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Abstract 

Background:  In the animal production sector, enteritis is responsible for serious economic losses, and intestinal 
parasitism is a major stress factor leading to malnutrition and lowered performance and animal production efficiency. 
The effect of enteric parasites on the gut function of teleost fish, which represent the most ancient bony vertebrates, 
is far from being understood. The intestinal myxozoan parasite Enteromyxum leei dwells between gut epithelial cells 
and causes severe enteritis in gilthead sea bream (Sparus aurata), anorexia, cachexia, growth impairment, reduced 
marketability and increased mortality.

Methods:  This study aimed to outline the gut failure in this fish-parasite model using a multifaceted approach and 
to find and validate non-lethal serum markers of gut barrier dysfunction. Intestinal integrity was studied in parasitized 
and non-parasitized fish by immunohistochemistry with specific markers for cellular adhesion (E-cadherin) and tight 
junctions (Tjp1 and Cldn3) and by functional studies of permeability (oral administration of FITC-dextran) and electro‑
physiology (Ussing chambers). Serum samples from parasitized and non-parasitized fish were analyzed using non-tar‑
geted metabolomics and some significantly altered metabolites were selected to be validated using commercial kits.

Results:  The immunodetection of Tjp1 and Cldn3 was significantly lower in the intestine of parasitized fish, while 
no strong differences were found in E-cadherin. Parasitized fish showed a significant increase in paracellular uptake 
measured by FITC-dextran detection in serum. Electrophysiology showed a decrease in transepithelial resistance in 
infected animals, which showed a diarrheic profile. Serum metabolomics revealed 3702 ions, from which the dif‑
ferential expression of 20 identified compounds significantly separated control from infected groups in multivariate 
analyses. Of these compounds, serum inosine (decreased) and creatine (increased) were identified as relevant and 
validated with commercial kits.

Conclusions:  The results demonstrate the disruption of tight junctions and the loss of gut barrier function, a metab‑
olomic profile of absorption dysfunction and anorexia, which further outline the pathophysiological effects of E. leei.
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Background
Enteritis is the inflammation of the intestine in its 
broader sense. In humans it can be due to viral, bac-
terial or parasitic infections, induced by exogenous 
agents (radiation, medication, drug abuse, etc.), or due 
to inflammatory conditions such as Crohn’s disease or 
ulcerative colitis. Recent findings also implicate enteric 
parasites such as Cryptosporidium parvum and Giardia 
duodenalis in the development of post-infectious com-
plications such as irritable bowel syndrome and their 
impact on the neural control of gut functions [1]. In ani-
mal production, enteritis is responsible for serious eco-
nomic losses, intestinal parasitism being a major stress 
factor leading to malnutrition and lowered performance 
and production efficiency of livestock and poultry [2]. 
Furthermore, intestinal health is critically important 
for welfare and performance in animal production and 
enteric diseases that cause gut barrier failure result in 
high economic losses. Common factors in most enteritis 
scenarios are not only the action of inflammation play-
ers, but also the loss of the gut integrity. Intestinal mucus 
and intercellular tight junctions (TJs) of the epithelial 
layer act together to maintain the integrity of the gut 
barrier [3]. The maintenance of the intestinal epithelial 
barrier is the essential function of the intestinal epithe-
lial cells (IECs), and intraepithelial lymphocytes (IELs) 
also have sentinel functions in the maintenance of the 
mucosal barrier integrity [4]. An imbalance in the intes-
tinal barrier structure can flare up into an uncontrollable 
immune reaction in the intestinal microenvironment or 
allow the unrestrained growth of microbiota, which leads 
to various diseases. This loss increases the translocation 
of bacterial antigens and stimulates inflammation in the 
intestine [5, 6].

Fish intestine plays various physiological functions that 
go beyond digestion of food and nutrient absorption. It 
is also an important immunological site with a key role 
in protecting the animal from pathogenic insults. There-
fore, its integrity is essential to guarantee fish growth, 
health and welfare [7]. Fish gut integrity has been stud-
ied mainly in relation to different dietary interventions 
that may cause enteritis or several degrees of gut mal-
functioning [8–13] and almost no data are available for 
pathogen-induced enteritis [14]. However, fish intestinal 
parasitic infections not only cause direct mortalities, 
but also morbidity, poor growth, higher susceptibility to 
opportunistic pathogens and lower resistance to stress 
[15]. The intestinal myxozoan parasite Enteromyxum leei 
dwells between gut epithelial cells and causes severe des-
quamative enteritis in gilthead sea bream (Sparus aurata) 
(Teleostei), producing anorexia, cachexia, growth impair-
ment, reduced marketability and increased mortality 

[16]. In advanced E. leei infections, the intestine displays 
hypertrophy of the lamina propria-submucosa and loss of 
the epithelial palisade structure, together with an intense 
local inflammatory response [16–19].

Several techniques have been proposed for studying 
the morphology and physiology of fish gut [20]. How-
ever, most of these techniques are time consuming, or 
expensive and require lethal samplings. In non-piscine 
hosts, non-lethal markers have been identified to meas-
ure gut barrier failure for some enteric pathogens, under 
field conditions [21]. In humans, several biomarkers have 
been used to measure gut permeability and loss of barrier 
integrity in intestinal diseases, but there remains a need 
to explore their use in assessing the effect of nutritional 
factors on gut barrier function. Future studies should aim 
to establish normal ranges of available biomarkers and 
their predictive value for gut health in human cohorts 
[22]. Metabolomics are emerging as a valuable tool to 
find biomarkers in many diseases, as the metabolome 
includes all small molecules that are present in a bio-
logical system and thus, metabolites serve as direct sig-
natures of the metabolic responses and perturbations in 
metabolic pathways and tightly correlate with a particu-
lar phenotype. These properties make the serum metabo-
lome an attractive minimally invasive technique for the 
identification of system phenotypic perturbations, espe-
cially those disruptions due to pathogens [23, 24], and it 
has started to be used in aquaculture to identify biomark-
ers indicative of physiological responses of living organ-
isms to environmental or culture conditions [25–27].

The aim of the present study was to outline the gut 
failure resulting from a well-characterized enteric fish-
parasite model using a multifaceted approach (immu-
nocytochemistry, electrophysiology, gut permeability 
and metabolomics tools) and to find and validate serum 
non-lethal markers of gut barrier dysfunction. Thus, 
serum samples from parasitized and non-parasitized fish 
were first analysed using non-targeted metabolomics and 
some significantly altered metabolites were selected to be 
validated using commercial kits with further samples.

Methods
Fish infection trials and samplings
Juvenile specimens of gilthead sea bream (GSB) (Spa-
rus aurata) were obtained from commercial fish farms 
and transported to IATS-CSIC facilities (Castellón, 
Spain). Before each trial, 20 fish from each stock were 
sacrificed and checked by qPCR (18S ribosomal RNA 
gene) [28] and histology to be specific pathogen free and 
clinically healthy. Animals were acclimatized at least 
6 weeks before any intervention and were always kept 
in 5-µm-filtered sea water (37.5‰ salinity), with open 
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flow and natural photoperiod at IATS location (40°5′N, 
0°10′E). Temperature was kept constant at 18–19 °C 
throughout the duration of the trials. Unless stated oth-
erwise, fish were fed ad libitum with a commercial diet 
(EFICO; BioMar, Aarhus, Denmark) throughout all the 
experiments. Three different trials were performed dur-
ing this study and are described below. As the parasite 
dose is not reproducible from one trial to another in this 
particular model, visual monitoring of clinical signs and 
non-lethal samplings were performed to evaluate the 
progression of each infection and select the appropriate 
timing for a consistent sampling in all trials. The trials are 
schematically summarized in Fig. 1.

Trial 1 (permeability trial)
GSB with an initial weight of 200 g were exposed to E. 
leei-infected effluent as previously described [29] (recipi-
ent group, R; n = 20) or kept in parasite-free water 
(control group, C; n = 20). They were pit-tagged for indi-
vidual identification and non-lethally sampled at 68 days 
post-exposure (dpe) for parasite diagnosis (100% preva-
lence of infection was detected in the R group). At 110 
dpe, C (n = 8; mean weight = 410 g) and R (n = 8; mean 
weight = 250 g, with similar infection level at 110 dpe) 
fish were starved for one day and slightly anesthetized 
with clove oil (0.1 ml/l) prior to oral intubation with fluo-
rescein isothyocianate (FITC)-dextran (molecular weight 
70 kDa; Sigma-Aldrich, St. Louis, MO, USA) in PBS (dos-
age = 13 mg/kg of body weight). The two experimental 
groups were held in separate tanks for 5 h to allow intes-
tinal absorption of the permeability marker. Fish were 
then sacrificed by overexposure to MS-222 (100 mg/ml; 
Sigma-Aldrich). Blood was taken from the caudal vessels 
by puncture with heparinized sterile needles and intesti-
nal segments were collected for histological parasite diag-
nosis. Blood was allowed to clot for 2 h, then immediately 
centrifuged (15 min, 3000× g, 4 °C); the serum was then 
aliquoted and kept at − 80 °C until analysis.

Trial 2 (electrophysiology trial)
One R group of GSB was anally intubated with 0.4 ml of E. 
leei-infected intestinal scrapings, as previously described 
[30]. Another C group was intubated with PBS (initial 
fish weight = 97.5 g). Both groups were non-lethally sam-
pled at 76 days post-intubation (dpi) for parasite diag-
nosis (95% prevalence of infection was detected in the R 
group). A final sampling was performed at 107 dpi, where 
6 heavily infected R fish (average weight = 114.41 g) and 
4 C fish (average weight = 222.8 g) were selected by light 
microscopy observation of intestinal samples obtained by 
anal cannulation. Serum and histological samples were 
taken as described before and a portion of anterior intes-
tine was used for the electrophysiology assay.

Trial 3 (metabolomics trial)
One R group of GSB (n = 25, initial average 
weight = 213.04 g) was anally intubated with 1 ml of E. 
leei-infected intestinal scrapings, as in trial 2. Prevalence 
of infection at the non-lethal (NL) sampling (28 dpi) was 
100%. A final lethal sampling was done at 77 dpi, in which 
serum and intestinal samples were taken for metabo-
lomics and histological diagnosis, respectively, from R 
(n = 24, 215.91 g) and C (n = 24, 312.54 g) fish.

Parasite diagnosis
In all trials, parasite diagnosis was performed on anterior 
(AI) and posterior (PI) intestinal segments fixed in 10% 
buffered formalin, embedded in paraffin, 4 μm-sectioned 
and stained with Giemsa following standard procedures. 
Infection intensity was semiquantitatively evaluated in 
each intestinal segment using a scale from 1 (lowest) to 6 
(highest) as previously described [30]. Non-infected seg-
ments were scored as 0. All infected fish had high scores 
in the posterior intestine, the first segment colonized by 
this parasite. Based on anterior intestine scores, scores 
of 1–2, 3–4 and 5–6 were considered low, medium and 
high infection intensities, respectively. All fish from tri-
als 1 and 2 showed high levels of infection. In trial 3, fish 
showed different degrees of infection and were grouped 
accordingly for further analysis.

Immunohistochemistry (IHC)
In order to evaluate the intestinal damage induced by 
the parasite, immunohistochemistry was performed 
using three different markers involved in epithelial integ-
rity: E-cadherin (CDH1), tight junction protein 1 (TJP1 
or ZO-1) and claudin-3 (CLDN3). Commercial cross-
reacting antibodies were selected for the three molecules, 
by comparing the sequence of their epitopes with the 
sequence available in the gilthead sea bream genomic and 
transcriptomic databases (http://www.nutri​group​-iats.
org/seabr​eamdb​/). The selection threshold for the heter-
ologous antibodies was set at 80% of sequence similarity, 
with long stretches of identical amino acids. In addition, 
cross-reactivity with undesired proteins was ruled out by 
blasting the databases.

Four-micrometer-thick sections of anterior, mid-
dle and posterior intestine sections from trials 1 and 2 
were collected on Super-Frost-plus microscope slides 
(Menzel-Gläser, Braunschweig, Germany), dried over-
night, deparaffinized and hydrated. From each experi-
ment, 4 C and 4 R fish were analyzed. All incubations 
were performed in a humid chamber at room tempera-
ture and washing steps consisted of 5 min immersion in 
TTBS [20 mM Tris-HCl, 0.5 M NaCl, pH 7.4 (TBS) and 
0.05% Tween 20] and 5 min immersion in TBS. Endog-
enous peroxidase activity was blocked by incubation in 

http://www.nutrigroup-iats.org/seabreamdb/
http://www.nutrigroup-iats.org/seabreamdb/
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hydrogen peroxide 0.3% v/v in methanol (H2O2:methanol 
in a 1:9 proportion) for 30 min. Antigen retrieval was 
performed by boiling the samples in Target Retrieval 
Solution, pH9 (DAKO, Santa Clara, CA, USA) using 
a pressure boiler for 30 min. Slides were then washed 
and blocked 30 min with TBS 1.5% normal goat serum 
(Vector Laboratories, Burlingame, CA, USA) for the 
antibodies raised in rabbit (anti-TJP1 and anti-CLDN3) 
or with TBS 5% BSA for the antibody raised in mouse 
(anti-CDH1). After washing, slides were incubated with 
the primary antibodies diluted in TBS 1% BSA for 2 h. 
The dilutions used were 1:200 for the polyclonal rabbit 
anti-TJP1 (HPA001636; Sigma-Aldrich) and 1:100 for 
the polyclonal rabbit anti-CLDN3 (MBS126688; MyBio-
Source, San Diego, CA, USA). The monoclonal mouse 
anti-E-cadherin (DAKO, clone NCH-38) was used undi-
luted and following the protocol previously described 
[31]. Samples were washed again and incubated with a 
goat anti-rabbit or a horse anti-mouse antibody (Vector 
Laboratories) 1:200 in TBS 1.5% normal goat or horse 
serum, respectively, for 1 h. Slides were subsequently 
washed and incubated for 30 min with the avidin-biotin-
peroxidase complex (ABC, Vector Laboratories), washed 
and developed by incubating with 3,3′-diaminobenzidine 
tetrahydrochloride chromogen (DAB; Sigma-Aldrich) for 
2 min. The reaction was stopped with deionized water 

and the slides were counterstained for 2 min with Gill’s 
haematoxylin before being dehydrated and mounted for 
light microscopy examination.

Gut permeability assay
Duplicates of individual sera from R and C fish from trial 
1 were diluted 1:1 in PBS, dispensed (100 µl) in 96-well 
microplates (Thermo Fisher Scientific, Waltham, MA, 
USA) and read against a standard curve using a range 
of FITC-dextran concentrations from 2.5 ng/ml to 100 
ng/ml. Serum FITC-dextran concentrations were cal-
culated after measuring fluorescence intensity at λem/
ex = 535/485 nm in a microplate reader (Tecan Group 
Ldt., Männedorf, Switzerland).

Electrophysiology assay
The anterior intestine of C (n = 4) and R (n = 6) fish from 
trial 2 was collected, isolated and mounted in Ussing 
chambers as previously described [32, 33]. Briefly, tissue 
was washed with chilled saline, opened flat, placed on 
a tissue holder of 0.71 cm2 and positioned between two 
half-chambers containing 2 ml of physiological saline 
(NaCl 160 mM; MgSO4 1 mM; NaH2PO4 2 mM; CaCl2 
1.5 mM; NaHCO3 5 mM; KCl 3 mM; glucose 5.5 mM; 
HEPES (4-(2-hydroxyethyl)piperazine-1-ethanesulfonic 
acid, N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic 

Fig. 1  Diagrammatic summary of the different gilthead sea bream infection trials (T) with the parasite Enteromyxum leei showing the type of 
infection, timing, samplings, and the analyses performed at the end of each trial. Abbreviations: dpi, days post-inoculation; dpe, days post-exposure; 
FITC-Dx, intubation with FITC-dextran; NL-PCR, evaluation of the infection by PCR using non-lethal samples
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acid) 4 mM), at a pH of 7.8. During the experiments the 
tissue was bilaterally gassed with 0.3% CO2 + 99.7 O2 
and the temperature maintained at 17 °C. Short-circuit 
current (Isc, µA/cm2) was automatically monitored by 
clamping epithelia to 0 mV and epithelial resistance (Rt, 
Ω cm2) was manually calculated (Ohm’s law) using the 
current deflections induced by a 2 mV pulse of 3 s every 
minute. Voltage clamping and current injections were 
performed by means of VCC600 or VCCMC2 amplifiers 
(Physiologic Instruments, San Diego, CA, USA). Bioelec-
trical parameters for each tissue were manually recorded 
at 30 min intervals for 150 min after mounting, and data 
is presented as average of values for each individual.

Untargeted serum metabolomics
Blood (3 ml) from C and R fish from trial 3 was directly 
collected into clot activator tubes (BD Vacutainer; BD, 
Madrid, Spain) and kept on ice for 2 h. After centrifu-
gation (15 min at 3000× g, 4 °C), serum samples were 
aliquoted and stored at − 80 °C until use as described 
elsewhere [26]. Briefly, one aliquot was deproteinized 
with acetonitrile for hydrophilic interaction liquid chro-
matography (HILIC). A second aliquot was evaporated 
to dryness after acetonitrile deproteinization, and redis-
solved in methanol 10% for reverse phase (RP) chroma-
tographic analysis. Extracts were then injected in both 
positive and negative ionization modes (0.7 and 1.5 kV 
capillary voltages, respectively) in a hybrid quadru-
pole time-of-flight mass spectrometer (Xevo G2 QTOF; 
Waters, Manchester, UK) with a cone voltage of 25 V, 
using nitrogen as both desolvation and nebulizing gas. 
LC-MS data were processed using the XCMS R package 
(https​://xcmso​nline​.scrip​ps.edu) with Centwave algo-
rithm for peak picking (peak width from 5 to 20 s, S/N 
ratio higher than 10 and mass tolerance of 15 ppm), 
followed by retention time alignment, peak area nor-
malization (mean centering), log 2 applying (to avoid 
heteroscedasticity) and Pareto scaling. For elucidation 
purposes, fragmentation spectra of features of interest 
were compared with reference spectra databases (MET-
LIN, http://metli​n.scrip​ps.edu; Human Metabolome 
DataBase, http://www.hmbd.ca; MassBank, http://www.
massb​ank.eu). For unassigned metabolites, in silico frag-
mentation software (MetFrag, http://msbi.ipb-halle​.de/
MetFr​ag), with subsequent searches through Chemspi-
der (http://www.chems​pider​.com) and PubChem (https​
://pubch​em.ncbi.nlm.nih.gov) chemical databases, was 
employed.

Targeted metabolite detection in serum samples
The concentration of creatine and inosine were meas-
ured in serum samples of C and R fish from trials 1 and 

2 using specific kits. These two metabolites were selected 
due to the availability of commercial kits to measure 
their concentration in serum samples and their signifi-
cant differential abundance and presence among the VIP 
variables from the untargeted metabolomics study (see 
below). Creatine was measured with the Creatine Assay 
Kit (KA1666; Abnova, Heidelberg, Germany) using 10 µl 
of each serum sample in duplicate following the manu-
facturer’s instructions. A calibration curve ranging from 
0.5 to 50 µM of creatine was included in the assay and 
the concentration in each sample was extrapolated after 
measuring fluorescence intensity at λem/ex = 590/530 
nm. Inosine was measured using an Inosine Assay Kit 
(MAK100; Sigma-Aldrich) using 5 µl of each serum sam-
ple in duplicate, following the manufacturer’s instruc-
tions. A calibration curve ranging from 0.1 to 0.5 nmol/
well was included in each assay and the presence of ino-
sine was determined measuring the fluorescence inten-
sity at λem/ex = 590/530 nm.

Statistics and data analyses
Data from the electrophysiology, gut permeability 
assays and metabolite detection by ELISA were ana-
lysed for statistically significant differences between C 
and R groups by Student’s t-test or the Mann–Whitney 
test when Shapiro–Wilk normality test failed, using 
SigmaPlot v.13.0 (Systat Software, San Jose, CA, USA). 
Differences were considered significant at P < 0.05. To 
study the separation among experimental groups, par-
tial least-squares discriminant analysis (PLS-DA) was 
performed using EZinfo v.3.0 (Umetrics, Umeå, Swe-
den). The quality of the PLS-DA model was evaluated 
by the parameters R2Y(cum) and Q2Y(cum), which 
indicate the fit and prediction ability, respectively. To 
discard the possibility of over-fitting of the supervised 
model, a validation test consisting in 999 random per-
mutations was performed using SIMCA-P+ v.11.0 
(Umetrics). The contribution of the different metabo-
lites to the group separation was determined by vari-
able importance in projection (VIP) measurements. A 
VIP score > 1 was considered to be an adequate thresh-
old to determine discriminant variables in the PLS-DA 
model [34, 35].

Results
Tight junction protein 1 and claudin 3 protein expression 
is affected by E. leei
CLDN3 is an integral membrane protein component 
of TJ proteins, contributing to create an ion-selec-
tive border between apical and basolateral compart-
ments. Thus, as expected, the anti-CLDN3 antibody 
marked strongly the basal membrane of the intestinal 

https://xcmsonline.scripps.edu
http://metlin.scripps.edu
http://www.hmbd.ca
http://www.massbank.eu
http://www.massbank.eu
http://msbi.ipb-halle.de/MetFrag
http://msbi.ipb-halle.de/MetFrag
http://www.chemspider.com
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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epithelium and the lateral membranes of enterocytes in 
the three intestinal segments of control fish, although 
it was stronger at the AI (Fig. 2a, left pictures). By con-
trast, the immunolabelling decreased in parasitized 
intestines (in all intestinal segments), particularly at the 
lateral junctions at the PI (Fig. 2b, left pictures).

TJP1 is an important intracellular TJ protein, link-
ing the cell cytoskeleton to the transmembrane TJ 
proteins. The anti-TJP1 antibody marked strongly the 
basal membrane and the apical epithelium, with a dot-
lined style, in all intestinal segments of control ani-
mals, being higher at the AI (Fig. 2a, middle pictures). 
In parasitized fish, however, the immunolabelling was 
not so strong and decreased similarly in all the sites. It 
is remarkable that some parasitic stages (secondary and 
tertiary cells) were also strongly labelled with this anti-
body (Fig. 2a, b, middle pictures).

CDH1 is a transmembrane protein that acts as a 
cell adhesion molecule, important in the formation of 
adherens junctions to bind cells with each other. The 
anti-CDH1 antibody stained similarly the lateral junc-
tion of enterocytes in all intestinal segments of control 
fish, and the labelling hardly changed in parasitized fish 
(Fig. 2a, b, right pictures).

Parasitized fish showed an increased intestinal 
permeability
The paracellular transport of small macromolecules 
across the intestinal epithelium was assessed through 
the translocation of 70 kDa FITC-dextran into the 
blood stream. The FITC-dextran concentration in blood 
serum of R fish was significantly higher than in C fish 
(Mann-Whitney U-test: U(8) = 6, Z = − 2.83, P = 0.0047) 
(Fig.  3). All R fish used for this analysis were infected 
at the three intestinal segments with high infection 
intensity.

Intestinal transepithelial resistance is lower in parasitized 
fish
Rt (Ω cm2), a measure of tissue integrity, was moni-
tored for each AI ex vivo. In C fish, Rt steadily raised 
until 90 min after mounting, as expected, and remained 
stable thereafter. However, in R fish Rt values remained 
low and stable throughout the testing time (data not 
shown). The mean Rt values of the stabilized meas-
urements were significantly higher in C than in R fish 
(Mann-Whitney U-test: U(4) = 24, Z = 2.59, P = 0.0095) 
(Fig. 4a). In addition, short circuit current (Isc, μA/cm2) 
was also recorded for each epithelial preparation (t-test: 
t(8) = 3.95, P = 0.0042) (Fig. 4b). Under the current experi-
mental conditions, positive Isc values are associated with 
absorptive function as it was detected in C fish, whereas 

the negative Isc values found in R fish indicate a secretory 
function, reflecting the prevailing electrolyte transport 
across the epithelium. Thus, C fish exhibited an absorp-
tive (positive) current that reflects a proper function of 
the epithelium, whereas infection induced a persistent 
and non-reversed secretory current throughout the 
measuring period reflecting an in vivo persistent diarrhea 
(negative mean values for R group).

Parasitized fish show significant changes in their serum 
metabolomics profile
A total of 3702 ions were detected in all four injections 
(reversed phase and HILIC chromatographies in both 
positive and negative ionization modes). Among them, 
182 showed a P (corrected) higher than 0.5 in a OPLS-
DA statistical method, so they were selected for further 
study (Additional file 1: Figure S1). Some of them showed 
differences between molecular ion isotopes of 0.5, 0.33 
or 0.25 mDa, which were considered peptides or protein 
fragments with more than a single charge. However, their 
small intensity made their identification by means of tan-
dem MS really difficult, hampering their final elucidation. 
Other compounds highlighted by OPLS-DA were studied 
in MS/MS experiments at 10, 20, 30 and 40 eV collision 
energy, obtaining a list of 20 tentatively elucidated com-
pounds (Table 1), related to different biological processes 
[fatty acid oxidation (5 compounds), amino acid catabo-
lism (4 compounds), energy homeostasis (1 compounds), 
nucleoside metabolism (2 compounds), lysophospho-
lid metabolism (4 compounds) and vitamins and poly-
phenols metabolism (4 compounds)]. The differential 
expression of these 20 identified compounds markedly 
separated control from infected groups in multivariate 
analyses (PLS-DA), in which the three first components 
explained more than 90% and predicted more than 75% 
of the variance. This analysis separated also R groups 
by low/medium and high intensity of infection (Fig.  5), 
although the statistical significance of the prediction was 
restricted by the number of fish in each R group category.

Inosine and creatine are good serum markers 
of parasitized fish
The application of the commercial ELISA kits for inosine 
and creatine showed significant changes in the serum 
of parasitized fish. The values of fish from trials 1 and 
2 were merged to have a higher sample size and statis-
tical robustness (C: n = 8; R: n = 20). Inosine was sig-
nificantly decreased (Mann-Whitney U-test: U(8) = 38, 
Z = 2.01, P = 0.045) (Fig. 6a), whereas creatine increased 
(Mann–Whitney U-test: U(7) = 11, Z = − 3.53, P = 0.0004) 
(Fig. 6b) in parasitized fish.
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Fig. 2  Photomicrographs of gilthead sea bream sections of anterior (a) and posterior (b) intestines immunolabelled (brownish colour) with 
antibodies against claudin 3 (CLDN3, left pictures), tight junction protein 1 (TJP1, central pictures) and E-cadherin (CDH1, right pictures). For each 
intestinal segment, the upper panel corresponds to control healthy fish and the lower panel to Enteromyxum leei-parasitized fish. Arrowheads point 
to some labelled parasitic stages, and arrows to some of the positive immunostaining of control fish at the anterior intestine. Note the differences in 
the distribution and staining intensity in parasitized intestinal sections. Scale-bars: 20 µm
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Discussion
The gastrointestinal (GI) tract acts as a barrier between 
the external and internal environments and thus the 
integrity of this barrier is crucial to maintain homeo-
stasis. The barrier function of the gut is supported by 
epithelial cells, mucus, tight junction (TJ) and adherens 
junction (AJ) proteins [36]. The fish-parasite system used 
in the present study provides an excellent model to study 
the disruption of this barrier, as E. leei dwells in the para-
cellular space of the gut epithelial palisade. First of all, we 
have shown the functional disruption of the gut through 
the increased gut permeability and the decreased 

transepithelial resistance in parasitized fish. Secondly, 
we have demonstrated by IHC the decreased presence of 
some TJ proteins that are the building blocks of the gut 
barrier, especially claudin-3. Finally, we have outlined 
the utility of non-targeted serum metabolomics to detect 
marker metabolites of the disease condition and we have 
validated the use of creatine and inosine as disease mark-
ers of enteritis.

Epithelial permeability function has been assessed in 
mammals by in vitro or ex vivo methods such as tran-
sepithelial electrical resistance and in vivo tests such as 
transepithelial passage of different markers [22, 37, 38]. 
Intestinal mucosal barrier permeability is considered as 
an effective indicator of the integrity of the mucosal bar-
rier. Experiments on intestinal barrier permeability in 
fish have been mainly based on in vitro and molecular 
studies such as gene expression studies [11, 13, 39, 40] 
and very few studies are available using in vivo markers 
[14, 41]. Among the in vivo methods, FITC-dextrans are 
primarily used for studying permeability and transport in 
tissues and cells, but to the best of our knowledge this is 
the first time that it is used in fish gut studies. Here, we 
chose a molecular size that allows studying the intestinal 
paracellular transport, as we hypothesised that the par-
asite location was altering it (either blocking or favour-
ing). Indeed, what we found was a leaking effect, as the 
FITC-dextran was increased in the plasma of parasitized 
fish. Similarly, intestinal permeability was significantly 
elevated in different fish species after an infectious pan-
creatic necrosis virus (IPNV) challenge [42] and the 
paracellular permeability for Evans blue and D-lactate 

Fig. 3  Gut permeability increases in E. leei infected fish. FITC-dextran 
concentration (ng/ml) in serum from control (C, n = 8) and recipient 
(R, n = 8) fish 5 h after oral intubation with 13 mg/kg of FITC-dextran. 
Data are presented as mean + SEM. Asterisks (**) denote statistical 
significance at P < 0.01 (Mann-Whitney test, P = 0.0047)

Fig. 4  Intestinal tissue integrity and absorptive function are impaired in E. leei parasitized fish. Electrophysiology results showing a transepithelial 
electrical resistance (Rt, Ω.cm2) and b short circuit current (Isc, µA/cm2) of control (C, n = 4) and recipient (R, n = 6) fish anterior intestines. The data 
represent the mean (+ SEM) of the tissue Rt or Isc values along the 150 min of ex vivo experiment with the Ussing chambers. Asterisks (**) denote 
statistical significance at P < 0.01 (a Mann-Whitney test, P = 0.0095; b Student’s t-test, P = 0.0042)
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were significantly higher at both 24 and 72 h post-infec-
tion with Aeromonas hydrophila [14]. The leaking effect 
was confirmed by the decreased transepithelial resist-
ance in parasitized intestines. These results agree with 
previous studies showing that E. leei disrupts intesti-
nal water uptake, as a significant negative correlation 
between plasma chloride concentration and condition 
factor. Thus, a significantly higher osmolarity of plasma 
and major ion concentrations of the intestinal fluid were 
found in E. leei-infected tiger puffer (Takifugu rubripes) 
[43]. Some fish diets containing high levels of alternative 

vegetal protein sources may also induce digestive distur-
bances including diarrhoea-like conditions, indicating 
impaired gut permeability of water [44, 45]. Similarly, in 
GSB, some extreme vegetable diets impair Rt and this 
negative effect can be overcome when a butyrate additive 
is added [33]. Several human enteric protozoan parasites 
typically induce diarrhoea by a combination of different 
actions that alter gut integrity. For example, Entamoeba 
hystolitica degrades the protective mucus layers and 
evokes mucus hypersecretion. Its interaction with epi-
thelial cells directly induces pro-inflammatory responses 

Table 1  Highlighted (↑, upregulated; ↓, downregulated) compounds obtained from untargeted metabolomics of serum samples of 
gilthead sea bream inoculated with Enteromyxum leei. Non-infected (C) fish were compared with highly (R-H) or low/moderately (R-L/
M) infected recipient (R) fish

#  1, fatty acid oxidation; 2, amino acid catabolism; 3, energy homeostasis; 4, nucleoside metabolism; 5, lysophospholid metabolism; 6, vitamins and polyphenols 
metabolism

*Benjamini-Hochberg multiple testing correction

Note: Superscript letters indicate statistically significant differences, using letter a for C group

Compound Biological 
process#

Feature name Chromatography/ 
ionization mode

Formula m/z (Da) R-H, % C R-L/M, % C Corrected P-value*

Isobutyryl carnitine ↑ 1 M232T96_RPPOS RP/+ C11H21NO4 232.2967 1615b 969c 6.78E−3

Pivaloylcarnitine ↑ 1 M246T150_RPPOS RP/+ C12H23NO4 245.3153 1128b 664c 5.72E−3

2-methylbutyroylcarnitine ↑ 1 M246T155_RPPOS RP/+ C12H23NO4 246.3233 955b 470c 1.42E−2

Myristoylcarnitine ↑ 1 M372T767_RPPOS RP/+ C21H41NO4 372.5625 303b 127a 3.37E−2

(c18:1)oylcarnitine ↓ 1 M426T788_RPPOS RP/+ C25H47NO4 426.3571 32b 36b 6.21E−03

Oxoadipic acid ↑ 2 M159T74_RPNEG RP/− C6H8O5 159.1168 4704b 8660c 1.63E−2

Leucinic acid ↑ 2 M131T254_RPNEG RP/− C6H12O3 131.1497 949b 632c 1.39E−2

γ -Glu-Val ↑ 2 M247T94_RPPOS RP/+ C10H18N2O5 247.2683 402b 202c 7.33E−3

γ-Glu-Ile ↑ 2 M261T171_RPPOS RP/+ C11H20N2O5 259.2790 343b 255b 2.60E−2

Creatine ↑ 3 M132T73_RPPOS RP/+ C4H9N3O2 132.1411 425b 245c 1.26E−2

Inosine ↓ 4 M267T72_RPNEG RP/− C10H12N4O 203.2205 94a 77b 2.37E−2

Guanosine ↓ 4 M282T73_RPNEG RP/− C10H13N5O5 282.2328 70a 58b 4.42E−2

LysoPC(20:4) ↓ 5 M544T874_RPPOS RP/+ C28H50NO7P 543.6729 67b 46b 6.13E−2

LysoPE(18:2) ↑ 5 M478T906_RPNEG RP/− C23H44NO7P 476.5638 199b 106a 1.31E−2

LysoPE(16:0) ↑ 5 M452T895_RPNEG RP/− C21H44NO7P 454.5583 259b 143b 4.05E−3

LysoPE(18:1) ↑ 5 M480T944_RPNEG RP/− C23H46NO7P 480.5855 185b 123a 2.14E−2

Biotin (vitamin B7) ↓ 6 M245T223_RPPOS RP/+ C10H16N2O3S 245.3186 28b 66c 2.69E−2

Pantothenic acid (vitamin 
B5)↓

6 M220T115_RPPOS RP/+ C9H17NO5 220.2429 27b 71c 3.56E−2

Delta-valerolactam ↓ 6 M100T100_RPPOS RP/+ C5H9NO 100.1390 16b 38c 6.72E−3

p-aminobenzoic acid (PABA) 
↑

6 M138T94_RPPOS RP/+ C7H7NO2 137.0474 177b 215b 1.44E−2

Fig. 5  PLS-DA analysis of serum metabolomics. a Graphical representation of the goodness-of-fit. The three first components explained more 
than 90% and predicted more than 75% of the variance. b, c PLS-DA score plots representing the distribution of samples with component 1 vs 
component 2 (b), and component 1 vs component 3 (c). All infected recipient (R) fish clustered separated from control (C) fish. In addition, R 
fish with high intensity of infection (H) were more separated from C than R with low (L) and medium (M) infection levels. R fish with the highest 
infection levels are included in the rectangle. The contribution of the different metabolites to the group separation was determined by variable 
importance in projection (VIP) measurements after three components. d List of the metabolites increased (in red) or decreased (in green) during 
the infection, and their VIP (variable importance in projection) scores

(See figure on next page.)
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and later on perturbs the TJ proteins to stimulate water 
and ion secretion [46]. The diarrhoea induced by the 
intracellular parasite Cryptosporidium parvum is due to 
an increased paracellular permeability associated with 
decreased levels of several TJ and AJ proteins in vitro and 
also to the downregulation of genes related to TJs and AJs 
in response to the infection in ex vivo and in vivo mouse 
models [47]. Similarly, the reduction in the intestinal bar-
rier function induced by Giardia duodenalis implicates 
disruptions of several TJ proteins [48].

The observed changes in permeability and Rt in the 
current fish-parasite model could also be due to the 
decreased presence of some TJ proteins in GSB para-
sitized intestines, as shown by IHC. TJs in enterocytes 
separate the intestinal lumen from the under-lying tis-
sues, regulating the movement of ions and macromol-
ecules, and thus maintaining the homeostasis. Claudins 
are essential components of TJs regulating paracellu-
lar solute transport. Claudins can alter or be altered by 
a number of signalling molecules/pathways. Abnor-
mal expression and/or mislocalization of claudins are 
associated with many human and animal diseases [49]. 
Some studies have shown that the paracellular resist-
ance of CLDN3-transfected monolayers was strongly 
elevated, causing an increase in transepithelial resistance. 
CLDN3 altered the TJ meshwork and sealed the paracel-
lular pathway against the passage of small ions [50]. The 
downregulation of claudins at protein and gene level can 
be induced by different factors, including inflammation 
[51]. In teleost fish, at least 63 claudin genes have been 
described, but very little is known about their role in the 
GI tract physiology [52]. The abundance of claudins can 

vary spatially along the GI tract of teleosts and it progres-
sively “tightens”, from the anterior to posterior part, thus 
preventing leakage of water back into the gut lumen [52–
54]. Different dietary interventions have variable effects 
on fish intestinal TJs. Vitamin A deficiency decreased the 
mRNA levels of TJ complexes (several cldns and tjp1) in 
grass carp (Ctenopharyngodon idella) [55], dietary isoleu-
cine decreased the expression of several cldns in Jian carp 
(Cyprinus carpio var. Jian) [56], dietary deoxynivalenol 
(a mycotoxin) also decreased the relative expression of 
markers for three TJ proteins in Atlantic salmon (Salmo 
salar) intestine [57], and some plant proteins induced 
significant alterations of the TJ signalling pathway in 
this same species [11]. By contrast, dietary stachyose 
increased the gene expression of cldn3 and tjp1 in turbot 
(Scophthalmus maximus) [58], and an olive oil bioactive 
extract increased cldn3 expression in GSB [59], whereas 
some dietary interventions did not change the expression 
of tjp1 in GSB [60].

The deleterious effects of pathogens on intestinal TJ 
integrity is poorly featured in fish, and initially deter-
mined by morphological changes [61–63]. More recently, 
the effect of pathogens on cldn transcript abundance in 
the intestine following viral and bacterial experimen-
tal infections has also been reported but with opposite 
trends. Claudin genes were significantly downregulated 
in the intestine of catfish (Ictalurus punctatus) at three 
hours post-infection with Edwardsiella ictaluri, the bac-
terial agent causing enteric septicemia [64]. Similarly, 
the expression of tjp1 and several cldns was decreased in 
grass carp 72 hours after Aeromonas hydrophila infection 
[14]. On the other hand, following cyprinid herpesvirus 

Fig. 6  Inosine and creatine levels in serum change with E. leei infection. Serum concentration of a inosine (ng/µl) and b creatine (µM) in control (C, 
n = 8) and recipient (R, n = 20) fish from trials 1 and 2. Asterisks denote statistical significance at P < 0.05 (*) and P < 0.001 (***). Data are presented as 
mean + SEM (Mann–Whitney test; a P = 0.044, b P = 0.0004)
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3 (CyHV-3) infection, mRNA encoding for several cldns 
signifi-cantly increased in the intestine of common carp 
(Cyprinus carpio) in conjunction with an upregulation of 
genes involved in the inflammatory response. It was pro-
posed that alterations in cldns abundance may contribute 
to mechanisms that compensate for a possible disruption 
of proteins by nitric oxide produced during an immune 
response of the host to virus-induced tissue damage [65]. 
No information is available on the effect of fish parasites 
in intestinal TJs.

In the present study we did not observe a strong change 
in the intestinal immunolabelling of CDH1; however, 
its gene expression was significantly downregulated in 
severely E. leei-infected GSB [66]. Classical cadherins, 
such as E-cadherin (CDH1), are the major transmem-
brane proteins of AJ and initiate intercellular contacts 
through trans-pairing between cadherins on opposing 
cells. Formation of the AJ leads to assembly of the TJ, 
but E-cadherin is not required to maintain TJ organiza-
tion [67]. Alterations of E-cadherin are associated with a 
variety of gastrointestinal disorders. In mammals, intes-
tinal E-cadherin downregulation is usually observed in 
diseases characterized by high levels of pro-inflammatory 
molecules, such as inflammatory bowel disease [68, 69]. 
In fish, E-cadherin gene expression was modulated in the 
intestine of Atlantic salmon in response to an experimen-
tal diet that affected intestinal fluid permeability [44]. In 
previous studies in GSB, the intestinal gene expression 
of E-cadherin was also found to be modulated by some 
dietary interventions. In particular, it was significantly 
upregulated in GSB fed a diet low in fish meal and fish 
oil, and it was restored when sodium butyrate was added 
[33]. However, no changes were detected when fed with 
Next Enhance®150 [54] or with olive oil bioactive com-
pounds [59], and a lower expression was found in the 
anterior intestine of fish fed DICOSAN or probiotics 
[70].

In any case, we cannot reject that the changes found 
in the intestinal barrier integrity could also be due to 
enterocyte apoptosis and necrosis or to the inflamma-
tory response induced by the parasite, which have been 
described as acute/chronic in enteromyxosis [15, 71], or 
to changes in the intestinal mucus layer. In fact, E. leei-
parasitized GSB have altered glycoprotein profile of the 
secreted intestinal mucus, bacterial adhesion to large-
sized mucus glycoproteins is decreased [72], and impor-
tant changes in goblet cell composition and distribution 
and intestinal mucin expression are found [73, 74]. These 
changes in the intestinal mucus can have a clear effect 
on the gut barrier, as epithelial TJs and the mucus layer 
cooperate to form a highly integrated barrier system that 
together limit access of luminal contents to the body. 
The capacity of the mucus to prevent abrasion and trap 

bacteria represents the first line of defence, while the par-
acellular TJ barrier prevents leakage of bacterial antigens 
from the lumen into the body [3].

Altered permeability may lead to impaired digestive 
functions and reduced fish growth [75], and arrested 
growth is one of the disease signs of this enteritis [76, 77]. 
In the present study, this was also evidenced by the dif-
ferences in weight between R and C fish at the end of all 
trials. The loss of barrier function can also potentiate sys-
temic absorption of pathogens and toxic molecules which 
has been shown to be associated with intestinal inflam-
mation in mammals and fish [78, 79].

The untargeted metabolomics study of the serum 
showed significant changes in the profile of parasitized 
fish and the PLS-DA clearly separated parasitized fish 
from control ones into different clusters, confirming the 
stability and reproducibility of the LC-MS analysis. In 
previous studies, we have shown that this approach can 
detect differences in dietary interventions and the nutri-
tional status of GSB [25, 26]. Metabolomics have been 
applied recently in several areas of aquaculture [27], 
including infectious fish diseases [24]. However, its appli-
cation in fish parasitic diseases is very scarce, and only 
done thus far in naturally infected fish. In one of the few 
studies, in Coilia nasus, from the 391 annotated com-
pounds, 65 metabolites were significantly regulated in 
Anisakid-infected groups, and the multivariate analyses 
of the serum metabolite profiles showed good separa-
tion between infected and non-infected samples [80], as 
in the present study. In a GC/MS study of a very similar 
enteric myxozoan disease, the PLS-DA of 53 metabolites 
showed three distinct groups according to their parasite 
load [81]. In E. leei-infected sera, the regulated metabo-
lites were involved mainly in amino acid catabolism, fatty 
acid oxidation, nucleoside, lysophospholipid, vitamin 
and polyphenol metabolism. Similarly, in the above men-
tioned cases, the main pathways affected by the para-
sitic infection were amino acids and fatty acids [81] and 
amino acids, nucleotide derivatives, phospholipids, and 
immune-related metabolites [80].

In the present GSB metabolomic profile, some of the 
regulated compounds deserve special attention. Interest-
ingly, two vitamins, biotin (vitamin B7) and pantothenic 
acid (vitamin B5) were more downregulated in severely 
infected GSB than in slightly infected animals. Biotin was 
also downregulated in short-term fasted fish [25], and we 
consider that the lowered levels of these vitamins could 
be due to the reduced nutrient availability reflecting the 
poor nutritional status of parasitized fish. Further stud-
ies are needed to determine the specific role of these vita-
mins on the pathophysiology of enteromyxosis and its 
possible therapeutic use, since several studies have shown 
the role of the intestinal biotin uptake system in the 
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maintenance of mucosal integrity [82]. Biotin deficiency 
also induces active intestinal inflammation in mice simi-
lar to that observed in ulcerative colitis [82, 83] and leads 
to an array of pathological conditions in humans, includ-
ing inflammatory bowel disease [84]. In addition, under 
biotin-deficient conditions, innate immune system cells 
produce increased levels of pro-inflammatory cytokines 
and Th1- and Th17-mediated proinflammatory responses 
in human CD4+ T lymphocytes [85]. Furthermore, both 
deficiency and excess of dietary pantothenic acid down-
regulate several cldns, occludin and tjp1 mRNA levels 
in all intestinal segments of grass carp [86], and dietary 
deficiency of another vitamin (vitamin A) also impaired 
physical barrier functions associated with impaired 
antioxidant capacity, aggravated cell apoptosis and dis-
rupted TJ complexes in the intestine of grass carp [55]. 
In contrast, another vitamin related compound, para-
aminobenzoic acid (PABA), was increased in parasitized 
fish. PABA is an intermediate in the synthesis of the 
vitamin folate by bacteria, plants and fungi. Many bacte-
ria, including those found in the human intestinal tract 
generate PABA. Humans lack the enzymes to convert 
PABA to folate, so require folate from dietary sources, 
such as green leafy vegetables, and rely on the intestinal 
microbiota. This also happens in fish, as Duncan et  al. 
[87] demonstrated that intestinal microorganisms are 
a significant source of folic acid for channel catfish, and 
Kashiwada et al. [88] isolated folic acid-synthesizing bac-
teria from the intestine of common carp. Therefore, it is 
tempting to suggest that the intestinal alteration induced 
by the parasite could also induce changes in the intesti-
nal microbiota of our fish, and therefore changes in the 
microorganisms capable of converting PABA to folate. 
Further research on microbial changes in the intestine of 
parasitized fish will help elucidate these changes.

Several carnitine-related compounds and two 
γ-glutamyl dipeptides were strongly increased in para-
sitized GSB (again, more in severely infected than in 
slightly infected animals). High circulating concentra-
tions of γ-Glu-(Leu/Val/Ile) and five sub-products of 
l-carnitine were also found in the serum of fasted GSB 
[25]. These authors suggested that the increased lev-
els of γ-glutamyl dipeptides were due to changes in the 
Meister’s glutamyl cycle, which has a key role in the 
recovery and delivery of cysteine in the body and trans-
port of amino acids across cell membranes [89]. One 
of the key actors of this cycle is γ-glutamyl transferase 
(GGT), an enzyme that generates γ-glutamyl dipeptides 
by transferring the γ-glutamyl moiety from glutathione 
(GSH) to amino acids. Expression of GGT is essential 
in maintaining the cysteine levels in the body. Induc-
tion of GGT expression in response to redox stress pro-
vides the cell with access to additional cysteine, which 

becomes rate-limiting for intracellular GSH synthesis. 
Increased levels of plasma GGT were found in mice 
with viral infection [90], and in the liver and muscle of 
GSB fed diets with high levels of plant proteins [91]. This 
cycle could also be altered by changes in GSH. In fact, 
several glutamyl dipeptides have been used as biomark-
ers of human liver diseases because in healthy individu-
als the level of hepatic GSH is high and a small amount 
of GSH is biosynthesized. However, in patients with 
liver diseases, GSH is consumed to neutralize the gener-
ated ROS, which in turn leads to glutamyl cysteine syn-
thetase (GCS) activation, resulting in the biosynthesis 
of GSH together with glutamyl dipeptides [92]. We can 
only speculate about this activation in the present study, 
but it is tempting to suggest it could also happen, as ROS 
are increased in parasitized GSB and a counteracting 
role of ROS was hypothesized when downregulated gene 
expression of gpx-1 was found in the head kidney and 
intestine of parasitized GSB [76].

The increased levels of carnitine-related compounds 
in parasitized GSB are interpreted as increased mobi-
lization of body fat stores, common in fasted individu-
als, exemplified by the loss of body weight in parasitized 
fish. Carnitine is actively transported into the cytosol to 
participate in the shuttling of activated long chain fatty 
acids into the mitochondria where β-oxidation takes 
place. During fasting and malnutrition, metabolic adap-
tations are triggered by PPARα (peroxisome proliferator-
activated receptor alpha) to minimize the use of protein 
and carbohydrates as fuel to allow survival during long 
periods of energy deprivation and lipolysis pathways are 
engaged instead. Carnitine plays a critical role in energy 
balance across cell membranes and in energy metabo-
lism of tissues that derive much of their energy from fatty 
acid oxidation such as cardiac and skeletal muscles [93]. 
In our case, the long-term infection also engaged protein 
catabolism in parasitized GSB, since different metabolites 
related to amino acid catabolism were highly increased, 
as is the case for oxoadipic acid (more than 4700% in 
highly parasitized fish), which is a key catabolite of the 
essential amino acids tryptophan and lysine.

The two selected metabolites (creatine and inosine) 
emerged as good markers to differentiate C and R fish. 
Creatine was significantly increased in proportion to the 
degree of infection in parasitized GSB, and also when the 
ELISA was performed in additional samples. Creatine is 
a nitrogenous organic acid, made from arginine, glycine 
and methionine. It is a key component of phosphocre-
atine, which works as a store for high energy phosphate 
in the muscle, as ATP is produced at the expense of ADP 
via the phosphocreatine shuttle and creatine kinase in 
active muscles. It is generally accepted that creatine 
increases as muscle protein is broken down and creatine 
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levels are maintained by diet and endogenous synthesis. 
In fact, in humans, creatine amounts to more than 20% of 
the dietary intake of arginine [94]. The same happened for 
inosine, but with the opposite trend. Inosine, an endog-
enous purine nucleoside formed by the degradation of 
adenosine, is produced and released into the extracellu-
lar space during normal cell metabolism. Adenosine has a 
short half-life, whereas inosine has a much longer in vivo 
half-life. It was originally thought to have no biological 
effects. However, recent studies demonstrate that ino-
sine has potent immunomodulatory and neuroprotective 
effects and increased inosine levels are present in various 
inflammatory states and heart conditions [95, 96]. We 
can only speculate about the meaning of the low levels 
found in parasitized GSB, which point to a dysfunction 
of purine metabolism. The first hypothesis is a decreased 
catabolism of adenosine, in an effort to maintain the fish 
energy homeostasis, due to the involvement of adenosine 

in ATP/ADP balance. The second would be the uptake 
of inosine by the parasite, as shown for parasitic proto-
zoa that lack the enzymes required for de novo synthesis 
of purines and are therefore reliant upon the salvage of 
these compounds from the external environment [97]. 
Unfortunately, we do not have such information for E. 
leei, but recent genomic data of another myxozoan, 
Thelohanellus kitauei, seems to indicate that this parasite 
has lost the ATP-expensive pathways for de novo biosyn-
thesis of inosine 50-phosphate and uridine 50-phosphate. 
Therefore, it must rely on salvage pathways as well [98]. 
If this is the case of E. leei, the possible therapeutic use of 
inosine against enteromyxosis is worth further investiga-
tion, since dietary inosine supplementation reduced the 
oxidative stress and improved intestinal health condition 
and immune response in several fish species [99, 100]. 
In fact, treatment with inosine compounds is currently 
being used for some human viral infections [101].

Fig. 7  Proposed integrative model of the pathophysiology of Enteromyxum leei in the gilthead sea bream from the present study and previous 
published data [43, 71, 73, 74, 102, 103]. The parasite induces anorexia, immune responses and changes in intestinal integrity. Integrity is altered 
due to changes in tight junctions (TJ), adherent junctions (AJ), mucus layer, parasite proliferation and host cell proliferation. Intestinal integrity 
is also affected by vitamin deletion, oxidative stress and inflammation. These changes are translated into gut permeability dysfunction, which, 
together with decreased food intake, produce nutrient depletion and osmotic intestinal failure. All this together with the energy cost of mounting 
an immune response, invokes cachexia and finally systemic failure and the death of the fish. The disease indicators are related to growth retardation 
[body weight (BW), condition factor (CF) and specific growth rate (SGR)], anaemia [haemoglobin (Hb) and haematocrit (Hc)] and serum decrease of 
inosine and increase of creatine
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Conclusions
To our knowledge, our results provide the first func-
tional evidence of the disruption of the gut integrity by 
the fish parasite Enteromyxum leei. The clear decrease 
of the immunolabelling of several tight junction pro-
teins along the intestine of parasitized fish leads to 
changes in the intercellular sealing, the selective dif-
fusion barrier between epithelial cells and the preven-
tion of the free passage of molecules and ions across 
the paracellular pathway. This was substantiated by the 
increased gut paracellular uptake and the decreased 
transepithelial resistance in infected animals, which 
showed a diarrheic profile. We have also demonstrated 
that parasitized fish have a distinct serum metabolomic 
profile, and that two metabolites (creatine and inosine) 
are good markers to differentiate parasitized and non-
parasitized fish. The depletion of several metabolites 
involved in vitamin pathways opens the door to find 
future new palliative treatments. These results allow 
drawing a better picture of the complex interplay of the 
different factors involved in the pathophysiology of this 
disease, which are summarized in Fig. 7. The disruption 
of the intestinal integrity contributes to nutrient mal-
absorption, osmoregulatory failure and cachexia that 
eventually contribute to systemic organ failure.
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