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Abstract: Wood was designed, after millions of years of evolution, to perform in a wet environment.
Nature is programmed to recycle it, in a timely way, back to the basic building blocks of carbon dioxide
and water. All recycling chemistries start with an invasion of the wood surface. The surface of wood is
porous, hygroscopic, viscoelastic, and anisotropic that is better defined in interface/interphase zones.
This surface is dynamic and in constant change with changing humidity, temperature, oxygen levels,
ultraviolet energy, microorganisms and stress. This chapter is a review of the chemical properties of a
wood surface and performance issues associated with it.

Keywords: interface; interphase; absorption; adsorption; coatings; weathering; water repellency;
mold; fungi; decay; hardness

1. Introduction

Wood has been used by humans for thousands of years as tools, fuel, weapons,
structures and for recreation. We have used wood for so long that we have learned to
design around the knowledge that it changes dimensions with changing moisture content,
weathers, burns, and is degraded by a wide variety of micro and macro organisms.

There are many misconceptions about wood. First, that wood is renewable and
sustainable. This is not true. Wood comes from trees so it is trees that are renewable and
sustainable so we must put our emphasis on keeping our forests lands healthy. Second,
wood was designed, by Nature, to be used as a building material. This is also not true.
Nature is programmed to recycle wood in a timely way back to carbon dioxide and water
using five basic chemistries [oxidation, reduction, dehydration, hydrolysis, free radical
reactions]. Additionally, while we call wood a material, in a materials science definition of
a material, it is not. The definition of a material is that its properties are uniform, consistent,
predictable and reproducible. The properties of wood, however, vary from specie to specie,
tree to tree, within the same tree and, even, within a board from the same tree. So, solid
wood is a composite which is defined as two or more resources held together by some sort
of mastic.

We have all gone to a lumber yard and bought wood to build a dog house, a piece
of furniture or a deck. We know wood. We trust wood. We like the smell, look and feel
of it. We know everything there is to know about wood. It is a common material used by
common people. We would not think of making that dog house out of steel or ceramics or
nano-tubes. We know that the dog house will not last forever but neither will the dog. We
know wood to be temporary and we can build another one when the old one rots away.

The study of wood is best done by looking at it in differing levels of detail. There are
several levels of details to consider: macro, sub-macro, micro, sub-micro, and molecular.
We recognize wood at the macro level as a tree and this level can be broken down into two
sub-categories, softwood and hardwoods. At the sub-macro level, we recognize wood as
a solid board (in the rough) or as furniture, windows, doors, etc. At the micro level, we
study the wood cell wall and identify different elements such as heartwood, sapwood,
annual rings, etc. At the sub-micro level, we see cell structure such as lumens, pits, vessels,
ray cells, etc. Finally, at the molecular level we can study the cell wall polymers (cellulose,
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lignin and hemicelluloses) and their building blocks of simple sugars, phenolic units as
well as extractives structure and inorganic compounds.

2. Surface Chemistry

In the present case, we are looking at the surface chemistry of wood. There is a
chemical surface and a physical surface. This chapter will deal with properties of surface
chemistry and how that surface can be modified to improve properties and performance.
Some properties of wood are controlled by surface chemistry and some by bulk chemistry.

To a wood chemist, it is easy to describe the surface of a piece of 404 stainless steel. To
a chemist working with stainless steel, it is easy to describe the surface of wood but to a
wood chemist, it is very hard to define the surface of wood.

A wood surface is a porous, hygroscopic, viscoelastic, anisotropic, three dimensional
bio-polymer composite that is composed of cellulose, hemicellulose, lignin, extractives
and inorganics. The surface is dynamic and in constant change with changing humidity,
temperature, oxygen levels, ultraviolet energy, microorganisms and stress.

How deep is a wood surface? (Figure 1). It has been shown that ultraviolet (UV) light
penetrates a fir-wood surface to a depth greater than 70 µm, resulting in changes in the
tensile strength of the fir-wood strips to a depth of 70 to 140 µm. [1]. So, we can use 70 to
140 µm as one definition of the depth of the interface surface of wood. The interface is the
first few wood cells and then a transition to an interphase. There is no easy definition of
the depth of the interphase and it varies depending on the application in question. For
example, the interphase for the depth of penetration of a coating or an adhesive is different
from that of the interphase depth for moisture sorption.
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Figure 1. Radiata pine surface (A), micrograph wood surface after sanding (B), electron-micrograph of wood surface after
sanding (C).

3. Property and Modification
3.1. Moisture Sorption

Because wood is hygroscopic, the interface/interphase of wood absorbs water as
a vapor or liquid from the surrounding atmosphere. Moisture absorption starts in the
interface and continues adsorbing moisture into the interphase until the fiber has reached
the fiber saturation point (FSP) Figure 2. Loss of moisture results in cell wall shrinking.

According to the Dent sorption theory, water is added to the cell wall polymers in
mono-layers [2]. Figure 3 shows the mechanism of water molecules adding to the cell wall.
The hemicelluloses are the most hydroscopic polymer in the cell wall [3]. These polymers
are also very accessible to moisture so may be the first site for moisture absoption. Water
molecules enter the cell wall and start hydrogen bonding with other accessible hydroxyl
groups. Moisture is sorbed either as primary water • molecules and secondary water
# molecules (Figure 3). Moisture opens the cell structure by “unzipping” hydrophilic
polymer chains until the cell wall is fully saturated with bonded water [4]. Hydrogen
bonds between hydroxyl groups on and between hemicelluloses, cellulose and lignin are
constantly changing. As moisture is added to the cell wall, the fiber volume increases
nearly proportionally to the volume of water added [5,6]. Swelling of the fiber continues
until the cell matrix reaches the fiber saturation point (FSP) and water, beyond the FSP, is
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free water in the void structure and does not contribute to further swelling (Figure 3) [7].
This process is reversible, and fiber shrinks as it loses moisture below the FSP.
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Sorption of moisture is much slower than desorption. That is, it is faster/easier to
lose a molecule of water from the cell wall than it is to force another one in. A sorption
isotherm (see Figure 4) is a plot of moisture content (M%) vs. relative vapor pressure
(h = relative humidity/100 [8,9]. The difference between these curves is referred to as
sorption hysteresis for wood [7]. The adsorbing curve is always lower than the desorbing
curve and the A/D ratio generally ranges between 0.8 and 0.9 depending on the relative
humidity and wood species [10].
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3.2. Water Repellency

The terms water repellency and dimensional stability are often used interchangeably
as if they were the same. They are very different concepts. Water repellency is a rate
phenomenon and dimensional stability is an equilibrium phenomenon [11]. Confusion
over these two concepts has led to some product failures in service costing contractors or
owners considerable money.

A water repellent treatment is one that prevents or slows down the rate moisture or
liquid water is taken up by the wood. Examples of water repellents include coating, surface
applied oils or surface lumen filling. A dimensional stability treatment is one that reduces
or prevents swelling in wood no matter how long it is in contact with moisture or liquid
water. Examples of dimensional stability treatments include bulking the cell wall with
polyethylene glycol, penetrating polymers or bonded cell wall chemicals, or cross-linking
cell wall polymers [12].

Water repellent effectiveness (WRE) is measured as a time dependent function of
increasing weight of liquid water that can penetrate the treated surface given:

WRE =
Wc−Wt

Wc
× 100 (1)

where: Wc = Weight of water uptake) of control during exposure in water for “t” minutes
Wt = Weight of water uptake) of treated specimen for the same “t” time.

As was stated before, water repellents are applied to wood principally to prevent
or reduce the rate of liquid water flow into the surface cellular structure [13]. Moisture
is physically blocked from entering lumens and penetration of the water must proceed
by wicking through the cell wall. Moisture pickup can take a very long time moving
through cell wall structure so this type of treatment can be confused as a treatment for
dimensional stability.

Usually, the water repellent treatments involve the deposition of a thin layer of a
hydrophobic substance onto external and to some extent, internal cell lumen surfaces of
wood. The measured WRE varies between 0 and 100 percent depending on the time the
test specimens are exposed to water. In some cases, the time to reach equilibrium may
be weeks, months or even years but eventually, maximum swelling will be reached at
equilibrium. A very effective surface water repellent treatment is shown in Figure 5. A
drop of water on the treated surface does not soak in.
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3.3. Weathering

Weathering is the general term used to define the surface degradation of wood exposed
to the weather [14]. The degradation mechanism depends on a combination of factors found
in nature: moisture, sunlight, heat/cold, chemicals, abrasion by windblown materials, and
biological agents. The exterior of many houses has wood as the outermost barrier to the
weather (siding, windows, decks, roofs, etc.). If we are to achieve long service life from
these wood products, we must understand the weathering process and develop treatments
to retard or stop this degradation. Failure to recognize the effects of weathering can lead to
catastrophic failure of wood products. For example, if wood siding is left to weather for as
little as 1–2 weeks before it is painted, the surface of the wood will degrade [15]. During
this short exposure period, the surface of the wood will not appear different but photo
oxidation has started. Application of paint after 1–2 weeks of weathering will not give a
durable coating [16]. The surface of the wood has been degraded and it is not possible to
form a good paint bond with the degraded surface. The paint will show signs of cracking
and peeling within a few years. As the paint peels from the surface, the wood grain pattern
can easily be seen on the back side of the paint. The peeling paint has lifted the damaged
layer of wood from the sound wood underneath. The reasons for this will become apparent
as we discuss the chemistry and degradation processes of wood weathering.

We see many examples of weathering. The gray roughened appearance of old barns,
wood shake roofs, and driftwood are typical examples of weathered wood. Figure 6 shows
the color change as the wood surface weathers.

In the absence of biological attack, weathering of wood can give a beautiful bright
gray patina [17]. UV radiation has sufficient energy to chemically degrade wood structural
components, mainly lignin. The wetting and drying of wood through precipitation and
seasonal changes in relative humidity (RH), abrasion by windblown particulates, temper-
ature changes, atmospheric pollution, oxygen, and human activities such as walking on
decks, cleaning surfaces with cleaners and brighteners, sanding, and power-washing all
contribute to the degradation of wood surfaces [18]. However, it is primarily the ultraviolet
(UV) portion of the solar spectrum that initiates the process we refer to as weathering. It is
a photo-oxidation or photochemical degradation of the surface [19]. The degradation starts
immediately after the wood is exposed to sunlight [20]. First, the color changes, then the
surface fibers loosen and erode, but the process is rather slow (Figure 7). It can take more
than 100 years of weathering to decrease the thickness of a board by 5–6 mm. In addition
to the slow erosion process, other processes also occur. As the lignin is degraded from
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the surface, it releases cellulose fibers and hemicelluloses polymers. The wood develops
checks and raised grain [21].
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Figure 7. Loss of surface fibers due to UV degradation of lignin.

Figure 7 shows the loss of surface fibers due to loss of lignin.
The loss of surface fibers results in a new surface and the UV degradation cycle

continues. The loss of lignin in the cell wall can be seen in scanning electron micrographs
Figure 8. The lignin content is higher in the middle lamella than in the cell wall, therefore
the photo degradation occurs preferentially in this area of the wood surface. This is
particularly noticeable in micrographs of a southern pine cross section before and after
UV exposure.
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There have been many studies to investigate the mechanism of wood weathering, and
it has been clearly shown that the absorption of a UV photon can result in the formation
of a free radical and that through the action of oxygen and water, a hydroperoxide is
formed [22]. Both the free radical and hydroperoxide can initiate a series of chain scission
reactions to degrade mainly lignin. On the basis of the depth of color change, degradation
of wood as deep as 2500 µm following exposure of wood to weathering, however, this
depth is beyond the limit for generation of free radicals. Today, most agree that weathering
of wood is confined to the outer 25–300 µm.
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In many weathering studies, weight loss, surface roughness, color changes, cracking,
cupping, warping, and depth of erosion are measured [18]. For pine, the weight loss due to
weathering erosion is 0.019%/h with an erosion rate of 0.121 µm/h. Latewood weathers
much slower than spring wood giving rise to an uneven surface Figure 9.
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3.4. Chemical Modification—Gas, Ketene, Cold Plasma

The wood surface contains hydroxyl groups on cellulose, hemicellulose and lignin.
These can be used as bonding sites for modification chemistry to change properties and
performance of wood products.

If a gas chemical system is used, the reaction will take place on the interface/interphase
hydroxyl groups since gasses do not penetrate far into the wood structure.

The reaction with gaseous acetic anhydride results in esterification of the accessible
hydroxyl groups in the cell wall with the formation of byproduct acetic acid [23].

WOOD-OH + CH3-C(=O)-O-C(C=O)-CH3 →WOOD-O-C(=O)-CH3 + CH3-C(=O)-OH
Acetic Anhydride→Acetylated Wood Acetic Acid

(2)

Acetylation is a single-site reaction which means that one surface acetyl group is on
one hydroxyl group with no polymerization. This means that all of the weight gain in
acetyl can be directly converted into units of surface hydroxyl groups blocked [24].

The byproduct acid can be eliminated if the reaction is carried out in ketene gas [24–28].

Wood-OH + CH2=C=O→Wood-O-C(=O)-CH3
Ketene Acetylated Wood

(3)

This chemistry occurs mainly on the wood surface due to poor penetration of the
ketene gas.

Cold plasma chemistry can also be used to modify the surface of wood. [29–33]. The
plasma used for wood modification is the same used for generating light in fluorescent
lamps. The easiest way to technologically generate plasma is the electrical gas discharge. A
voltage is applied in between two metal electrodes generating an electric field in the gaseous
gap. One example of surface plasma uses hexamethyldisiloxane (HMDSO) which was
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deposited onto wood surfaces and investigated using electron spectroscopy for chemical
analysis [32]. Plasma reactions were carried out in a stainless steel, parallel plate, cold
plasma reactor. The presence of a crosslinked macromolecular structure, based on Si-O-Si
and Si-O-C linkages was formed.

Pyrolysis mass spectroscopy was carried out to investigate the nature of the building
blocks of the plasma generated macromolecular structure. Plasma modified samples exhib-
ited very high water contact angle values (130 degrees) in comparison to the unmodified
samples (15 degrees), indicating the presence of a hydrophobic surface. Figure 10 shows
the surface of wood before and after plasma treatment. Atomic force microscopy images,
collected both from unmodified and HMDSO-plasma modified samples, indicate the pro-
gressive growth of the plasma polymer resulting in the deposition of a smooth layer at
10 min treatment time [29].
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(C) and after plasma treatment (D).

3.5. Hardness

Surface hardness can be increased by the impregnation of acrylic dimers or larger
molecules [34,35]. If a monomer is used, it will penetrate deep into the wood structure but
larger molecules will only penetrate the first few cells in the wood surface. The reaction can
be catalyzed using a vazo catalyst (2,2′-azobis-(2-methylbutyronitrile). Figure 11A shows a
micrograph of an oak surface before reaction with an acrylic dimer and Figure 11B shows
the same surface after reaction.
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decorative design. A wood grain pattern can be used but many other designs and colors 

Figure 11. Scanning micrograph of solid wood before polymer impregnation with open lumens
(A) and after polymer impregnation with filled lumens (B).

This type of treatment results in high water repellency and delays the sorption of
water into the wood structure.

Surface hardness can also be increased by compressing (densification) the surface [36–40].
Figure 12 shows the effect of surface densification on specific gravity [38]. The density of
densified wood increased up to 1.227 g cm−1 which is an 169% increase compared to that
of the uncompressed wood [41].
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Figure 13. Structure of surface compressed southern pine (A) and oak before (B) and after compres-
sion (C).

The wood surface can also be laminated, for example, by pressing a layer of heavy-
duty melamine containing paper [42,43]. The laminate can have many different types of
decorative design. A wood grain pattern can be used but many other designs and colors
are available. Figure 14A shows a gray paper impregnated with melamine on the surface
of pine.
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surface of pine (B).

A decorative wood veneer can be put on the surface of wood (solid or composite) to
cover up a low quality board. This practice dates back to ancient Egyptian times when
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veneers were used on their furniture and sarcophagi. Figure 14B shows a walnut veneer
laminated onto the surface of pine.

3.6. Adhesives

Adhesive-wood bond performance is influenced by the permeability, surface energy
and the depth of penetration of the adhesive into the porous surface [44–51]. A wide
variety of adhesives and curing processes are used, but bond strength is based mainly on
the physical interaction (entanglement) of the adhesive within the wood surface layers. The
ability to “wet” the wood surface is an important factor in adhesive penetration. Figure 15
shows the penetration of a phenolic adhesive on the surface of wood. Bond strength is
tested by pulling or shearing apart two test pieces in an ASTM standard test [52].
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3.7. Coatings

There are many different oil and water based paints and different ways of applying
them [53–55]. As with adhesives, penetration is generally only into the outer surface cells.
The coating is applied to either change color, add protection or both and may include a
primer undercoat.

Coatings may be transparent, translucent or opaque, allowing a wide variety of
choices. Figure 16 is a microgram of the interface between acrylic paint and a wood surface
showing very little penetration into the wood surface.

Coatings fail by peeling, cracking, blistering, and/or flaking mainly due to mois-
ture sorption. Figure 17A shows a surface coating failure due to moisture sorption and
Figure 17B shows a coating failure due to end grain moisture sorption [56].

Clear coatings often fail due to the UV transparent properties of the coating [57].
Figure 18 shows a clear coating failure due to ultraviolet energy going through the coating
(see Section 3.3).

The adhesion of a coated wood sample of any paint product can be measured by the
minimum tensile stress needed to detach the coating perpendicular to the wood surface [58].
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Nanotechnology can be used to form a very hard clear coating on a wood sur-
face [59,60]. Nanotechnology is defined as the manipulation of matters between 1 and
100 nm. Nanocoatings on wood use a polymer matrix of mainly nanozinc oxide, nanoti-
tanium oxide or nanosilica that enhance the functionality of the wood surface in terms
of durability, hardness, fire resistance and UV absorption as well as decrease in water
absorption [61–63]. Nanocoatings have recently been used to increase the hardness of
wood flooring. Figure 19 shows a wood coated with a nanozincoxide.
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Powder and coil coatings are also possible with wood [64].

3.8. Fire Protection

An intumescent coating is a fire retardant system which produces gases upon heating
that are trapped on the surface of wood. This system acts as a physical barrier to retard
both smoldering and flaming combustion by preventing the flammable products from
escaping and by preventing oxygen from reaching the substrate [65]. These barriers also
insulate the wood from high temperatures. Common barriers include sodium silicates
and coatings that intumesce (release a gas at a certain temperature that is trapped in the
polymer coating the surface). Intumescent systems swell and char on exposure to fire to
form carbonaceous foam and consist of several components. These compounds include a
char-producing compound, a blowing agent, a Lewis-acid dehydrating agent, and other
chemical components.

Intumescent coatings are commonly used in the construction industry to give im-
proved fire resistance to building materials by reducing the rate of heating and hence
prolonging the time for the building materials to reach critical failure temperature.

3.9. Mold, Mildew and Fungi

Molds, mildew and fungi include all species of microscopic fungi that grow in the
form of multicellular filaments, called hyphae [66–68]. All types of molds grow on wood
surfaces as well as almost any surface where the mold can survive. There are several
common molds that grow in and on wood. One very common one that has been isolated
from wood is Aureobasidium pullulans. A. pullulans, is also called the “black yeast,” which
produces a green melanin that turns black over time. Colonies are fast growing, smooth,
covered with slimy masses of conidia, brown or black. The mold can use many sources
of nutrients to support its growth. Schoeman and Dickerson [68] found that A. pullulans
can grow on weathered wood surfaces readily utilizing breakdown products from lignin
photodegradation as the sole source of carbon and energy (see Section 3.3). These include:
extractives in the wood, free sugars, starch, and other available organic compounds. This
mold can grow on or through a painted surface. Mold growing on the surface of the paint
gets its nutrients passing through the paint film [69–72] (see Figures 20 and 21).
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4. Conclusions

I have tried to present a review of the present state of the science of wood surface
chemistry. It is not intended to be all inclusive with hundreds of references but present
examples of different types of surface chemistry.

Theoretically, if the surface of wood could be protected from moisture, ultraviolet
energy, microorganisms, heat, oxygen, and stress, products made from wood would last
forever. However, we have never found a way to do that. We can modify the surface
with a variety of chemistries to improve water repellency, fungal resistance, hardness, and
improve coating and adhesion performance and fire retardancy but all fail, in time, due to
several factors.

We need a fresh approach in the study of wood surface chemistry. I suggest we study
“dynamic surface envelopes” which implies protecting more than one surface and for more
than one application. This implies the surface chemistry is interactive and meant to be
more than just a paint or coating.

The surface chemistry could contain micro capsules that deliver a variety of chemicals
for water repellency, decay resistance, and/or fire retardancy. The surface chemistry could
contain multifunctional bonding sites that could covalently bond two wood surfaces to-
gether. The surface chemistry can become “smart” using “quantum dots” so the surface can
communicate with us. The dynamic surface can be self-cleaning (Lotus Effect). It can also
contain a “performance package” of chemistries intended for more than one application.
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