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Clusters formed by dumbbell‑like 
one‑patch particles confined in thin 
systems
Masahide Sato

Performing isothermal-isochoric Monte Carlo simulations, I examine the types of clusters that 
dumbbell-like one–patch particles form in thin space between two parallel walls, assuming that 
each particle is synthesized through the merging of two particles, one non-attracting and the other 
attracting for which, for example, the inter-particle interaction is approximated by the DLVO model 
. The shape of these dumbbell-like particles is controlled by the ratio of the diameters q of the two 
spherical particles and by the dimensionless distance l between these centers. Using a modified 
Kern–Frenkel potential, I examine the dependence of the cluster shape on l and q. Large island-like 
clusters are created when q < 1 . With increasing q, the clusters become chain-like . When q increases 
further, elongated clusters and regular polygonal clusters are created. In the simulations, the cluster 
shape becomes three-dimensional with increasing l because the thickness of the thin system increases 
proportionally to l.

Particles having patch areas in which properties are different from those of other surface areas are termed 
patchy particles. Many groups1–24 have synthesized patchy particles using different methods and examined the 
self-assemblies formed by patchy particles. Because patchy particles are promising building blocks for func-
tional materials, efficient synthetic methods and properties of self-assemblies have been studied intensely. For 
example, triblock patchy particles having two patches on the polar positions3–5,8,23,24 have drawn much attention 
as building blocks for photonic crystals with a complete photonic band gap25,26. Whereas patchy particles used 
in experiments were not necessarily spherical6,11,16, the structures and cluster shapes examined in a theoretical 
study27 and simulations28–41 were mainly for spherical patchy particles.

In studies on non-spherical patchy particles, Monte Carlo simulations of dumbbell-like one-patch particles 
with a modified Kern–Frenkel potential were performed42–44, and the self-assemblies created by such particles 
were studied. It was shown that several types of clusters such as spherical micelles, elongated micelles, vesicles, 
and bilayers are created in three-dimensional systems42,43 by controlling the shape of the dumbbell-like one-
patch particle. When the long axis of such particles is fixed within a flat plane, island-like clusters with voids, 
mesh-like clusters, and straight chain-like clusters are observed in addition to elongated clusters and isotropic 
clusters in two-dimensional systems44. In previous studies42–44, the attraction length in the modified Kern–Frenkel 
potential was set to be as long as the radius of the attractive sphere of the dumbbell-like particles. However, in 
several experiments7,9, the attraction length was revealed to be much smaller than the radius of patchy particles. 
Because the attraction length in the Kern–Frenkel potential45 affects the structure and shape of clusters, even 
for spherical patchy particles36,46–48, the shape of the clusters formed by dumbbell-like patchy particles probably 
depends on the attraction length as well.

In this paper, I describe isothermal-isochoric simulations for dumbbell-like patchy particles in thinly confined 
systems as shown in Fig. 1, in which the attraction length of the modified Kern–Frenkel potential is set shorter 
than that in previous studies42–44. I examine how cluster types depend on the shapes of dumbbell-like patchy par-
ticles. In the simulations, the focus is on the formation of clusters in thin systems because films of high quality are 
required as substrates for colloidal epitaxy39,49–51. Compared with creating quality three-dimensional functional 
materials spontaneously in open three-dimensional spaces, creating the desired structures on substrates by epi-
taxial growth may be easier. The formation of two-dimensional materials and quasi two-dimensional materials is 
also a popular topic because thin sheet materials are useful in a broad range of applications such as photovoltaics, 
semiconductors, electrodes, water purification52,53. The types of the two-dimensional clusters and structures that 
are formed when the long axes of dumbbell-like particles are fixed in a flat plane have already been studied 44. 
Different clusters may be created if the dumbbell-like one-patch particles rotate freely three-dimensionally. Under 
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this scenario, I investigate in the rest of this paper the formation of clusters and structures in thin systems. First, 
I show several typical snapshots of simulations. Then, I introduce four parameters and show how cluster shapes 
and structures formed by dumbbell-like patchy particles depend on particle shape.

Results and discussions
Isothermal-isochoric Monte Carlo simulations, performed with number of particles N = 1024 and the particle 
density ρ = 0.2 in the system shown in Fig. 1, provided the dataset to examine how cluster shape depends on 
the shape of dumbbell-like particles.

Typical snapshots for large clusters.  Figures 2 and 3 show typical snapshots viewed from the z-direc-
tion. The temperature T satisfies ǫ/kBT = 8.0 , where kB is Boltzmann’s constant and ǫ denotes the attractive 
energy. The zoomed snapshots of the areas surrounded by white circles in each figure are shown in Fig. 4. One 
large island-like cluster is created when (l, q) = (0.7, 0.7) (see Fig. 2a). Almost all the dumbbell-like patchy par-
ticles are connected and included in the island-like cluster. Because σ2 is smaller than σ1 , the steric hindrance 
caused by the non-attractive region is weak when n̂ of every particle is perpendicular to the walls. Whereas n̂ is 
almost perpendicular to the walls for the most of particles inside the island-like cluster, n̂ for particles located at 
the edge of the cluster fluctuate because the number of neighboring particles is small. Moreover, the binding of 
particles at the cluster edge is weak, and therefore the particles at the edge of the island-like cluster rotate easily 
under thermal fluctuations. In our previous study44, a square lattice with voids is created because the interaction 
length is set to σ1/2 , and particles at the diagonal positions can attract each other. However, the particles inside 
the large island-like cluster form a triangular lattice because the attraction length is so short that the particles at 
diagonal positions cannot interact with each other even if a square lattice is made (Figs. 2b and 4a). The attract-
ing particles are most numerous in a triangular lattice when the interaction length is sufficiently short. With the 
number of neighbors being six, the energy change per particle is 3ǫ.

Creating large island-like clusters with increasing q or l becomes hard because steric hindrance arising from 
the non-attractive area in particles increases. The cluster changes from forming islands to forming chains (Fig. 2c 
and d). In these figures, several particles with six neighbors are seen in places. However, when one particle has 
six neighbors, n̂ of the neighboring particles tilts from the z-direction (see Fig. 4b) because σ1 is smaller than σ2 . 
Therefore, neighboring particles cannot have six connections. Steric hindrance incurred by the non-attractive 
area suppresses the creation of large island-like clusters, and two-dimensional chain-like clusters consisting of 
two arrays of dumbbell-like patchy particles form. The particles in perfectly straight chain-like clusters have four 
connecting neighbors, two neighbors in the same array and in the other array diagonally in front. The energy 
gain per particle by forming the chain-like clusters is 2ǫ.

Typical snapshots for small clusters.  The shape of the dumbbell-like particle becomes more anisotropic 
with increasing l. The system width Lz increases with increasing l because the system width is set so that the 
dumbbell-like one-patch particles are able to rotate easily in the thin systems. When q = 1 and l >

√
3/2 , creat-

ing three-dimensional arrays is possible if n̂ of each dumbbell-like patchy particle is parallel to the xy-plane. Top 
and side views of a portion of the three-dimensional arrays are presented in Fig. 4i and j, respectively. When 

Figure 1.   System used in simulations, where dumbbell-like one-patch particles are confined between two flat 
walls. The particles are synthesized by merging two spheres. Red and white regions represent attractive area and 
non-attractive area, respectively. The shape of particles is characterized by q = σ2/σ1 and l = 2d/(σ1 + σ2) , 
where σ2 and σ1 denote the diameters of the non-attractive and attractive spheres, respectively, d the distance 
between the centers of the two spheres, and l the dimensionless distance scaled by average diameter. δ satisfies 
cos δ = (σ 2

2 − σ 2
1 − 4d2)/4dσ1 = 2l/(1− q)− (1+ q)l2. The particle shape is more dumbbell-like with 

increasing d. The unit vector directed from the center of the non-attractive sphere to that of the attractive sphere 
is denoted as n̂ . σ1 is set to unit, and the x- and y-directions are set parallel to the walls, and the z-direction is 
set perpendicular to the walls, which are given by z = 0 and z = Lz . With the distance between the two walls 
denoted by Lz , the lengths of the wall in the x- and y-directions, Lx and Ly , are given by Lx = Ly =

√
vN/(ρLz) , 

where v, ρ , and N denote the volume of the dumbbell-like particle, the particle density, and the number of 
particles, respectively. The distance between the two walls Lz is set to 1.1[(σ1 + σ2)/2+ d] . Because Lz is slightly 
longer than the long axis in the dumbbell-like patchy particles, the particles rotate three-dimensionally.
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the two arrays attract each other and double chain-like clusters form, as in Fig. 4k, each particle in the double 
chain-like clusters attracts six other particles, their number being the same as the number of neighbors in an 
island-like cluster. The radius of the non-attractive area in the dumbbell-like patchy particles is larger than that 
of the attractive part for q > 1 . Through steric hindrance from the non-attractive sphere, the three-dimensional 
double chain-like clusters need to be curved (Fig. 4k). With a further decrease in q, the curved chain-like clus-

Figure 2.   Typical snapshots of large clusters for ǫ/kBT = 8.0 as viewed from the z-direction. The parameter 
setting for (l, q) are (a) and (b) (0.70, 0.70), (c) and (d) (0.50, 1.05), and (e) and (f) (0.85, 1.05). Only particle 
positions are drawn in (a), (c), and (e). The white and red areas show the non-interacting and attracting areas, 
respectively. In (b), (d), and (f), in addition to the particle positions, attracting particles are connected by lines.

Figure 3.   As for Fig. 2 but with (l, q) set to (0.20, 1.25) in (a) and (b), and (0.45, 1.25) in (c) and (d).
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ters are easily torn off creating three-dimensional elongated clusters (Figs. 2e, f and 4c). With q constant and l 
decreased, instead of the formation of three-dimensional elongated clusters, two-dimensional elongated clusters 
form (Figs. 3c, d, and 4e).

Typical snapshots for regular clusters.  Figure 3a and b show snapshots for small l and large q. Many 
small two-dimensional polygonal clusters, for example, triangular trimers (Fig. 4g) and rhomboidal tetramers 
(Fig. 4h) are created (Fig. 4d). The q and l condition for forming triangular trimers is easily estimated. Figure 4f 
shows the typical shape of a dumbbell-like one-patch particle for which n̂ is parallel to the xy-plane; here O 
labels the center of the non-attractive sphere, and PQ the common tangent of the non-attractive sphere and 
the attractive sphere that determine angle θ = ∠PQO satisfying sin θ = (σ2 − σ1)/2d = (q− 1)/l(q+ 1) . The 
angle δ (see Fig. 1) needs to be larger than 30◦ for dumbbell-like patchy particles to create triangular trimers 
and θ should be smaller than 60◦ to avoid steric hindrance induced by the non-attractive sphere. The condition 
for θ is slightly stricter than that for δ when q > 1 . Therefore, to create triangular trimers, l and q need to sat-
isfy l > 2(q− 1)/

√
3(q+ 1) . With q = 1.25 , l needing to be larger than 0.128 to create triangular trimers, the 

condition for forming trimers indicated in Figs. 3c and 4d is satisfied. For rhomboidal tetramers, the criterion 
for avoiding steric hindrance is slightly more complicated to estimate, but that for δ is easier. Because δ is larger 
than 60◦ to create rhomboidal tetramers, we obtain the inequality l > (−1+

√

4q2 − 3)/2(1+ q) . Given l needs 
to be larger than 0.178 when q = 1.25 , the condition required in forming rhomboidal tetramers seen in Fig. 3 
seems reasonable.

I also examine whether the formation of regular timers and tetramers obeys the criteria for another q. For 
q = 1.6 , the range of l values for which two-dimensional triangular timers and two-dimensional rhomboidal 
tetramers are created are estimated to l > 0.27 and l > 0.33 , respectively. Figure 5 shows the cluster size dis-
tributions observed from simulations with ǫ/kBT = 8.0 . When l < 0.30 , almost all particles are monomers 
although the formation of dimers is allowed, which is probably because the attractive area is too small to make 
stable dimers with this temperature. With l = 0.30 , many dimers are created although many monomers still 

Figure 4.   (a–d) Structures and clusters surrounded by circles or ovals in Figs. 2 and 3 . The settings for (l, q) are 
(a) (0.70, 0.70), (b) (0.50, 1.05), (c) (0.85, 1.05), (d) (0.20, 1.25), and (e) (0.45, 1.25). (f) Typical dumbbell-like 
one-patch particle for a small interaction part, (g) triangular trimer, and (h) square tetramer. (i) Top view and 
(j) side view of a three-dimensional single array for q = 1 , and (k) top view of the three-dimensional double 
chain-like structure formed by two single arrays.
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remain. As expected from the criterion given by the inequality for the formation of trimers, a few trimers are 
also created. With l = 0.35 , the main clusters are trimers. Tetramers are not observed, although their formation 
is expected from the inequality for the formation of tetramers because l is very close to the formation threshold. 
When l = 0.4 , tetramers are created because l is above the threshold. Because the energy gain by the formation 
of two-dimensional tetramers is larger than that of two-dimensional trimers, tetramers are created in higher 
numbers than trimers.

Classification of cluster types by order parameters.  To classify cluster types systematically and 
to show how the cluster type depends on the particle shape quantitatively, four parameters Ps =

∑

k kNk/N , 
Pz =

∑

i |nzi|/N , M = (N − N1)
−1

∑

i n̂i · (rc1 − r1,i)/|rc1 − r1,i| , and σz =
√

N−1
∑

i z
2
1,i −

(

N−1
∑

i z1,i
)2 

are introduced, in which Nk denotes the number of clusters formed by k particles, nzi the z-component of n̂i , N1 
the number of monomers, r1,i the center of the attractive sphere of the i-th particle, rc1 the average position of 
attractive spheres for the cluster including the i-th particle, and z1,i is the z-coordinate of the center of the attrac-
tive sphere of the i-th particle. In the definition of M , the summation does not include monomers.

The l and q dependence of Ps , Pz , σz , and M depend on l and q for ǫ/kBT = 8.0 were obtained (Fig. 6). Ps is 
found to be small with q > 1 but suddenly increases around q = 1 (see Fig. 6a). With q < 1 , Ps is over 1000, which 
means that almost all particles in the system are connected and one large cluster is created. Large Ps indicates 
the formation of large clusters, but I cannot identify whether the cluster type is large island-like or chain-like. 
From Fig. 2, nz is large for particles in island-like clusters but small for chain-like clusters. Therefore, Pz is a useful 
parameter for determining the shape of large clusters. Because Pz is large when both q and l are small (Fig. 6b), 
large island-like clusters are created in this parameter regime.

The parameter M is large when regular polygonal clusters form because the direction of every particle points 
toward the center of a regular polygonal cluster such as triangular trimers and rhomboidal tetramers. M becomes 
large for large q and small l (Fig. 6d), which agrees with the formation of triangular trimers and rhomboidal 
tetramers (Figs. 3a, b and  4d). σz is used as a parameter indicating the three-dimensionality of small clusters 
because the distribution of the z-coordinate of attractive spheres spreads when three-dimensional clusters are 
created. Therefore, both M and σz are used to determine the shapes of small clusters. The criteria for classifying 
cluster types are listed in Table 1. Because three-dimensional chain-like clusters are not observed in the simula-
tions, large clusters for which the size is comparable to N are classified into two-dimensional island-like clusters 
or two-dimensional chain-like clusters. Small clusters are classified into three-dimensional elongated clusters, 
two-dimensional elongated clusters, or two-dimensional regular clusters. Checks were made as to whether the 
criteria used for the classification are consistent with snapshots for several sets of l and q; the criteria were con-
firmed as reasonable.

Simulations were also performed for ǫ/kBT = 4.0 and ǫ/kBT = 8.0 and analyzed to determine whether the 
dependence of cluster shape on l and q changes with temperature. Figure 7 shows how the cluster type depends 
on l and q for those temperatures; large island-like clusters form when q < 1 . The parameter regime yielding 
island-like clusters is much larger than that yielding chain-like clusters. The width of the latter regime becomes 
small with decreasing l because steric hindrance exhibits the same trend. I have already suggested that the 
formation of three-dimensional double chain-like clusters for which the size is comparable to N is possible if 
l >

√
3/2 for q = 1 . However, the three-dimensional double chain-like clusters were not created in simulations, 

probably because the temperatures are high in simulations. The chain-like clusters must be easily broken into 
three-dimensional elongated clusters through thermal fluctuations arising from higher temperatures. Although 
the upper limit of l for forming two-dimensional polygonal clusters increases with increasing q, the change in 
the lower limit of l for the formation of three-dimensional elongated clusters is small. Comparing Fig. 7a with 
Fig. 7b, when the temperature increases, the two limits move to widen the parameter regime associated with two-
dimensional clusters. The boundary between the region with large clusters and that with two-dimensional clusters 

Figure 5.   Distribution of cluster size for (l, q) = (0.3, 1.6) , (0.35, 1.6), and (0.4, 1.6) with ǫ/kBT = 8.0.
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move toward small q. Therefore, two-dimensional elongated clusters are created more readily with increasing 
temperature. The dependence of cluster shapes on ρ is also shown in Fig. 7c. When ρ becomes lower than that 
in Fig. 7a, the parameter regimes with small clusters hardly change, but the parameter regime with island-like 
clusters decreases by spreading the parameter regime with two-dimensional chain-like clusters.

Summary
I performed isothermal-isochoric Monte Carlo simulations in which two parameters l and q were controlled and 
results were analyzed to determine the types of clusters formed in thin systems. With q ≤ 1 , satisfying that the 
radius of the attractive area is larger than that of the non-attractive area in the dumbbell-like one-patch particles, 
large island-like clusters were created. Voids were frequently created in island-like clusters when n̂ is restricted 
in the two-dimensional systems44. However, the formation of voids in island-like clusters was avoided in thin 
systems because the three-dimensional rotation of dumbbell-like patchy particles is allowed and n̂ orientate 
normal to the flat plane.

With Lz set slightly longer than the long axis of the dumbbell-like patchy particles, the formation of large 
three-dimensional chain-like cluster seemed possible if l was sufficiently large and n̂ aligned with the xy-plane. 
However, they did not form and three-dimensional elongated cluster formed instead, probably because of thermal 

Figure 6.   Dependence of (a) Ps , (b) Pz , (c) σz , (d) M on q and l for ǫ/kBT = 8.0 . (e) Top and (f) side views, 
and (g) top view of a double chain-like structure formed by two single chain-like clusters.

Table 1.   Parameter values used to classify cluster types are Ps,c = 100 , Pz,c = 0.65 , σz,c = 0.25 , and Mc = 0.8.

Structure and cluster shape Ps Pz σz M

Two-dimensional island-like cluster > Ps,c > Pz,c – –

Two-dimensional chain-like cluster > Ps,c < Pz,c – –

Two-dimensional regular cluster < Ps,c < Pz,c < σz,c < Mc

Two-dimensional elongated cluster < Ps,c < Pz,c < σz,c > Mc

Three-dimensional elongated cluster < Ps,c < Pz,c > σz,c > Mc
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fluctuations. If the temperature is set lower, three-dimensional chain-like clusters may be created because the 
energy of three-dimensional chain-like clusters is the same as that of island-like clusters.

The significant difference between spherical patchy particles and the dumbbell-like patchy particles is remark-
able in the parameter regime with elongated clusters. In the two-dimensional systems with spherical patchy par-
ticles, the unit of elongated clusters is a triangular trimer. The elongated clusters are created by the connection of 
the triangular trimers7,9,10. In the three-dimensional systems, large polyhedral clusters such as tetrahedral cluster 
and octahedral cluster are created1,4,47. However, in the systems with dumbbell-like patchy particles, because 
the shape of particles is isotropic, elongated clusters are more irregular than those observed in the systems with 
spherical patchy particles, and large polyhedral clusters are not created in the three-dimensional systems.

In our simulations, a triangular lattice was created in island-like clusters because the interaction length was 
set short, whereas in a previous study the lattice in island-like clusters was square44. The difference in interaction 
length affected the regular polygonal clusters. When the interaction length was long, regular square clusters were 
created because the particles in the diagonal positions can interact with each other. However, square clusters were 
not created and rhomboidal clusters formed because the interaction length was sufficiently short. Because the 

Figure 7.   Dependence of cluster type on q and l for ( ǫ/kBT , ρ) = (a) (8.0, 0.2), (b)(4.0, 0.2), and (c) (8.0, 0.1).
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systems were very thin, the cluster types were restricted in the simulations. If the system width were wider41,47 
clusters and structures which were not observed may be created.

Methods
In my isothermal-isochoric Monte Carlo simulations, the interaction potential between two dumbbell-like par-
ticles is the modified Kern-Frenkel potential42–44. For the i-th and j-th particles, the potential is expressed as 
Uij = Uatt + U rep , U rep being the hard-core repulsive interaction preventing pairs of particles from overlapping, 
and Uatt an attractive potential given by42–44 Uatt = USW(rij)f (r̂ij , n̂i , n̂j) . rij = |r1,j − r1,i| , n̂i = (r1,i − r2,i)/d , and 
r̂ij = rij/rij , where r1,i and r2,i denote the positions of the centers of the attractive and non-interactive spheres in 
the i-th dumbbell-like particle, respectively. USW(rij) is the square-well potential defined as

where ǫ is the interaction energy and � is the interaction length. Although � was set to σ1/2 in previous 
studies42–44, here � is set to σ1/10 to ensure the interaction length is smaller than the particle size as indicated 
from several experiments7,9. In Uatt , f (r̂ij , n̂i , n̂j) represents the anisotropy in the attractive interaction, which 
is given by

Initially, the dumbbell-like particles are put in the system at random and moved without the attractive inter-
action 103 times for each particle. Then, adding the attractive interaction, rotation and translation trials were 
performed 2× 106 times per particle. The maximum values for the rotation angle and translation distance in a 
Monte Carlo trial were tuned every 102N trials to avoid success rates in the Monte Carlo trials begin too low43; 
here, N is the number of particles.
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