helps to determine the pure delay in the system s
after removing the SDI patterns discovered in the previous step
(pre-whiten). We defined s as the largest cross-correlation,
which occurred at delay≥ 0 days.

• Step 3: Compute transfer function and fit it with noise model. The
study of the cross-correlation graph of the pre-whiten input and
outcome series can help to determine the terms that are need in
the numerator and denominator of the transfer function model.
This is a complex matter and beyond the scope of this work, but
in general a simpler model is recommendable.7 The analysis of
residuals produced by the transfer function TS model might
indicate the need to include more terms to improve its fit.7

In our particular case of study, the pre-whiten SDI series/Daily
COVID-19 cases cross-correlation graph presented nonzero cross-
correlations with some of them decaying exponentially, indicating
the need to add terms in the numerator and denominator of the
transfer function model.7 A parsimonious model was initially
chosen for the transfer function7:

Casest ¼ �0 þ C 1� �1Bð Þ= 1� δBð Þð ÞrSDIt�s þ Noise

where B is the backward shift operator and r is the differencing
operation.

We use a sliding window of 60 day to train the model and esti-
mate the parameters C, �0, θ1, and δ in the transfer function, and
test the forecasting results in the week immediately following. For
the test week, estimated values of SDI were used as the input in the
transfer function to forecast the daily cases, ensuring that informa-
tion unavailable in a real-life case scenario would not be used to
produce the results for the test week. Given the time limit discussed
previously in this section, the first training window goes from
March 5 to May 4 with a test week that encompasses May 5 to
May 12. The last training window goes from March 26 to May
25 with a test window that goes from May 26 to June 3. The per-
formance of the procedure for the test week was assessed using the
mean absolute percentage error (MAPE) defined as

MAPE ¼ 100%
7

P
7
i¼1

casesi�bcasesi
casesi

���
���. All analysis is performed using

SAS software 9.4.

Results

Based on the full data, we observed that the autocorrelations depicted
in the ACF plot decayed slowly, indicating the need to differentiate
this series. The ACF of the differentiated SDI series tailed off at lags
7k (k= 1, 2 : : : ), while PACF cutoff at lag 7. These observations lead
to a simple time-seriesmodel composed of a differencing term (d= 1)
and autoregressive (AR) term p= (1,7) thatwas fitted for the SDI data.
The ACF and PACF plots after removing this AR term from the dif-
ferentiated series showed no significant auto-correlations, indicating
that this ARIMA model adequately fitted the SDI data and, hence,
could be used to pre-whiten it. The analysis of the cross-correlation
of the pre-whiten SDIwith the daily cases led to a delay s ¼ 9 d (cross-
correlation = −.23). Examination of residuals from the initial transfer
function model in forecasting COVID-19 case indicated that an AR
term p = (1,7) of the daily COVID-19 cases was also needed in the
final transfer function TS model.

After adding this autoregressive term to the transfer functionmodel
no more significant correlations appeared in the ACF and PACF, indi-
cating that the resulting model adequately captured the relationship
between SDI and the number of daily COVID-19 cases in Maryland
in this time period. We then proceeded to estimate the coefficients
of this model for each of the training windows described above. To
benchmark the performance, we compared our proposed transfer func-
tion model with a simple ARIMA model for daily cases forecasting
(ie, excluded the SDI) with d= 1 and autoregressive term p = (1,7).

Notice at least 1 of the parameter estimates associated with the
SDI (C, θ1, or δ) are statistically significant with a P-value< 0.05
(Table 1), except in the first week and the week from March 23
to May 22. Hence, the results in Table 1 indicate that including
the SDI as in input variable with the appropriate delay in the mod-
els can be an important predictor of daily COVID-19 cases.
Focusing on the statistically significant results, the positive values
for the autoregressive terms indicate that past values of cases lead
to a larger number of infections, while the negative values for C
paired with the positive estimates for the δ show that larger SDI
leads to fewer cases with a 9-d delay.

The MAPE values for test weeks that start up until May 24 vary
between 12.2% and 20.1% as seen in Table 2 hence fall or are
around what would be considered good forecasts.8 The unevenness
of the performance might be attributed to external factors that
influence the number of reported cases in a given day during those
earlier days of the pandemic, eg, local weather and scarce availabil-
ity of tests. The MAPE of the simple ARIMA models that exclude
the SDI and rely exclusively on the secular trend and weekly cycle
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of number of COVID-19 cases in this period of time showed even
more volatility varying between 9.5% and 37.8% and is on average
1.94% worse than those of the proposed transfer function models.
The performance of both the transfer function and classic ARIMA
models for the week composed completely of days starting on May
25 lead toMAPE of 41.8% and 42.2%, respectively, hinting that this
point in timemight mark a significant departure on how social dis-
tancing relates to COVID-19 cases.

Discussion

The required AR terms p = (1,7) suggest that the SDI and daily
count variables are influenced by their observed or estimated val-
ues on the previous day (secular trend) and a week prior (weekly

cycle) supporting what has been observed in previous studies,9

while the delay of 9 d for the COVID-19 cases is within the range
of the number of days that symptoms take to appear,10 indicating
not only that our proposed transfer function models provide an
adequate prediction performance but also their characteristics of
correspond to patterns seen in the pandemic. The degradation
of the models performance after the start of the 2020 national pro-
tests attest to the limitation of the current version of the models
and point toward the need to redo the process to obtain the optimal
values for the (p,d,q) parameters and the delay s instead of just
recalculating the coefficients of the models. The study of the P-val-
ues seen in Table 1 help to reinforce conclusions that have been
drawn about the COVID-19 pandemic previously, namely that
having a large number of cases in a community leads to even more

Table 1. T-statistic (p-values) for the TS transfer function parameters

Model building period
Autoregressive term

Lag p=1
Autoregressive term

Lag p=7
C

Lag p=0, s=9
�1

Lag p=1, s=9
�

Lag p=1, s=9

5-March/4-May 4.3
(<.0001)

2.4
(0.0165)

−1.3
(0.1810)

−1.6
(0.1103)

−0.9
(0.3468)

6-March/5-May −0.1
(0.9490)

1.1
(0.2581)

−2.3
(0.0231)

1.4
(0.1483)

54.5
(<.0001)

7-March/6-May −0.2
(0.8570)

0.8
(0.4070)

−2.8
(0.0046)

0.9
(0.3806)

46.5
(<.0001)

8-March/7-May 4.3
(<.0001)

2.2
(0.0248)

−1.7
(0.0867)

−2.1
(0.0392)

−1.2
(0.2213)

9-March/8-May 3.7
(0.0002)

1.6
(0.1033)

−3.0
(0.0030)

−1.0
(0.3373)

8.5
(<.0001)

10-March/9-May 4.6
(<.0001)

2.2
(0.0249)

−1.8
(0.0755

−2.6
(0.0094)

−1.7
(0.0989)

11-March/10-May 2.2
(0.0295)

2.0
(0.0471)

−3.4
(0.0006)

−1.4
(0.1654)

9.9
(<.0001)

12-March/11-May 0.7
(0.4576)

1.2
(0.2193)

−5.1
(<.0001)

−1.6
(0.1019)

22.3
(<.0001)

13-March/12-May 0.0
(0.9809)

1.2
(0.2195)

−2.3
(0.0194)

3.3
(0.0009)

48.9
(<.0001)

14-March/13-May 0.5
0.6499

0.9
(0.3606)

−2.4
(0.0151)

1.1
(0.2674)

33.8
(<.0001)

15-March/14-May 4.1
(<.0001)

2.1
(0.0360)

−2.2
(0.0303)

0.8
(0.4354)

0.3
(0.7522)

16-March/15-May 0.3
(0.7878)

0.8
(0.3966)

−3.0
(0.0028)

0.1
(0.9389)

31.3
(<.0001)

17-March/16-May 1.1
(0.2703)

0.6
(0.5204)

−4.2
(<.0001)

−1.4
(0.1623)

25.7
(<.0001)

18-March/17-May 0.8
(0.4401)

0.6
(0.5744)

−4.2
(<.0001)

−1.3
(0.1941)

24.9
(<.0001)

19-March/18-May 2.9
(0.0037)

1.2
(0.2119)

−2.7
(0.0074)

−1.0
(0.2963)

2.0
(0.04)

20-March/19-May 0.4
(0.6912)

0.46
(0.6450)

−1.57
(0.1163)

2.09
(0.0362)

33.79
(<.0001)

21-March/20-May −0.21
(0.8367)

0.65
(0.5167)

−1.85
(0.0646)

0.53
(0.5962)

27.90
(<.0001)

22-March/21-May 2.54
(0.0112)

2.76
(0.0058)

−1.83
(0.0669)

−6.54
(<.0001)

−15.33
(<.0001)

23-March/22-May 1.56
(0.1190)

1.81
(0.0704)

−1.74
(0.0823)

−0.13
(0.8995v

0.80
(0.4213)

24-March/23-May −0.49
(0.6260)

0.39
(0.6941)

−2.09
(0.0364)

−0.00
(0.9977)

26.42
(<.0001)

25-March/24-May 1.45
(0.1461)

2.97
(0.0030)

−2.15
(0.0314)

−12.46
(<.0001)

−8.94
(<.0001)

26-March/25-May 0.47
(0.6392)

0.85
(0.3962)

−2.69
(0.0072)

−0.72
(0.4718)

3.28
(0.0011)
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infections and that the decrease of social distancing behavior
among the members of a group are associated with an increase
in the number of positive cases few days later. A limitation of this
study is its single focus on the SDI; future work might include
evaluation if the conclusions reach in this manuscript hold true
for other measure of social distancing, such as Unacast Social
Distancing Scorecard.

Although the models described in this report were optimized
for the epidemic in Maryland, the steps described here can be used
to develop models to forecast the number of COVID-19 cases in a
other regions several days in advance. Parameters used in this
transfer function model will change according to region and time
because of modifications to social distancing regulations and other
factors (eg, contact tracing) but the transfer functions can include
other independent variables in addition to SDI, hence providing
useful information in the debate of economy resume vs pandemic
control for this and future pandemics.

Funding statement. Research reported in this publication was partially sup-
ported by the Department Research Discretionary Funds.
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