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Abstract 

Spontaneously occurring canine oral squamous cell carcinomas (COSCC) are viewed as a useful model for human head and neck 
squamous cell carcinomas (HNSCC). To date however, the molecular basis of COSCC remains poorly understood. To identify 
changes pertinent to cancer cells in COSCC, we specifically analyzed tumor cells and matched normal epithelium from clinical 
formalin-fixed paraffin-embedded specimens using laser-capture-microdissection coupled with RNA-sequencing (RNAseq). Our 
results identify strong contributions of epithelial-to-mesenchymal transition (EMT), classical tumor-promoting (such as E2F, KRAS, 
MYC, mTORC1, and TGFB1 signaling) and immune-related pathways in the tumor epithelium of COSCC. Comparative analyses 
of COSCC with 43 paired tumor/normal HNSCC from The Cancer Genome Atlas revealed a high homology in transcriptional 
reprogramming, and identified processes associated with cell cycle progression, immune processes, and loss of cellular differentiation 

as likely central drivers of the disease. Similar to HNSCC, our analyses suggested a ZEB2-driven partial EMT in COSCC and identified 

selective upregulation of KRT14 and KRT17 in COSCC. Beyond homology in transcriptional signatures, we also found therapeutic 
vulnerabilities strongly conserved between the species: these included increased expression of PD-L1 and CTLA-4, coinciding with 

EMT and revealing the potential for immune checkpoint therapies, and overexpression of CDK4/6 that sensitized COSCC to 

treatment with palbociclib. In summary, our data significantly extend the current knowledge of molecular aberrations in COSCC 

and underline the potential of spontaneous COSCC as a model for HNSCC to interrogate therapeutic vulnerabilities and support 
translation of novel therapies from bench to bedside. 
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Introduction 

Head and neck squamous cell carcinomas (HNSCC) are a heterogeneous
group of epithelial tumors frequent in humans [1–3] . The main challenge
of HNSCC lies in local invasion into bone and metastatic disease that lead
to death of about 50% of patients with HNSCC. Recent developments
in sequencing technologies coupled with state-of-the-art analytical methods
have unveiled a plethora of mutations and deregulated pathways in HNSCC
but understanding their impact on tumor development and survival
necessitates the availability of accurate disease models. Many different disease
models have been used thus far, all of them with significant drawbacks
(e.g., [4–6] ). Most notably, a failure to reflect the natural evolution of
the tumor and its specific interactions with the native stroma implies that
these models do not fully recapitulate the complexity of naturally occurring,
spontaneous HNSCC, much of which can heavily influence the course of the
disease. 

Based on the closely related pathophysiology, spontaneously occurring
cancers in the domestic dog are increasingly viewed as valuable models
to promote understanding of cancer biology and identify novel potential
therapeutic targets [7–9] . In particular, similar tumor types at similar
locations between dogs and humans offer the possibility to overcome many
of the limitations of xenograft or genetically modified rodent tumor models.
This might apply for spontaneous canine oral squamous cell carcinomas
(COSCC) that have been proposed as models for human HNSCC [10] .
COSCC are the second most prevalent malignant oral neoplasm in dogs,
and most often develop on the maxillar or mandibular gingiva at an
average age of 9 years [11] . Nontonsillar COSCC display aggressive locally
invasive behavior also frequently invading bone, but are slow to metastasize,
which generally leads to a good prognosis following treatment, provided
they are detected early and excised with sufficient surgical margins [12] .
Local recurrence and invasion are the major problems, with destruction
of tissue causing massive pain and dysfunction in affected patients [11] .
The relatively high prevalence of COSCC, in conjunction with a large pet
dog population, results in availability of samples. The shorter lifespan of
dogs also offers the possibility to complete clinical studies in much shorter
time than with human patients. Lastly, dogs often closely live with their
owners, resulting in their exposure to similar environmental carcinogens.
Therefore, analyzing molecular homologies between HNSCC and COSCC is
considered a valuable approach to identify key events driving the disease and
novel targets for pharmacological intervention. Finally, given the metabolic
similarities that allow extrapolation of toxicity-related preclinical data from
dogs to humans, spontaneous tumors in dogs could also serve as models to
accelerate translation of novel therapeutic approaches from bench to bedside.

To date however, COSCC remain poorly understood on a molecular
level. Currently, only one single study has analyzed 7 oral COSCC cases –
3 of these with matching normal tissue - using bulk RNAseq to describe
expression changes occurring in these tumors [10] . Analysis of further patient
cohorts including matched normal tissue samples is of utmost importance
to validate these findings and further explore the molecular similarities and
differences between COSCC and HNSCC. In this context, it is becoming
increasingly clear that tumors are a very heterogeneous mixture of a variety
of different cells. In addition to epithelial cancer cells, tumors harbor many
different types of non-neoplastic cells and varying amounts of extracellular
matrix. Traditionally, analysis of tumor samples has been performed in bulk,
meaning that results reflect the mixture of all cells present, not differentiating
between the epithelial cancer cells and the remaining non-neoplastic cells.
Thus, this approach complicates the correct attribution of the observed gene
expression changes either to the cancer cells or to the stromal cells. The
importance of differentially analyzing tumor cells and the surrounding stroma
has become increasingly evident recently, also for HNSCC (e.g. [13] ). Hence,
our group has established a workflow to isolate specific subpopulations of
ells from archival formalin-fixed paraffin-embedded (FFPE) tissue sections 
y laser-capture microdissection (LCM) followed by RNAseq analysis [14–
7] . Using this approach, we set out to specifically isolate tumor cells and
atched normal epithelial cells from 10 cases of COSCC in order to analyze

he molecular underpinnings of COSCC and its resemblance with human
NSCC. 

esults 

ranscriptome profiling of laser-capture microdissected tumor and 
atched normal epithelium from clinical COSCC specimens 

To analyze gene expression changes in COSCC, we specifically isolated
umor cells and matched normal epithelium from clinical FFPE specimens
sing LCM coupled with RNAseq as previously established [14–17] .
epresentative images of tissue specimens and detailed patient characteristics

or all cases are shown in Table 1 and Supplementary Figure 1. Unsupervised
ultidimensional scaling using the top 1000 variable genes showed 

eparation of tumor samples from normal epithelium, suggesting clear 
ifferences in gene expression profiles between tumor and normal epithelium
 Figure 1 A). Indeed, differential expression analysis (FDR < 0.05 and fold
hange > 2) revealed 669 significantly differentially regulated genes between
umor and matched normal epithelium, with 340 up- and 329 down-
egulated genes in tumor cells ( Figure 1 B and Supplementary Figure 1D).
he full list of deregulated genes can be found in Supplementary Table 1.
o validate the results from RNAseq, we measured expression of six genes
COL1A1, FN1, MMP2, TFPI2, CDK6, and CDK4) that were significantly
p-regulated in tumor cells compared to normal epithelium by RT-qPCR. All
f these genes showed significant expression changes consistent with RNAseq
 Figure 1 C–I). Taken together, these findings demonstrate the validity of
pecifically isolating tumor cells and matched normal epithelium from FFPE
issue sections and their analysis by RNAseq and reveal the occurrence of vast
ranscriptional reprogramming in COSCC. 

OSCC are characterized by epithelial-to-mesenchymal transition, cell 
ycle progression and activation of classical tumor-promoting and 
mmune-related pathways 

To understand the changes between tumor cells and normal epithelium,
e performed gene set enrichment analysis (GSEA) of hallmark pathways
btained from the MSigDB database ( http://software.broadinstitute.org/ 
sea). The following processes were significantly enriched (FDR < 0.25)
n COSCC compared to normal epithelium: epithelial-to-mesenchymal 
ransition (EMT), interferon alpha response, E2F targets, interferon gamma 
esponse, G2M checkpoint, angiogenesis, allograft rejection, coagulation, 

YC targets, complement, KRAS signaling up, mTORC1 signaling, mitotic 
pindle, apoptosis, inflammatory response, STAT3 signaling, hedgehog 
ignaling, STAT5 signaling, apical junction, DNA repair, TNF α signaling 
ia NF κB, UV response up, and TGF β signaling ( Figure 1 J). Processes
hat were significantly enriched (FDR < 0.25) in normal epithelium
nclude: xenobiotic metabolism, fatty acid metabolism, hem metabolism, 
permatogenesis, estrogen response early, and KRAS signaling down 
 Figure 1 J). The clear emergence of an EMT signature was further supported
y a strong down-regulation of the majority of detected keratins in tumor
ompared to normal epithelium, consistent with a loss of squamous cell
ifferentiation ( Table 2 ). The 2 exceptions to this are KRT14 and KRT17,
oth of which are heavily up-regulated in the tumor. Hence, COSCC cells
isplay marked changes in EMT, cell cycle progression, immune-related 
esponses and signaling pathways classically associated with tumor formation. 

http://software.broadinstitute.org/gsea
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Table 1 

Overview of cases with COSCC included in this study. 

Case no. Age (y.) Breed Sex Localization Degree of Differentiation 

1 5 Bolonka Zwetna f/n Oral cavity (gingiva) Moderately differentiated 

2 10 Collie m Oral cavity (gingiva) Moderately differentiated 

3 10 Poodle m Oral cavity (gingiva) Moderately differentiated 

4 6 American Cocker Spaniel m Oral cavity (tongue) Moderately differentiated 

5 14 West Highland White Terrier m Oral cavity Well-differentiated 

6 14 West Highland White Terrier f/n Oral cavity Moderately differentiated 

7 7 Long-Haired Collie f/n Oral cavity (gingiva) Poorly differentiated 

8 15 West Highland White Terrier f/n Oral cavity (gingiva) Moderately differentiated 

9 12 Cairn Terrier m Oral cavity (gingiva) Moderately differentiated 

10 10 n.d. m Oral cavity (gingiva) Moderately differentiated 

age = age at excision of tumour; f/n = female, neutered; m = male; n.d. = not disclosed. 

Figure 1. Transcriptome analysis of tumor cells and matched normal epithelium from 10 cases of canine oral squamous carcinoma. (A) Multidimensional 
scaling of tumor cells and normal epithelium isolated from canine oral squamous carcinoma using top 1000 variable genes. Each dot represents a sample, 
hence there are 20 dots in total (10 tumor and 10 normal), and distances between the dots in 2D approximate the log2 fold changes between the samples 
in multidimensional gene expression space. We used the top 1000 highly variable genes in the MDS analysis. (B) Volcano plot highlighting differentially 
expressed genes in tumor cells compared to normal epithelium, using |FC| > 2 and FDR < 0.05 as cut-off values. (C–H): Expression levels of (C): COL1A1; 
(D): FN1; (E): MMP2; (F): TFPI2; (G): CDK6; (H): CDK4 as detected by qRT-PCR in normal or tumor epithelium, respectively. Values are mean values 
±SEM, normalized to expression levels in tumor cells. n = 3–5 pairs. P values were calculated using student’s t test with significance cutoff set at P = 0.05. I) 
Summary of the expression trends as detected by RNAseq and RT-qPCR. J) Gene-set enrichment analysis of hallmark gene sets deregulated between tumor 
and normal tissue. Hallmarks with FDR < 0.25 are shown. Positive normalized enrichment score (NES) indicates enrichment in tumor compared to normal 
tissue. 
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High-grade homology in transcriptional reprogramming between 

COSCC and HNSCC identifies drivers of the disease 

To date there is only very limited data with respect to transcriptional
reprogramming in COSCC, which strongly limits our understanding
egarding the extent of molecular homology and difference between COSCC 

nd HNSCC. To perform an unbiased comparative analysis of expression 
hanges between HNSCC and COSCC, we made use of the TCGA data 
or HNSCC. Since our analysis of COSCC was based on comparing 
atched tumor/normal samples, we aimed for the same setup in the HNSCC 
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Table 2 

Expression changes of selected Keratin genes pertaining to squamous differentiation. 

Identifier gene_name log2 Ratio P Value FDR 

ENSCAFG0 0 0 0 0 0 07208 KRT76 −6.469 1.04E-127 8.51E-124 

ENSCAFG0 0 0 0 0 0 07233 KRT71 −5.807 3.05E-77 8.35E-74 

ENSCAFG0 0 0 0 0 016017 KRT24 −5.62 1.48E-70 3.03E-67 

ENSCAFG0 0 0 0 0 0 07322 KRT3 −3.363 6.91E-19 2.27E-16 

ENSCAFG0 0 0 0 0 025402 KRT78 −3.173 2.47E-15 6.75E-13 

ENSCAFG0 0 0 0 0 015999 KRT23 −2.824 3.87E-08 4.13E-06 

ENSCAFG0 0 0 0 0 023449 KRT13 −2.816 2.37E-38 2.44E-35 

ENSCAFG0 0 0 0 0 0 07328 KRT80 −2.662 1.62E-08 1.88E-06 

ENSCAFG0 0 0 0 0 023529 KRT15 −1.929 2.71E-13 6.02E-11 

ENSCAFG0 0 0 0 0 0 07204 KRT79 −1.798 0.001153 0.02762 

ENSCAFG0 0 0 0 0 031250 KRT14 1.929 9.68E-08 9.03E-06 

ENSCAFG0 0 0 0 0 0 07595 KRT17 3.767 8.02E-17 2.35E-14 

Differentially regulated genes with a P -Value ≤ 0.01 and false-discovery rate (FDR) ≤ 0.1 were considered. Negative 

log2 Ratio values denote genes significantly down-regulated in tumor cells, while positive values are significantly up- 

regulated in tumor cells compared to the matched normal epithelium. 
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data. One dataset (GSE62944) matched the criteria containing paired
tumor/normal samples for all patients of tumors from different anatomical
sites of the oral cavity (Supplementary Figure 2). We hypothesized that
if there was molecular homology in transcriptional reprogramming of the
tumor cells between the 2 species, up-regulated genes in human tumors
should on average also show up-regulation in canine tumors. Similarly,
down-regulated genes in human tumors should on average also demonstrate
down-regulation in canine tumors. We tested this hypothesis using
competitive (GSEA-like, Figure 2 A and B) and self-contained (QuSAGE,
Figure 2 C) gene set testing. Reassuringly, we found strong agreement in
the differential expression profiles between the 2 datasets, suggesting high-
grade homology in transcriptional reprogramming between HNSCC and
COSCC. 

To further explore the genes whose expression was highly correlated
between HNSCC and COSCC, we analyzed the leading edge of the
up- and down-regulated genes (i.e., the genes that were highly similarly
deregulated in both species) derived from GSEA analysis. The up-regulated
leading edge consisted of 283, and the down-regulated leading edge of
249 genes ( Figures 2 A and B, and Supplementary Tables 2 and 3). Over-
representation analysis of Gene Ontology biological processes among the
leading edge up-regulated genes (as determined in Figure 2 A) revealed the
majority of genes to be involved in processes associated with cell cycle and
division, immune processes, and extracellular restructuring ( Figure 2 D).
Examination of the genes belonging to the down-regulated leading edge
revealed the majority of these genes to be involved in processes associated
with epithelial cell and tissue differentiation and development, and metabolic
processes ( Figure 2 E). Interestingly, expression of one of the central EMT
drivers, ZEB2, was significantly up-regulated in tumors compared to normal
epithelium ( Figure 2 F; P -value 0.0065), while expression of other typical
EMT regulators such as ZEB1, SNAI1, SNAI2, SNAI3 and TWIST2 either
did not change, or could not be detected at a sufficient level (Supplementary
Table 1). This very specific up-regulation of ZEB2 might suggest the presence
of a partial EMT program in COSCC. Previous studies have demonstrated
a significant association between EMT and expression of PD-L1 (CD274),
one of the key molecules that block anti-tumor immune response, in
HNSCC [22] . Accordingly, RNAseq revealed a significant increase in CD274
in canine tumor cells (Log2 fold-change = 1.527, P -value = 0.001), which
was validated by qRT-PCR ( Figures 2 G and H). Moreover, expression
of the immune inhibitory checkpoint receptor CTLA-4 (CD152) was
significantly increased in tumor compared to normal epithelium (Log2 fold-
change = 0.7106, P -value = 0.013) ( Figure 2 I). Thus, there is an increased
xpression of the immune inhibitory molecules PD-L1 and CTLA-4 in
OSCC tumor cells that also display active EMT signaling, suggesting

hat COSCC patients could potentially benefit from immune checkpoint 
nhibitor therapies. 

Taken together, these findings reveal a significant overlap between 
NSCC and COSCC both in terms of deregulated genes and associated

iological pathways, supporting the presence of extensive molecular 
omology between COSCC and HNSCC. As such, these data identify a
artial EMT program and cell cycle progression as conserved central drivers
f the disease in COSCC and reveal the potential for immune checkpoint
nhibitor therapies for treatment of COSCC. 

dentification of CDK4/6 inhibition as therapeutic vulnerability of 
OSCC 

There is great interest in identification of therapeutic vulnerabilities in
oth HNSCC and COSCC that could be used to complement and/or reduce
he extent of surgical intervention. To explore this avenue, we took advantage
f the Expression2Kinases (X2K, [24] ) computational framework to shed
ight on the upstream regulators likely responsible for observed patterns in
he COSCC gene expression data. X2K aims to identify candidate genes
hat are likely responsible for observed changes in mRNA expression, which
ould be exploited as therapeutic targets. Figure 3 A shows the top kinases
pstream of differentially expressed genes identified in COSCC compared 
o normal epithelium as revealed by X2K. The second hit, CDK4 caught
ur attention as inhibitors of CDK4/6 are readily available and already in
linical use [25] . An involvement of CDK4 was in agreement with the strong
nrichment of E2F signaling as revealed by GSEA ( Figure 1 J), a regulator
f cell cycle progression via phosphorylation of RB by cyclin D-CDK4/6.
iven our findings on CDK4/6 and E2F signaling, we analyzed the levels
f CDK4, CDK6 and Cyclin D1 in COSCC. Indeed, cyclin dependent
inase 6 (CDK6) was significantly overexpressed in tumor cells compared to
ormal epithelium (log2 fold change = 1.854, P -value = 0.007, Figure 3 B),
hich was validated by RT-qPCR ( Figures 1 G and I). Similarly, qRT-PCR
alidation showed significantly elevated CDK4 in tumor cells ( Figures 1 H
nd I), albeit not significant in RNAseq (Log2 fold change = 0.9817, P -
alue = 0.115, Figure 3 C). Cyclin D1 expression did not significantly differ
etween normal and tumor cells in RNAseq ( Figure 3 D). Both CDK4 and
DK6 can be pharmacologically inhibited by clinically approved inhibitors, 

uch as palbociclib, in humans. Importantly, canine and human CDK4 and
DK6 are highly conserved, suggesting that palbociclib could be used to
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Figure 2. COSCC and HNSCC display a high grade of homology. (A and B) Competitive gene set testing to compare COSCC to HNSCC. GSEA-like 
running sum statistic depicting the location of (A) up-regulated and (B) down-regulated genes in HNSCC on a ranked list of genes in COSCC compared 
to normal. Permutation P -values were calculated by fgsea package. (C) Self-contained gene set testing (QuSAGE method) to assess the average differential 
expression of HNSCC gene sets (i.e., up- and down-regulated genes in HNSCC) in COSCC. X-axis demonstrates mean fold change expression in tumor 
compared to normal in COSCC (HNSCC data obtained from GSE62944). Y-axis indicates the distribution of fold change expression within each set. P - 
values were calculated by comparing mean fold change to fold change of 1 using Welch’s t -test. (D-E) Hypergeometric P -values indicating enrichment of 
Gene Ontology biological processes (GObp) among the leading edge up-regulated (D) and down-regulated (E) genes as revealed by competitive gene testing 
in panels A and B. ( F) Levels of ZEB2 in normal epithelium and tumor cells as detected by RNAseq. (G): Levels of CD274/PD-L1 as detected by RNAseq 
in normal and tumor epithelium, respectively. (H): Levels of CD274/PD-L1 as detected by qRT-PCR in normal and tumor epithelium, respectively. P -values 
were calculated using student’s t test with significance cutoff set at P = 0.05. (I): Levels of CD152/CTLA-4 as detected by RNAseq in normal and tumor 
epithelium, respectively. COSCC, canine oral squamous cell carcinomas; HNSCC, head and neck squamous cell carcinomas. 
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inhibit activity of CDK4/6 also in canine tumors. This hypothesis was further
supported by the enrichment of genes encoding for proteins that interact with
palbociclib, in COSCC compared to normal epithelium ( Figure 3 E, GSEA
P -value < 0.001). 

Inspired by these findings, we set out to investigate whether COSCC cells
were sensitive to palbociclib in vitro. To assess this, 2 cancer cell lines directly
derived from independent cases of COSCC (termed SCC1 and CoSCC,
respectively), and a canine stromal cell line that served as nonepithelial control
(termed DUS) were exposed to different concentrations of palbociclib in
itro. Human HeLa cells, known to have a high IC50 for palbociclib, and
uman MDA-MB-231 cells, known for a lower IC50, served as negative 
nd positive controls, respectively [28] . As expected, HeLa cells showed 
 markedly higher IC50 than MDA-MB-231 cells ( Figures 3 F and G).
nterestingly, both COSCC cell lines were highly sensitive to palbociclib, 
hereas growth of the canine stromal cell line DUS was hardly inhibited 
 Figures 3 F and G). Of note, sensitivity of the 2 COSCC cell lines markedly
xceeded that of the human MDS-MB-231 cells. Western blot analysis 
onfirmed elevated levels of CDK6 and Cyclin D1 in both SCC1 and CoSCC 



Neoplasia Vol. 22, No. 12, 2020 Molecular homology F. Guscetti et al. 783 

Figure 3. Identification of CDK4/6 inhibition by palbociclib as therapeutic vulnerability of COSCC. ( A) Top 20 upstream kinases deduced from COSCC 

gene expression data using Expression2Kinases (X2K). CDK4 is the second most enriched kinase revealed by X2K. ( B-D) Levels of CDK6 (B), CDK4 (C) and 
Cyclin D1 (D) mRNA in normal epithelium and tumor cells as detected by RNAseq. (E) GSEA analysis of palbociclib target genes in COSCC compared to 
normal epithelium (GSEA P -value < 0.001). Palbociclib target genes were obtained from the Comparative Toxicogenomics Database (CTD). (F) Sensitivity 
of cell lines to palbociclib treatment. The canine oral squamous cell carcinoma cell lines CoSCC and SCC1, and a canine stromal cell line DUS, as well as 
human HeLa and MDA-MB-231 cells were exposed to increasing concentrations of palbociclib for 72 h, after which the number of surviving cells was assessed 
using the Resazurin assay. The percentage of surviving cells was calculated in relation to control cells exposed to DMSO only. Data shown are mean from n = 6 
independent assays ±SD. The colored lines indicate nonlinear fit IC50 curves for each cell line; purple: DUS, yellow: HeLa, green: MDA-231, dark blue: 
SCC1, light blue: CoSCC. ( G) IC50 values of the cell lines tested in (F). Shown are IC50 and the 95% confidence intervals, as calculated using nonlinear 
regression (curve fit; normalized response with variable slope) from n = 6 independent assays with 4–8 replicates per data point. ( H-J) Western blot of CDK6 
(H), Cyclin D1 (I), and CDK4 (J) levels in the canine cell lines SCC1, CoSCC, and DUS. Tubulin served as loading control. Relative levels of CDK6, Cyclin 
D1, and CDK4 to tubulin, normalized to levels in DUS cells are indicated below the blots. ( K) Cell cycle analysis of SCC1, CoSCC, DUS, HeLa and MDA- 
MB-231 cells after a 24 h treatment with palbociclib. Data shown are mean from n = 6 independent assays ±SEM. Significance was analyzed using Student’s 
two-tailed t test; ∗∗ = P < 0.01, ∗∗∗ = P < 0.001. ( L) Analysis of viable, early and late apoptotic and necrotic CoSCC and SCC1 after a 72 h treatment with 
palbociclib. Data shown are mean from n = 4 independent assays ±SEM. Significance was analyzed using Student’s two-tailed t test; ∗ = P < 0.05, ∗∗ = P < 

0.01, ∗∗∗ = P < 0.001. COSCC, canine oral squamous cell carcinomas; HNSCC, head and neck squamous cell carcinomas; ns = not significant. 
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compared to DUS cells, while CDK4 levels were comparable in all 3 cell lines
( Figure 3 H–J). 

As CDK4/6 are responsible for the G1/S transition of the cell cycle,
palbociclib treatment is expected to increase the number of cells in G1.
Accordingly, cell cycle analysis of cells treated with concentrations ranging
from 0.1 to 1 μM palbociclib for 24 h revealed a significant increase in
the G1 cell population and a concomitant decrease in S-phase cells in
the sensitive SCC1 and CoSCC and MDA-MB-231 cells ( Figure 3 K). In
contrast, the cell cycle of DUS and HeLa cells did not alter upon palbociclib
treatment, further corroborating the relative insensitivity of these 2 cell lines
against palbociclib ( Figure 3 K). These findings suggest that the sensitivity
of COSCC cells towards palbociclib is at least partially mediated through
induction of a cell cycle arrest. Palbociclib has also been shown to induce
apoptosis in sensitive cells. To understand whether an increase in apoptosis
ould also contribute to the strong sensitivity of COSCC cells towards
albociclib, we measured the rate of early and late apoptotic cells after
xposure to 0.1 μM palbociclib for 72 h. Clearly, palbociclib induced a
ignificant increase in the number of cells both in early and/or late apoptosis,
nd a concomitant decrease in viable cells in CoSCC and SCC1, suggesting
hat the sensitivity of COSCC cells towards palbociclib is driven by a
ombination of G1 arrest and apoptosis ( Figure 3 L). Importantly, as only
artially viable cells that remain attached to the plates at the time of harvesting
an be analyzed, these numbers are likely to substantially underestimate the
xtent of late apoptosis. In summary, our results demonstrate that COSCC
verexpress CDK6 and/or CDK4, which renders them sensitive to induction
f apoptosis by low doses of palbociclib. Thus, we have identified CDK4/6
verexpression as a potential therapeutic vulnerability in COSCC that should
e further interrogated in a clinical setting. Given the current clinical trials
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addressing palbociclib and other CDK4/6 inhibitors for the treatment of
HNSCC, these data strongly advocate that homology between COSCC
and HNSCC extends far beyond similarities in transcriptional signatures,
and allows interrogation of therapeutic vulnerabilities using COSCC as a
model for HNSCC, to support translation of novel therapies from bench to
bedside. 

Discussion 

Here, we present a thorough transcriptome analysis of tumor cells
and matched normal epithelium isolated from 10 cases of COSCC using
LCM of FFPE tissue coupled with RNAseq. Our data provide detailed
insight into transcriptional reprogramming of COSCC and identifies
strong molecular homologies and therapeutic vulnerabilities shared between
COSCC and HNSCC. As such, our findings validate and significantly extend
an earlier analysis that suggested the existence of molecular homologies
between COSCC and HNSCC [10] that extend far beyond similarities
in transcriptional signature, provide information about clinically actionable
targets for the treatment of COSCC, and advocate the interrogation of
therapeutic vulnerabilities using COSCC as a model for HNSCC to support
translation of novel therapies from bench to bedside. 

We found wide-ranging molecular homologies between HNSCC and
COSCC ( Figure 2 ). Strongest overlaps among the up-regulated genes were
found in processes associated with cell cycle and division, immune processes,
and extracellular restructuring ( Figure 2 D), whereas overlaps among the
down-regulated genes centered on epithelial cell and tissue differentiation
and development, and metabolic processes, suggesting activation of an EMT
program in COSCC ( Figure 2 E). This was further supported by gene set
enrichment analysis of COSCC revealing a strong EMT signature ( Figure 1 J).
EMT is a salient feature of HNSCC that has been recently identified in
humans and strongly correlated with a more malignant tumor phenotype
[13] . Further support for the activation of EMT derives from the fact that
the majority of all detected keratins in tumor cells were down-regulated
compared to normal epithelium, consistent with a loss of differentiation
( Table 2 ). In strong contrast to this, KRT14 and KRT17 are both heavily
up-regulated in COSCC. These 2 are among the top up-regulated keratins
in HNSCC and other human SCC [ 13 , 18–20 ]. Expression of both KRT14
and KRT17 is associated with basal epithelial layers [29] , and it has been
suggested that high levels of KRT14 and KRT17 are needed to sustain
a “stem-like” proliferative epidermal cell phenotype [30] . Finally, human
squamous cell carcinomas are characterized by the expression of KRT14
and KRT17 [18] . Substantial EMT has also been suggested to occur in
COSCC [10] . In the context of the present study, expression of one of the
central EMT drivers, ZEB2, was also significantly up-regulated, while we
did not detect changes in other typical EMT regulators. This suggests the
presence of a partial ZEB2-orchestrated EMT program in COSCC, similarly
to the SNAI2-driven partial EMT in HNSCC, which is clearly distinct
from full EMT programs or “mesenchymal” tumor signatures derived from
bulk tumor sequencing [13] . The loss of genes related to cell and tissue
differentiation is in direct concordance with the observed loss of squamous
cell differentiation observed in the tumor cells ( Table 2 ), and the top-ranking
overall hallmark changes in EMT ( Figure 1 J). In contrast to our data, Liu et al.
identified TWIST1 and SNAI1 to be recurrently overexpressed in COSCC
[10] . This discrepancy could well derive from the difference in analysis of
purified tumor epithelia versus bulk tumor (containing tumor stroma), as
bulk tumor sequencing has been shown to result in more “mesenchymal”,
likely stroma-derived signatures [13] , and TWIST1 has been shown to be
expressed predominantly in the activated tumor stroma in breast cancer [31] .
Even more support for a strong EMT-related reprogramming comes from
the leading edge down-regulated genes, the majority of which are involved
in processes associated with epithelial cell and tissue differentiation and
development, and metabolic processes ( Figure 2 E). Equally , the decrease in
etabolic processes is in line with a more mesenchymal phenotype that has 
een demonstrated to be more motile but less metabolically active than typical 
pithelial cells [ 13 , 21 ]. Finally, there is a significant correlation between
MT and expression of PD-L1 (CD274) and CTLA-4 (CD152), 2 of the 
ey molecules that block antitumor immune response, in HNSCC [22] . 
ccordingly, our RNAseq dataset also revealed a significant increase in both 
f these inhibitory molecules in the tumor epithelium. This indicates that 
n COSCC, similar to human tumors, there is increased expression of PD- 
1 and CTLA-4 that correlates with expression of EMT markers, suggesting 
hat patients with COSCC could benefit from immune checkpoint inhibitor 
herapies, in a manner comparable to results from currently ongoing trials 
ith HNSCC [23] . It is important to note that the TCGA dataset is built
n bulk tumor sequencing, which leads to the presence of stroma-derived 
ata in contrast to our LCM approach. As such, this could potentially lead to
n overestimation of mesenchymal-like gene signatures in the TCGA data. 
iven the comparison with canine epithelial data, this is not expected to 

nfluence the comparative expression changes presented herein. 
HNSCC pathogenesis is strongly associated with loss of TP53 function, 

aused either by direct mutation of TP53 through carcinogens (most 
rominently tobacco smoke or alcohol consumption), or through infection 
ith human papillomavirus (HPV), whereby viral protein products bind 

o and inactivate TP53 [1] . Of note, an association between tumors of
he nasal cavity in dogs and environmental exposure to tobacco smoke 
as been reported, suggesting that the occurrence of tumors in pet dogs 
ould potentially act as “sentinel event” for human cancer risk [32] . To 
ate, however, it remains unclear whether and to what extent development 
f COSCC is associated with exposure to such harmful environmental 
gents. HPV infection is implicated in development of more than 50% 

f oropharyngeal HNSCC, usually with high levels of HPV detectable in 
ffected tumors [1–3] . The contribution of papillomaviruses (PV) to COSCC 

s much less clear [11] . Despite few early reports indicating the presence
f PV in a limited number of COSCC [33] , normally the levels of canine
V detected in COSCC are very low and only present in very few samples
10] , or not at all [34] . In our analyses of 10 cases of COSCC, we did
ot find any indication of PV presence in the RNAseq data whatsoever 
data not shown), supporting previous reports arguing against a role of PV 

s a major contributor to development of COSCC [35] . The involvement 
f TP53 in the development of COSCC is yet under debate. Nuclear 
verexpression of TP53 has been detected in 69% and 35% of the examined
ral and nonoral canine squamous cell carcinomas [ 33 , 36 ]. Only very few
tudies have analyzed the prevalence of TP53 mutations in COSCC, and 
hese only found very few mutations in TP53, suggesting that mutations 
f this gene might contribute less prominently to COSCC [10] . As such,
ue to the small number of analyzed cases, it remains unclear to what
xtent mutations in TP53 contribute to the biology of COSCC. It is 
nteresting to note, however, that TP53 has been found to directly repress 
ranscription of KRT14 and KRT17, both of which are heavily up-regulated 
n COSCC as discussed above, suggesting an impairment of TP53 activity 
n COSCC [ 37 , 38 ]. Despite some of these differences between COSCC
nd HNSCC, transcriptional reprogramming is highly comparable in the 
 species, with the E2F-CDK4/6 axis emerging as a salient feature. In 
NSCC, components of the CyclinD – CDK4/6 pathway are often altered 

hrough various different mechanisms [1–3] . Indeed, genomic amplification 
f CDK6 has been detected in COSCC [10] , providing a rationale for the
igh CDK6 levels that can be detected in these tumors. This is in line with
he increased expression of genes related to cell cycle progression, such as 
DK6 and E2F targets in our analysis, suggesting strong contributions from 

his pathway to COSCC. Along this line, it has been recently demonstrated 
hat CDK6 antagonizes functions of TP53 during tumorigenesis, allowing 
or immortalization and outgrowth of primary transformed cells [39] . Hence 
t is tempting to speculate that while the initial molecular trigger for tumor
ormation might differ between the 2 species, both COSCC and HNSCC 
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mechanistically depend on the activation of the CDK6-E2F pathway as
a trigger to advance the cell cycle, as well as on inactivation of TP53
to undergo full transformation. In HNSCC, CDK6 overactivation can be
found in 8% of HPV-negative cases, but not in HPV positive cases [1] .
Also, in HPV-negative HNSCC, the CDK6-inhibitory factors CDKN2A
and let-7c are inactivated in 57% and 40% of all cases, while no or little
inactivation occurs in HPV positive tumors. The reasons for the frequent
amplification and/or overexpression of CDK6 in COSCC should be further
analyzed. 

With respect to therapeutic vulnerabilities, activation of the CyclinD
– CDK4/6 pathway can sensitize tumor cells to CDK4/6 inhibitors in
HNSCC. Indeed, when combined with cetuximab, the CDK4/6 inhibitor
palbociclib has shown clinical efficacy in HNSCC in a phase I trial
[40] and a multicenter phase II trial [41] . Thus, CDK4/6 inhibition is
currently considered as a viable option for treatment of HPV-unrelated
HNSCC in humans [ 42 , 43 ]. In line with these findings, several clinical
trials aiming to analyzing the combination of palbociclib in combination
with carboplatin or PI3K/mTOR inhibitors in advanced, recurrent or
unresectable cases of HNSCC and other solid tumors are in progress
(clinicaltrials.gov: NCT03194373, NCT03065062). Our results strongly
support the assumption that COSCC heavily rely on CDK4/6-CyclinD
activation, as evidenced by significant overexpression of CDK4/6 in tumors
compared to normal epithelium as well as the strong sensitivity of COSCC
cell lines to palbociclib treatment in vitro ( Figure 3 ). This suggests that
treatment with palbociclib (or potentially other clinically approved CDK4/6
inhibitors) could indeed provide a valuable therapeutic option for COSCC,
especially in cases where surgical resection is difficult. 

Material and methods 

Canine cases included in the study 

The cases included were FFPE diagnostic specimens selected from the
records of the Swiss Canine Cancer Registry (see also Table 1 for a list of
all cases) [44] . They were selected based on the requirement that a sufficient
amount of non-neoplastic epithelium was available on the blocks. The tumors
consisted of 10 oral, nontonsillar, conventional squamous cell carcinomas
[45] . One tumor was well-differentiated, eight tumors were moderately
differentiated, and one was poorly differentiated. 

Laser-capture microdissection and RNA isolation 

Laser-capture microdissection was performed as described in [14] . Areas
for isolation were defined by a nationally-certified veterinary pathologist,
and comprised on one side neoplastic epithelial tissues including all levels
of differentiation present and excluding areas with obvious clusters of
intraepithelial leukocytes (mainly consisting of neutrophils); on the other
side they comprised adjacent, non-neoplastic epithelium. RNA from LCM-
isolates was extracted as previously described [15] . RNA abundance and
quality were analyzed using the 4200 Tape Station Software using the
High Sensitivity RNA ScreenTape kit (Agilent Technologies), as detailed in
Supplementary Table 4. 

Quantitative RT-PCR 

Reverse transcription was performed using the iScript cDNA Synthesis
Kit (BioRad) according to the manufacturer’s protocol, using a total of 5 ng
of RNA per reaction, and cDNA was preamplified using the TaqMan PreAmp
Master Mix (2 ×) (Applied BiosystemsTM) according to the manufacturer’s
protocol using 14 PCR cycles. RT-qPCR was performed using KAPA PROBE
FAST qPCR Kit Master Mix (2 ×) Universal reagents (Kapa Biosystems),
with 2,5 μL cDNA/reaction in a total volume of 10 μL and reactions
ere run in duplicates on the CFX384 Touch Real-Time PCR detection
ystem (BioRad). The primer details can be found in Supplementary Table
. Quantification of gene expression was performed using the comparative
T method and values were normalized against GAPDH, PPIA and B2M as

ndogenous controls. Results were expressed as fold change in mRNA levels
f tumor compared to normal epithelium. Primers were customized Taqman 
ene expression assays specifically designed to detect the canine isoforms of
he targeted genes (ThermoFisher Scientific), used at final concentrations 
f 900 nM primers and 250 nM probes, or, for canine GAPDH, purchased
rom Microsynth (Balgach, Switzerland) and used at a final concentration of
00 nM primers and 200 nM probe. All primer pairs have been validated and
isplayed approximately 100% amplification efficiency. 

NA sequencing 

RNA sequencing was performed as previously described [15] . Briefly,
NA library preparation and depletion of ribosomal RNA was performed
sing the SMARTer Stranded Total RNA-seq Kit Pico Input Mammalian 
Clontech) with 4 ng input RNA. The libraries were loaded onto an Illumina
iSeq5000v4 instrument and subjected to 2 × 126 cycles of paired-end

equencing according to standard protocols used at the Functional Genomics
entre Zurich (FGCZ). The raw sequencing data have been deposited in the
uropean Nucleotide Archive with the primary accession code PRJEB34234. 

ioinformatics analyses 

The quality of RNAseq reads was assessed with FastQC ( http://www.
ioinformatics.babraham.ac.uk/projects/fastqc ). Reads were trimmed with 
rimmomatic [46] (v0.33, 4 bases hard-trimming from the start, and adaptor
rimming at the end). Trimmed reads were aligned to the reference genome
nd transcriptome (FASTA and GTF files, Ensembl release88, CanFam3.1) 
ith STAR [47] version 2.5.1b. Gene expression was quantified using

he R/Bioconductor package R subread (version 1.24.1) [48] . Genes with
onsistently low counts were filtered out by keeping those with Count Per

illion (CPM) value above 5.6 in at least 10 libraries. These cutoffs were set
ased on the sequencing depths and experimental design. CPM values were
omputed by “cpm” function from edgeR Bioconductor package (version 
.24.0) [48] . 

Raw counts were subsequently normalized and adjusted for mean- 
ariance trend using the “rlog” function from DESeq2 Bioconductor 
ackage (version 1.22.0) [49] . Normalized data were then used to
enerate multidimensional scaling plot of distances between gene expression 
rofiles with “plotMDS” function from limma Bioconductor package 
version 3.38.1) [50] . Differential expression analysis was performed using
ESeq2 Bioconductor package, setting padj = 0.05 and log2FoldChange = 1

s significance threshold [49] . Shrunken log2foldchange estimates were 
btained using the original DESeq2 shrinkage estimator. Gene annotation 
i.e., canine ensembl id to canine gene symbol and canine ensembl id to
uman ortholog mappings) were obtained using biomaRt Bioconductor 
ackage (version 2.38.0) [51] . GSEA analysis was performed with fgsea
ioconductor package (version 1.8.0) [52] with limma’s paired-sample t- 

tatistic computed on rlog-normalized data as gene ranking metric, and
allmark gene sets obtained from MSigDB database [53] . Prior to GSEA,

anine ensembl ids were mapped to human orthologs using biomaRt. If
 human ortholog was associated with more than one canine ensembl id,
he ensembl id with maximum variance was selected using the collapseRows
unction from WGCNA R package (version 1.66) [54] . 

Paired tumor/normal RNAseq data from TCGA’s HNSCC subset 
 N = 43) was obtained from Gene Expression Omnibus under GSE62944
55] , and differential expression analysis was performed with limma
ioconductor package using the voom approach. Setting adj.P.Val = 0.01
nd logFC = 1 as significance threshold, we obtained a HNSCC gene

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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signature comprised of significantly up- or down-regulated genes in human
tumors compared to their adjacent normal tissue. We next adapted 2
complementary gene set testing methods to assess the enrichment of HNSCC
gene signature in COSCC samples. First, we ranked all genes in COSCC
data based on their fold change expression in tumor vs normal samples.
We then looked at the enrichment of HNSCC gene signature on this
ranked list, using GSEA-like running-sum statistic as implemented in
fgsea Bioconductor package. As the second approach, we used QuSAGE
(version 2.16.0) [56] , which quantifies activity of HNSCC gene signatures in
COSCC data with a complete probability density function while accounting
for inherent gene-gene correlations in the data. We used rlog-normalized
COSCC counts summarized at the human ortholog level as input for both
gene set testing methods. Moreover, since both GSEA and QuSAGE test
for coordinated expression pattern in the data, we examined significantly
up- and down-regulated HNSCC genes separately. Finally, to further assess
the biological relevance of genes demonstrating high degree of directional
homology between the 2 species, we tested for over-representation of Gene
Ontology terms representing biological processes (GO-bp) among GSEA’s
leading-edge subsets. Over-representation analysis was performed using the
GSEA webtool ( https://www.gsea-msigdb.org). Over-represented GO terms
are ranked based on hypergeometric P -value after correction for multiple
hypothesis testing according to Benjamini and Hochberg. 

Upstream regulatory kinases potentially responsible for the observed
expression pattern in COSCC data were identified using Expression2Kinases
(X2K) software [24] . 

Palbociclib target gene/protein list was obtained from the Comparative
Toxicogenomics Database (CTD; http://ctdbase.org). GSEA analysis of
palbociclib target list was performed similar to Hallmark gene sets described
above. 

Cell culture 

SCC1 cells were derived from a canine oral squamous cell carcinoma
and were kindly donated by Prof. E. Müller [26] . CoSCC were isolated
from a gingival squamous cell carcinoma of a 4 years old male Beauceron
and were a kind gift of Dr. M. Wergin (Division of Radiation Oncology,
Vetsuisse Faculty, University of Zurich). DUS cells were a kind gift of Prof.
M. Kowalewski (Veterinary Anatomy, Vetsuisse Faculty, University of Zurich,
[27] ). HeLa and MDA-MB-231 cells were purchased from ATCC. Cells were
cultured under standard conditions @ 37 °C in humid atmosphere with 5%
CO 2 in DMEM high glucose (Sigma) containing 15% FCS (Gibco), MEM-
Non essential amino acids (Gibco) and antibiotic-antimycotic supplement
(Gibco). 

Cell treatment and Resazurin assay 

Twenty-four hours before treatment, 1,000 to 2,500 cells were seeded
in 100 μL complete medium into white-walled 96 well plates. The
stock solution of palbociclib (10 mM in DMSO; PD0332991 isethionate,
Sigma) was serially diluted in complete medium to obtain the required
concentrations and used to replace the seeding medium. After 72 h, 20 μL of a
stock solution of 0.15 mg/mL Resazurin diluted in PBS was added into every
well. Sample fluorescence was measured after 2- to 4-h incubations using the
fluorospectrometer LS-55 from Perkin Elmer set to ex = 560 and em = 590.
Mean values of 4 to 8 replicate wells were calculated for each treatment point
and cell line, and normalized to DMSO treated control cells. 

Western blot 

Whole cell extracts for Western blotting were prepared as described
previously [57] . Proteins were separated on 4% to 20% Tris-Glycine gels
(Novex) and transferred onto Immobilon-FL Polyvinylidene fluoride (PVDF)
embranes (Millipore) according to standard procedures (Novex). Blots 
ere probed with following antibodies: CDK6 (Novusbio, NBP1–87,262), 
DK4 (Santa Cruz, sc23896), Cyclin D1 (Santa Cruz, sc8396), and α- 
ubulin (Sigma, T5168). Secondary antibodies conjugated with Alexa Fluor 
80 (Thermo Scientific) and IRDye 800CW (Li-cor Biosciences) fluorescent 
yes were used. Detection and quantification were carried out using an 
dyssey image analysis system (Li-cor Biosciences). 

ell cycle analysis 

For cell cycle analysis by FACS, trypsinised cells were fixed in ice-cold 
0% ethanol for at least 30 min @ −20 °C. To remove the fixation solution,
ells were spun 5 min @ 250 rcf @4 °C, and the supernatant was discarded.
ells were then resuspended in phosphate buffered saline with 100 μg/mL 

f DNase free RNase A (Sigma) and incubated @37 °C for 30 min, and
urther stained with 10 μg/mL propidium iodide (Sigma). Samples were run 
n a Fortessa (BD Biosciences) and the cell cycle distribution analyzed using 
lowJo V10.6.1. 

nalysis of apoptosis and necrosis 

Analysis of apoptotic and necrotic cells was performed with the Annexin 
-FITC Apoptosis Staining/Detection Kit (Abcam, ab14085) according to 

he manufacturer’s protocol. Annexin V is used to label phosphatidylserine 
ites on the membrane surface of apoptotic cells. Propidium iodide (PI) is 
sed to label the cellular DNA in necrotic cells where the cell membrane
as been totally compromised. This combination allows the differentiation 
mong early apoptotic cells (annexin V positive, PI negative), late apoptotic 
ells (annexin V positive, PI positive), necrotic cells (annexin V negative, 
I positive), and viable cells (annexin V negative, PI negative). Briefly, 
ells treated with 0.1 μM palbociclib for 72 h were washed and adherent
ells tr ypsinised. Tr ypsin was neutralized using serum containing medium, 
00,000 cells were collected by centrifugation, and resuspended in 500 μL 

X Binding Buffer. 5 μL Annexin V-FITC and 5 μL Propidium Iodide were
dded, and samples were incubated at room temperature for 5 min before 
cquisition with FACS as detailed above. 

tatistical analysis and graphical display of results 

All statistical analysis, calculation and graphical display was performed 
ith the program GraphPad Prism ( www.graphpad.com ). Statistical 

ignificance of gene expression changes detected by RNAseq were calculated 
sing a generalized linear model with the patient as secondary factor, i.e., 
aired tests. 
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data supporting our findings is contained in the manuscript and in the
additional files. 
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