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ABSTRACT

Background: Alendronate (AL), a drug for inhibiting osteoclast-mediated bone-
resorption, was intercalated into an inorganic drug delivery nanovehicle, layered double 
hydroxide (LDH), to form a new nanohybrid, AL-LDH, with 1:1 heterostructure along the 
crystallographic C-axis. Based on the intercalation reaction strategy, the present AL-LDH 
drug delivery system (DDS) was realized with an enhanced drug efficacy of AL, which was 
confirmed by the improved proliferation and osteogenic differentiation of osteoblast-like 
cells (MG63).
Methods: The AL-LDH nanohybrid was synthesized by conventional ion-exchange reaction 
and characterized by powder X-ray diffraction (PXRD), high-resolution transmission electron 
microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. Additionally, in vitro 
efficacy tests, such as cell proliferation and alkaline phosphatase (ALP) activity, were analyzed.
Results: The AL was successfully intercalated into LDH via ion-exchange reaction, and thus 
prepared AL-LDH DDS was X-ray single phasic and chemically well defined. The accumulated 
AL content in MG63 cells treated with the AL-LDH DDS nanoparticles was determined to be 
10.6-fold higher than that within those treated with the intact AL after incubation for 1 hour, 
suggesting that intercellular permeation of AL was facilitated thanks to the hybridization 
with drug delivery vehicle, LDH. Furthermore, both in vitro proliferation level and ALP 
activity of MG63 treated with the present hybrid drug, AL-LDH, were found to be much more 
enhanced than those treated with the intact AL. This is surely due to the fact that LDH could 
deliver AL drug very efficiently, although LDH itself does not show any effect on proliferation 
and osteogenic differentiation of MG63 cells.
Conclusion: The present AL-LDH could be considered as a promising DDS for improving 
efficacy of AL.

Keywords: Drug Delivery System; Inorganic Delivery Vehicle; Layered Double Hydroxide; 
Alendronate; Osteogenic Proliferation and Differentiation; Drug-Clay Nanohybrid

INTRODUCTION

Understanding intercellular uptake behavior of nanovehicles is an challenging research area 
of drug delivery, which has attracted great attention for improving therapeutic benefits of 
various bioactive molecules (drugs, peptides, proteins, and DNA, etc.), particularly those 
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having some weakness such as difficulty and inefficiency crossing the cell membrane due to 
their enzymatic drug degradation, low circulation stability, and lack of target specificity.1-3 In 
the past few decades, many efforts have been made to design various inorganic nanovehicles 
to induce enhanced cellular uptake behavior based on the surface modification strategy for 
targeted delivery, low toxicity, and controlled release property.4,5

Among various inorganic delivery carriers, layered double hydroxide (LDH) has been suggested 
as a promising nanovehicle for the encapsulation and intercellular delivery of biological 
molecules.6-8 In general, LDH, known as an anionic clay, is represented by a general chemical 
formula (M2+

1-xM3+
x [OH]2)x+(An-)x/n·yH2O, where M2+, M3+, and An- are di-, tri-valent metal cations 

and interlayer anions, respectively.9 The isomorphic substitutions of M2+ with M3+ in brucite-
like layers give rise to the positive layer charge, and thus anionic species can be encapsulated in 
between layers of LDH in order to satisfy the charge neutrality condition.10,11

High anion exchange capacity (AEC) of LDH offers to intercalate various kinds of negatively 
charged bioactive molecules into the interlayer space of LDHs via simple co-precipitation 
or ion-exchange reactions, resulting in novel bio-inorganic nanohybrids.12,13 And at the 
same time, the positive surface charge of LDH enables easy approach and adhesion to cell 
membranes with negative charge inherently by electrostatic interactions without further 
chemical modifications.14 Most importantly, it has been already confirmed that LDH 
nanovehicle with a size of around 100 nm could deliver bioactive molecules very efficiently 
through its unique cellular uptake mechanism, clathrin-mediated endocytosis.15,16 As 
compared to other inorganic nanovehicles, including silica and gold nanoparticles, quantum 
dots, and carbon nanotubes, LDH was proved to be highly advantageous due to its excellent 
biocompatibility,17 high drug loading capacity18 and pH-responsive property19 with 
biodegradability in the cellular cytoplasm16 and therefore, applicable as an efficient non-viral 
drug delivery vehicle and also as a reservoir for bioactive or bio-fragile molecules.

Alendronate (AL) itself has been clinically used to treat patients with diseases from 
osteoclast-mediated bone resorption such as bone metastasis, hypercalcemia of malignancy, 
post-menopausal osteoporosis and Paget's disease20,21 because it impedes bone resorption 
by selective uptake and absorption to divalent ions in bone due to its strong chelating 
molecular configuration with di-phosphates (P–O–P and P–C–P).22 Moreover, it has been 
proved to not only inhibit osteoclastic bone resorption but also induce mineralization of 
newly formed bone by osteoblasts.23-25 However, AL has its intrinsic adverse effect such as 
low intracellular permeability, which in turn results in low drug efficacy.26 It is, therefore, 
highly required to find an appropriate delivery vehicle for AL to overcome such a drawback. 
As appeared in the literature,27 there was only one trial related to the intercalation reaction of 
AL into LDH vehicle, however, all the samples were neither X-ray single phasic nor chemically 
defined, due to the fact that the intercalation reaction could not reach to an equilibrium.27 
In the present study, an attempt has been made to enhance the cellular uptake efficacy of 
AL, an anti-resorptive and bone-remodeling drug, by encapsulating it into the drug delivery 
vehicle (LDH), to form a drug-LDH nanohybrid (i.e., AL-LDH) with two-dimensional 
heterostructure. In this respect, we intended to prepare X-ray single phasic AL-LDH 
considering various parameters in the reaction solution such as pH, concentration of AL, 
and AEC of LDH. To the best of our knowledge, this is the first study to examine the cellular 
uptake efficacy of single phasic AL-LDH structurally and chemically well-defined on the 
proliferation and osteogenic differentiation of human osteoblast-like cells (MG63).
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METHODS

Materials
All chemicals of magnesium nitrate hexahydrate (Mg[NO3]2·6H2O), zinc nitrate hexahydrate 
(Zn[NO3]2·6H2O), aluminum nitrate nonahydrate (Al[NO3]3·9H2O), AL in sodium trihydrate 
form (C4H12NaNO7P2·3H2O), sodium hydroxide (NaOH), sodium carbonate (Na2CO3), 
fluorescein 5'-isothiocyanate (FITC), ferric chloride hexahydrate (FeCl3·6H2O) and 
β-glycerophosphate, dexamethasone, and L-ascorbic acid were purchased from Sigma (St. 
Louis, MO, USA). Perchloric acid (HClO4) was obtained from Junsei (Tokyo, Japan). Dulbecco's 
modified Eagle's essential medium (DMEM), 0.25% Trypsin-EDTA (1X) and Dulbecco's 
phosphate-buffered saline (DPBS) were obtained from Gibco (Grand Island, NY, USA).

Preparation of the pristine LDHs and nanohybrids
10 mmol Mg(NO3)2·6H2O and 5 mmol Al(NO3)3·9H2O were dissolved in 100 mL decarbonated 
water. For nitrate and carbonate forms of Mg2Al-LDH (abbreviated as Mg2Al_NO3 LDH and 
Mg2Al_CO3 LDH, respectively), each of the mixed metal solutions was titrated with 0.5 M 
NaOH solution and a mixture of 0.5 M NaOH containing basic Na2CO3 (50 mM), respectively, 
to adjust the pH 10.0, which was then aged for 12 hours. The resulting white precipitate was 
collected by centrifugation and washed with decarbonated water to remove soluble unreacted 
ions. A dry powder of Mg2Al_NO3 LDH and Mg2Al_CO3 LDH was obtained by freeze-drying. 
With the same method, nitrate and carbonate type of Zn2Al-LDHs coprecipitated at pH 8.0 
(abbreviated as Zn2Al_NO3 LDH and Zn2Al_CO3 LDH, respectively) were prepared by using 
Zn(NO3)2·6H2O instead of Mg(NO3)2·6H2O.

And then attempts have been made to prepare AL intercalated LDH nanohybrids based on the 
ion-exchange reaction. At first, 0.05 M solution of AL in 100 mL of decarbonated water was 
adjusted to pH 8.0 with 0.5 M NaOH solution in order to dissociate the protons in AL. Each 
suspension of Mg2Al_NO3 LDH, Mg2Al_CO3 LDH, or Zn2Al_NO3 LDH was then intermixed 
with this AL solution and the final solution pH was maintained at 10.9 for 24 hours. Each 
of the resulting precipitates was separated by centrifugation and washed thoroughly with 
decarbonated water, and then freeze-dried to yield powdery product, AL-Mg2Al_NO3 LDH, 
AL-Mg2Al_CO3 LDH, and AL-Zn2Al_NO3 LDH, respectively.

For FITC adsorbed Zn2Al_CO3 LDH (FITC-LDH-CO3), the equal volumes of FITC (5 mg/mL) and 
Zn2Al_CO3 LDH (5 mg/mL) were mixed together, followed by stirring for 12 hours. The resulting 
precipitate was washed 5 times with DI water to remove the excess FITC and freeze-dried.

Characterizations
Powder X-ray diffraction (PXRD) patterns were measured with a diffractometer (D/MAXRINT 
2200-Ultima, Rigaku, Japan) equipped with Ni-filtered Cu-Kα radiation (λ = 1.5418 Å). 
The high-resolution transmission electron microscopy (HR-TEM) image of AL-LDH was 
obtained with a JEM-2100F (JEOL, Tokyo, Japan), which was operated at an accelerating 
voltage of 200 kV. Fourier transform infrared (FT-IR) spectra were measured with a JASCO 
6100 spectrophotometer (JASCO, Tokyo, Japan) with a potassium bromide disk pellet 
method. Field emission scanning electron microscopy (FE-SEM) images were measured with 
a JSM-6700F (JEOL). The size distribution and surface charge were recorded using Nano ZS 
(Malvern, UK).
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The FeCl3 standard solution (5 mM) in a 2 M HClO4 was used to measure the contents of AL 
in the AL-Zn2Al_NO3 LDH (from here abbreviated as AL-LDH). Five different concentrations 
of AL, ranging from 0.025 to 2.5 mM, were dissolved in 2 M HClO4. A mixture of AL and 
FeCl3 standard solution (1:1, v./v.) was measured by UV-Vis spectrophotometer (Lambda 
35; PerkinElmer, Waltham, MA, USA) to prepare a calibration curve for AL.28 The AL-LDH 
particles were dissolved in 2 M HClO4 solution and filtered with Nylon syringe filter (0.45 
μm pore; Merck Millipore, Burlington, MA, USA). Then, the dissolved AL from AL-LDH was 
mixed with the FeCl3 standard solution (1:1, v./v.). The resulting mixtures were measured 
by UV-Vis spectrophotometer. Inductively coupled plasma-atomic emission spectrometry 
(ICP-AES) analyses with Optima-4300 DV (PerkinElmer) and elemental CHNS analyses with 
EA1110 (CE instrument, Milan, Italy) were further carried out in order to confirm chemical 
compositions of the Zn2Al_NO3 and AL-LDH.

In vitro drug release test
To examine in vitro drug release profile, the AL-LDH particles were suspended in 900 mL 
of pH 7.4 phosphate-buffered saline (PBS) at 37°C and continuously stirred at 125 rpm using 
a dissolution apparatus 2 (paddle type, Vision® G2 Elite 8TM Dissolution Tester, Hanson, 
MA, USA). At a scheduled time for 100 days, 3 mL of the medium was collected and the 
same amount of fresh PBS was added back. The sampled medium was filtered with Nylon 
syringe filter (0.45 μm pore, Merck Millipore), which was added to the FeCl3 standard 
solution to quantitatively measure the released amount of AL out of AL-LDH using UV-Vis 
spectrophotometer. At least three batches of samples were tested for statistics.

In vitro study
MG63 cells (Korean Cell Line Bank) were grown in DMEM medium supplemented with 10% heat 
inactivated fetal bovine serum, 100 units/mL penicillin, and 100 µg/mL streptomycin under a 5% 
CO2 atmosphere with 95% humidity at 37°C. When the cells grew up to 80%–90% confluence, 
they were isolated from cell culture dishes by trypsinization and washed with 10 mM DPBS.

Quantification of accumulated AL in MG63 cells
MG63 cells seeded on a 60 mm culture dish at 2.0 × 106 cells per well were treated with intact 
AL or AL-LDH containing at the equivalent concentration of AL (50 µg/mL). After the given 
incubation time for 1, 2, 4, 6, 12, and 24 hours, the cells were washed two times with DPBS, 
harvested by trypsin-EDTA treatment, and separated by centrifugation. After the precipitated 
pellets were washed twice with DPBS, 5 mL of cell lysis buffer (20 mM Tris-HCl, pH 7.5, 1% 
Triton X-100, 150 mM NaCl, and 1 mM EDTA) was added and the pellets were incubated 
on ice for 20 minutes followed by ultrasonication (Sonics & Materials Inc., Newtown, CT, 
USA) for 20 seconds. After centrifuging the crude cell lysates at 10,000 rpm for 5 minutes, 
10 mL acetonitrile (DAEJUNG, Siheung, Korea) was added to the cell supernatants, and the 
resulting mixture was vigorously vortexed to precipitate proteins. After further centrifugation 
of the mixture at 10,000 rpm for 3 minutes, 20 mL chloroform (DAEJUNG) was added to the 
supernatant to remove lipids, which was then collected by centrifugation at 2,000 rpm for 
10 minutes. The final supernatant was added to the FeCl3 standard solution to measure the 
concentration of AL using UV-Vis spectrophotometer. Each experiment was repeated at least 
three times.

Confocal laser scanning microscopy (CLSM) study
For CLSM measurements, MG63 cells in 2 mL of DMEM medium (2.0 × 106 cells per well) 
were seeded in Coverglass bottom dish (SPL Lifesciences Co., Ltd., Pocheon, Korea) and 
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incubated at 37°C and 5% CO2 for 24 hours. Then, the medium in the well was replaced by 
the FITC-LDH-CO3 suspension (20 µg/mL) in fresh medium and incubated under the same 
condition. A control experiment was also performed with intact FITC (20 µg/mL) and the 
centrifugal supernatant of the FITC-LDH-CO3 suspended in the cell medium under the 
same conditions. After incubation for 1 hour, the cells were washed three times with DPBS 
and fresh cell medium were then added to the plates. For the staining of nucleus, 140 µL 
of NucBlue (Live Cell Stain ReadyProbes® reagent; Thermo Fisher Scientific, Waltham, 
MA, USA) was added and incubated for additional 20 minutes at 25°C. The stained cells 
were imaged under a confocal laser scanning microscope (Leica TCS SP8 STED CW; Leica 
Microsystems Inc., Buffalo Grove, IL, USA) equipped with both DAPI filter (Ex. 420 nm/Em. 
460 nm) and FITC filter (Ex. 495 nm/Em. 520 nm). The obtained images were processed 
using Leica LASAF software.

Proliferation study
The MG63 cells were seeded onto 96-well plates at 2 × 104 cells per well and incubated at 37°C 
under a 5% CO2 atmosphere for 24 hours. Then, the cell medium in each well was completely 
substituted with osteogenic medium (2 mM L-glutamine, 10 mM β-glycerophosphate, and 50 
ng/mL L-ascorbic added to cell media) containing pristine LDH (Zn2Al_NO3 LDH), intact AL, 
or AL-LDH, and the cells were cultured for 2, 3, or 4 days. At every predetermined time, the 
cells were washed with DPBS, and the cell proliferation was assessed with CCK-8, following 
the manufacturer's instruction.29 Briefly, 100 μL CCK-8 solution was added into each well 
and cultured for additional 3 hours and then the optical density of each well was measured 
at 450 nm on a microplate reader (Multiskan FC, Thermo Fisher Scientific), and expressed 
in percentage based on the optical density of negative control (only osteogenic medium was 
treated to the cells). The assay was performed at least three times for statistics.

Alkaline phosphatase (ALP) activity
MG63 cells were cultured in 6-well plates at 1.5 × 105 cells per well and incubated overnight 
at 37°C under a 5% CO2 atmosphere for 24 hours. The cell medium in each well of the plate 
was completely substituted with the osteogenic medium containing pristine LDH (Zn2Al_
NO3 LDH), intact AL, or AL-LDH and treated under the same conditions described above. 
At a given time, the adherent cells were scraped off and suspended in 3 mL of osteogenic 
medium, which was shaken at 4°C for 10 minutes and centrifuged at 2,500 rpm for 10 
minutes. The supernatant (50 μL) was then transferred to 96-well plate and the same volume 
of PNPP solution was added.23 The total amounts of released enzyme from the cells were 
spectrophotometrically measured by a microplate reader (Multiskan FC, Thermo Fisher 
Scientific) at 405 nm. At least three times were tested for each sample type.

Statistical analysis
All data for in vitro cell proliferation and ALP activity was applied in one-way ANOVA with α 
= 0.05 followed by pairwise comparisons using a Tukey's post hoc test (Prism, version 5.01; 
GraphPad, San Diego, CA, USA). P < 0.05 was considered statistically significant.

RESULTS

PXRD analysis
In the previous work,27 an attempt was made to intercalate AL into LDH, but failed to prepare 
chemically well-defined AL-LDH nanohybrid. According to the PXRD analysis, no X-ray 
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single phasic AL-LDH was synthesized due to the formation of thermodynamically stable 
carbonate ion intercalated LDH. Thus, we intended to find out synthetic conditions for the 
X-ray single phasic AL-LDH by taking account AL concentrations in a reaction solution and 
the pH of the solution as well. According to the calculated molar fraction of AL depending 
on pH (Supplementary Fig. 1), AL may exist in the forms of AL2- = 0.49, AL3- = 0.49, and 
AL4- = 0.02 at pH 10.9, in which primary amine group in AL could be considered to be almost 
deprotonated. Thus, we set the pH of solution at 10.9 in order for the intercalative ion-
exchange reaction of AL into LDH not to be disturbed by protonated primary amine in AL.

A 2.5-fold excess amount of AL was reacted with the carbonate type of Mg2Al-LDH (Mg2Al_
CO3 LDH) and the nitrate type (Mg2Al_NO3 LDH), respectively, at pH 10.9. As shown in 
Supplementary Fig. 2A and B, the AL molecules were not successfully intercalated into 
both LDHs. The XRD patterns of Mg2Al_CO3 LDH remained unchanged with respect to 
the reaction time, indicating that no intercalation of AL into LDH occurred. In the case of 
Mg2Al_NO3 LDH, however, the intercalation reaction could be observed, but resulted in 
the formation of two phases, AL intercalated LDH and unreacted Mg2Al_NO3 LDH, within 
24 hours. On the other hand, a single phasic AL-LDH was realized, when the nitrate type 
of Zn2Al_NO3 LDH was intercalated as shown in Supplementary Fig. 2C. Though the AL 
intercalated LDH was coexisted with the unreacted within the reaction time of 8 hours, the 
intercalation reaction of AL into the Zn2Al_ NO3 LDH was reached to an equilibrium beyond 
12 hours, where well-ordered (00l) reflections could be observed for AL-Zn2Al_NO3 LDH 
(abbreviated as AL-LDH).

As shown in Fig. 1A, the basal spacing was expanded to 11.3 Å from 8.7 Å (that of Zn2Al_ 
NO3 LDH) upon intercalation of AL. The gallery height of AL-LDH was estimated to be 6.5 
Å (11.3 Å – 4.8 Å [the thickness of LDH single layer]), which was smaller than the molecular 
dimension of AL as shown in Supplementary Fig. 3A and B. It is, therefore, expected 
that AL molecules were likely to be stabilized with a monolayer arrangement as shown in 
Supplementary Fig. 3C.
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To confirm this configuration, we investigated the steric limitation between the intercalated 
AL molecules and positively charged sites of LDH layers, which can be explained by the 
equivalent area (Ae, area per positive unit charge of LDH) and the demanded area (Ac, area 
per negative unit charge for intercalated single molecule). Ae of the layered host lattice can be 
calculated from the following equation: Ae = a·b·sinγ/ξ, where a and b are lattice parameters 
and ξ is the layer charge per formula unit. Based on the lattice parameters of AL-LDH (a 
= b = 3.07 Å, c = 33.78 Å, γ = 120◦ and ξ = 1/3e-), Ae of LDH could be calculated as 24.5 Å2, 
slightly larger than the demanded area (Ac) of AL (24.0 Å2). In the range of Ae > Ac, the guest 
molecules could be incorporated between the LDH layers with parallel monolayer orientation 
along the ab plane of LDH.

In order to gain further insight in the arrangement of intercalated AL molecules in the 
interlayer space of LDH, we compared the relative intensity (Irel) of the observed X-ray 
intensity (Iobs) to that of the calculated one (Ical) from the structural models of AL-LDH 
(Supplementary Fig. 4A-C). The structure factor (F[00l]) of the each structural model was 
obtained from the atomic scattering factor for each atom in the unit cell (fi) and the position 
of atoms (zi) along c-axis based on the following equation,                        .30 The integrated 
intensity of (00l) diffraction peak (I[00l]) was proportional to the square of F(00l) and to 
Lorentz-Polarization factor (LP[θ] = [1+ cos22θ]/[cos·sin2θ]).

Taking into account of steric limitation between the intercalated AL molecules and the 
positively charged sites of LDH layer, the basal spacing of AL-LDH, and the molecular 
dimension of AL, three structural models of AL-LDH could be suggested as follows; 1) two 
phosphate groups of AL molecule were electrostatically interacted with up and down sides of 
LDH layers as shown in Supplementary Fig. 4A, and 2) two phosphate groups of AL molecule 
were electrostatically interacted with only one side (up or down side) of LDH layer as shown 
in Supplementary Fig. 4B and C. Although it was not easy to refine the interlayer structure of 
AL-LDH due to the limited number of (00l) diffractions, the interlayer structure of AL-LDH 
in Supplementary Fig. 4C would be highly probable among those three models: the Ical values 
from the model were close to the Iobs values, as shown in Supplementary Fig. 4D.

HR-TEM study
From the cross-sectional HR-TEM image of AL-LDH as shown in Fig. 1B, well-ordered 2D 
structure of AL-LDH could be confirmed. The distance between the lattice fringes along 
the crystallographic C-axis was observed to be approximately 11.3 Å, which was in excellent 
agreement with the d00l value obtained from the PXRD pattern.

FT-IR analysis
The FT-IR spectrum of AL-LDH was compared to those of intact AL and pristine LDH (Zn2Al_ 
NO3 LDH) (Fig. 2). For intact AL, the characteristic infrared vibration bands, such as O-H 
of phosphate (3,490 cm-1), C-H (2,965 cm-1), N-H (1,545 cm-1), C-O-C (1,119 cm-1), P = O 
(1,056 cm-1), and P-O (960 cm-1), were clearly observed.31,32 For the pristine LDH, the broad 
absorption bands at 3,451 and 1,642 cm-1 were assigned as O-H stretching vibration from the 
hydroxide layer and the interlayer water in LDH, respectively. The absorption bands observed 
in the low frequency region below 800 cm-1 were attributed to the lattice vibration modes 
from M-O and M-O-M (M: metals, such as Zn and Al) bonds. All the characteristic bands 
from intact AL and pristine LDH were overlapped within those of AL-LDH. Particularly, the 
nitrate absorption peak at 1,382 cm-1 found in pristine LDH was disappeared in AL-LDH, 
indicating that the interlayer nitrate ions were completely replaced with negatively charged 
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AL molecules through the intercalative ion-exchange reaction. The broad peak between 
1,800 and 2,700 cm-1 corresponding to the O-H stretching absorption in the O = P-OH group 
of AL,33 was disappeared in AL-LDH due to the deprotonation of OH groups, which were 
electrostatically interacted with the LDH layers.

Particle size and surface charge studies
According to the field emission scanning electron microscopy (FE-SEM) images (Fig. 3A 
and B), the plate-like LDH particles with an average size of around 120 nm were not that 
changed upon intercalation of AL to form AL-LDH, indicating that the intercalation reaction 
proceeded without any structural reconstruction, but went on topotactically. According to 
the dynamic light scattering (DLS) analysis (Fig. 3C), the particle sizes were measured to 
be 118 ± 13 nm and 120 ± 11 nm for the pristine LDH and AL-LDH, respectively, which were 
in good agreement with the FE-SEM data. Furthermore, as shown in Fig. 3D, the surface 
charge of pristine LDH was determined to be 35.1 ± 0.1 mV, but such a distinctive positive 
surface charge became reduced to 0.3 ± 0.15 mV upon intercalation of AL, due to the strong 
electrostatic interaction between the negatively charged AL and positively charged LDH layer.

UV-Vis spectroscopy
The AL content in the AL-LDH was determined through UV-Vis spectrophotometric analysis 
using FeCl3 standard solution. Since AL does not contain an appreciable chromophore, AL 
was complexed with Fe3+ ions under an acidic condition of 2 M HClO4, in which the hydrolysis 
of Fe3+ ions could be avoided.32 The absorption spectra of base line (2 M HClO4), intact AL 
only, AL-LDH only, Fe3+ standard, and Fe3+–AL complexes were recorded in the wavelength 
range of 200–400 nm (Supplementary Fig. 5A). As expected, no UV absorbance appeared 
for intact AL and AL-LDH, but the absorption peaks with λmax for the Fe3+ standard and Fe3+–
AL complexes were clearly observed. The absorbances of Fe3+–AL complexes were read at 
300 nm depending on the concentrations of AL in order to obtain a calibration curve of AL 
(Supplementary Fig. 5B).

On the basis of calibration curve, the AL content in AL-LDH was determined to be 26.5%, 
which was in excellent agreement with the theoretical one (26.3%). Briefly, the latter was 
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determined on the basis of the net charge of AL (−2.54) calculated by its mole fractions, 
AL2- = 0.49 and AL3- = 0.49, at pH = 10.9, which was also the synthetic condition of AL-LDH. 
According to the ICP-AES, and elemental CHN analysis, the chemical compositions for the 
pristine LDH and its AL intercalated were determined as Zn0.67Al0.33(OH)2(NO3)0.33⋅0.32H2O 
and Zn0.68Al0.32(OH)2AL0.13⋅0.28H2O, respectively.

In vitro release test
According to the in vitro cumulative AL release profile from AL-LDH as shown in Fig. 4, the 
AL molecules seemed to be hardly deintercalated under the condition of the PBS solution 
pH of 7.4 at 37°C. At the initial stage, prevalent anions in PBS, such as anionic forms of 
phosphate and chloride, facilitated the desorption of AL molecules on the external surface 
of the AL-LDH nanoparticles, resulting in the initial burst (5%) of AL. After 2 days, however, 
another 4.5% of AL in the interlayer space of LDH was very slowly released out until 100 
days. More than 90% of AL molecules were thermodynamically stabilized in the 2D lattice, 
and eventually remained as the AL-LDH hybrid, due to the strong electrostatic interaction 
between deprotonated AL molecules and positively charged LDH lattice.

As described in the structural model of AL-LDH (Supplementary Fig. 6A), the deprotonated 
phosphate group of AL bound to only one side of LDH layer by strong electrostatic 
interaction, resulting in the controlled release of AL from AL-LDH. One other possible 
explanation for that might be the zipping effect of layered edges bonded with small 
anions present in the PBS solution, and therefore, AL molecules can be locked up there 

9/17https://jkms.org https://doi.org/10.3346/jkms.2019.34.e37

2D Inorganic Nanovector and Its Alendronate Derivative

A B

N
um

be
r, 

%

Size (d, nm)

C D 

104103102101100

15

20

5

0

10

To
ta

l c
ou

nt
s

Zeta potential, mV
−100 0 100

300,000

200,000

100,000

400,000

0

200 nm 200 nm

Fig. 3. Particle size and surface charge analyses. FE-SEM images of (A) pristine LDH and (B) AL-LDH. (C) Particle 
size distributions and (D) zeta potentials of pristine LDH (solid line) and AL-LDH (dashed line), respectively. 
FE-SEM = field emission scanning electron microscopy, LDH = layered double hydroxide, AL = alendronate.

https://jkms.org


in the interlayer space of LDH, giving rise to the retarded out-diffusion from AL-LDH 
(Supplementary Fig. 6B).34

In order to rationalize the release behavior of AL from AL-LDH depending on the above 
assumptions, the observed release profile of AL-LDH was fitted to four kinetic models 
as shown in Supplementary Fig. 7 and the obtained rate constants (kd) and r2 values were 
summarized in Supplementary Table 1. The first-order kinetic model, describing dissolution 
phenomena, was not an option to be considered due to the poor r2 value (0.66), indicating 
that the release of AL from AL-LDH does not mainly depend on the dissolution determined 
process.34 In contrast, the parabolic diffusion model, which is a modified Freundlich model, 
and Elovich one were well fitted to the observed release profile of AL with reliable r2 values of 
more than 0.95. It is, therefore, suggested that the AL release process is a kind of diffusion-
controlled process or heterogeneous diffusion processes.34

Cellular uptake studies
In order to verify efficient cellular uptake behavior of LDH, we quantified the accumulated 
concentration of AL in MG63 cells with respect to incubation time. As shown in Fig. 5, 
MG63 cells treated with the AL-LDH nanoparticles exhibited 10.6 times higher intracellular 
accumulation of AL than those treated with intact AL at the 1hour incubation time, indicating 
that LDH, as a delivery vehicle, could facilitate permeation of AL into MG63 cells. Such an 
improved uptake efficacy of AL with LDH was greatly superior to that with other AL delivery 
systems, such as chitosan coated polyethylene oxide microsphere and chitosan coated 
liposome, which showed only 3-fold and 2-fold increases, respectively.29 The concentration of 
AL in MG63 cells treated with AL-LDH was rapidly increased up to 11.16 µg/mL within 1 hour, 
but gradually decreased with time. Throughout all incubation periods, AL-LDH exhibited 
much higher intracellular uptake efficacy than intact AL. As expected, intact AL cannot easily 
be permeated inside the cells due to repulsive interaction between the negatively charged 
cell membrane and anionic AL molecules. On the other hand, the positive layer charge of 
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LDH became mostly neutralized upon intercalation of anionic AL to form AL-LDH with a 
slightly positive charge, which can electrostatically interact with the cellular membranes, 
leading to favorable cellular uptake based on clathrin-mediated endocytosis.15 It is, therefore, 
concluded that LDH could play a role as an efficient drug delivery carrier.

To trace intercellular pathway of LDH visually, the LDH-CO3 nanoparticles were conjugated 
with a dye, FITC, to form FITC-LDH-CO3, which was then incubated in MG63 cell culture line 
and its permeation behaviour was studied by the CLSM as shown in Supplementary Fig. 8 
and Supplementary Fig. 9. The green fluorescence was observed throughout the cytoplasm of 
MG63 cells cultured with 20 µg/mL of FITC-LDH-CO3 for 1 hour (Supplementary Fig. 10A). On 
the contrary, the green fluorescence was not detected within cells in the control experiments 
(Supplementary Fig. 10B and C), which was carried out with the centrifugal supernatant of FITC-
LDH-CO3 and intact FITC solution, respectively. And it became clear that the green fluorescence 
within cells was not from free FITC, but from the uptake of the FITC-LDH-CO3 nanoparticles

In vitro cell proliferation and ALP activity
To assess the drug-carrier efficacy, we also investigated the effects of AL-LDH on the 
cell proliferation and osteogenic differentiation in the MG63 cell culture line, which was 
compared to those of intact AL and pristine LDH. And the cells treated with the osteogenic 
medium only were employed as the control.

In vitro proliferation level of MG63 cells was investigated on the basis of colorimetric 
CCK-8 assay, which has been widely used for determining the cell viability in terms of cell 
proliferation and cytotoxicity.29 As shown in Supplementary Fig. 11, both intact AL and 
AL-LDH showed higher cell proliferation in all concentrations of AL during the whole tested 
period than the pristine LDH. One thing to note here was that the cells incubated with AL-
LDH gave rise to an enhanced cell proliferation compared to intact AL in all conditions. As 
shown in Fig. 6, the highest cell proliferation was observed at the concentration of 1 × 10−8 
M AL for both intact AL and AL-LDH, which were 29.8% and 59.8%, respectively, above 
the negative control value. However, no increase in cell proliferation could be observed for 
the pristine LDH. The cell proliferation for all the samples tested was either increased or 
maintained even after 2 day incubation, indicating that AL-LDH and the pristine LDH were 
not cytotoxic, which could be also supported by our previous studies.35,36
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The efficacy of cell differentiation was also evaluated for AL-LDH together with intact AL 
in terms of ALP activity, which has been widely used as a marker for early differentiation 
of osteoblast-like cells to demonstrate improved osteogenic activity.23 As can be seen in 
Supplementary Fig. 12, both intact AL and AL-LDH showed higher ALP activities of MG63 
cells than pristine. In particular, the ALP activities on the day 3 and 4 were significantly 
increased for the cells treated with intact AL only at the concentration of 10−8 M AL. On the 
other hand, AL-LDH exhibited statistically significant difference in ALP activity at any given 
concentrations of AL during whole tested periods as compared to the pristine LDH and the 
negative control (P < 0.05). As shown in Fig. 7, the highest increases in ALP activity of MG63 
cells relative to that of negative control group were 12.4% and 29.1% at the concentration of 
10-8 M AL of intact AL and AL-LDH, respectively. Additionally, ALP activity did not appear to 
change substantially with pristine LDH or the control at all concentrations.
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When the same dose of AL was applied, both the in vitro cell proliferation and the ALP 
activity for AL-LDH were more efficiently improved than those for intact AL, which could 
be ascribed to the facilitated intercellular uptake of AL-LDH; unlike negatively charged AL 
molecules, the positive zeta potential (0.3 ± 0.15 mV) of AL-LDH nanoparticles led to an 
enhanced interaction with negatively charged cellular membranes, eventually resulting in 
favorable cellular uptake based on clathrin-mediated endocytosis.8,15 Although the pristine 
LDH itself did not show any effect on the cell proliferation and osteogenic differentiation, the 
AL intercalated LDH nanohybrid could be considered as a novel drug delivery system (DDS) 
for improving efficacy of AL.

DISCUSSION

A novel DDS, Al-LDH, was prepared by intercalating AL, one of nitrogen-containing 
bisphosphonate drug, into LDH nanovehicle. The purpose of this study was not only to 
suggest the synthetic way of AL-LDH hybrid drug, but to provide the proof of concept, how 
the LDH delivery vehicle could improve the drug efficacy of AL in terms of the proliferation 
and osteogenic differentiation on the MG63 cell culture line.

We were successful in establishing the synthetic condition of the hybrid drug, AL-LDH, 
based on the intercalative ion-exchange reaction, where 2.5-fold excess amount of AL was 
reacted with the pristine LDH taking into account the AEC of LDH. Since the solution 
pH could affect on intercalation of AL molecules into LDH due to amphiprotic nature of 
AL. Thus, we carefully controlled the pH during the reaction based on pKa values of AL 
(pKa1, 0.8; pKa2, 2.2; pKa3, 6.3; pKa4, 10.9; and pKa5, 12.2). According to the PXRD and 
HR-TEM analyses, the basal spacing of AL-LDH nanohybrid was determined to be 11.3 Å, 
corresponding to the sum of the layer thickness (4.8 Å) and the van der Waal's diameter 
(6.5 Å) of AL molecule with parallel orientation. From the in vitro release test, it was found 
that AL molecules intercalated were rather strongly bound with LDH lattice, and therefore, 
hardly released out. And the total amount of AL released from Al-LDH was only about to 
9.5% after 100 days. According to the cellular uptake studies, the intracellular accumulation 
of AL in MG63 cells treated with AL-LDH was 10.6-fold higher than that with intact AL for 
1 hour treatment. From the CLSM images, the internalization of LDH nanoparticles was 
confirmed by the localization of green fluorescence within cells due to the intercellular 
uptake of FITC-LDH-CO3 itself. Furthermore, in vitro cell proliferation and ALP activity 
results showed that the incorporation of AL into LDH could enhance efficacy of AL 
compared to intact AL, although LDH itself had no effect on proliferation and osteogenic 
differentiation of MG63 cells.

In conclusion, the present AL-LDH could be considered as a promising DDS for improving 
efficacy of AL.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
Evaluated rate constants and r2 coefficients based on the kinetic models

Click here to view
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Supplementary Fig. 1
Chemical structures and dissociations of AL depending on the values of equilibrium dissociation 
constant (pKa) of AL. Molar fraction of AL calculated from its pKa values depending on pH.

Click here to view

Supplementary Fig. 2
PXRD patterns of AL intercalated (A) Mg2Al_CO3 LDH, (B) Mg2Al_NO3 LDH, and (C) Zn2Al_
NO3 LDH nanohybrids obtained at different reaction times.

Click here to view

Supplementary Fig. 3
(A) Chemical structure and (B) molecular dimension of AL. (C) Schematic diagram of AL 
molecules intercalated in the LDH layer via intercalative ion-exchange reaction.

Click here to view

Supplementary Fig. 4
(A-C) Structural models for the AL-LDH along c-axis. (D) The relative X-ray intensity (Irel) of 
the observed and calculated X-ray intensity of AL-LDH.

Click here to view

Supplementary Fig. 5
(A) Absorption spectra of (I) base line (HClO4), (II) AL only, (III) AL-LDH only, (IV) standard 
Fe3+ only, (V-XI) Fe3+–AL complexes with different concentrations of AL, and (XII) Fe3+–AL-
LDH complex in 2.0 M HClO4. (B) Absorbances of Fe3+–AL complexes depending on the 
concentration of AL measured at 300 nm using UV-Vis spectroscopy.

Click here to view

Supplementary Fig. 6
Schematic representation of AL-LDH structure. (A) The deprotonated phosphate group of AL 
bound to only one side of LDH layer by strong electrostatic interaction and (B) the zipping 
effect of layered edges bonded with small anions.

Click here to view

Supplementary Fig. 7
The plots of each kinetic equation for the release of AL from the AL-LDH at pH 7.4 PBS media. (A) 
first-order rate model, (B) parabolic diffusion model, (C) Freundlich model, and (D) Elovich model.

Click here to view

Supplementary Fig. 8
PXRD patterns of (A) LDH-CO3 and (B) FITC-LDH-CO3.

Click here to view

14/17https://jkms.org https://doi.org/10.3346/jkms.2019.34.e37

2D Inorganic Nanovector and Its Alendronate Derivative

https://jkms.org/DownloadSupplMaterial.php?id=10.3346/jkms.2019.34.e37&fn=jkms-34-e37-s002.ppt
https://jkms.org/DownloadSupplMaterial.php?id=10.3346/jkms.2019.34.e37&fn=jkms-34-e37-s003.ppt
https://jkms.org/DownloadSupplMaterial.php?id=10.3346/jkms.2019.34.e37&fn=jkms-34-e37-s004.ppt
https://jkms.org/DownloadSupplMaterial.php?id=10.3346/jkms.2019.34.e37&fn=jkms-34-e37-s005.ppt
https://jkms.org/DownloadSupplMaterial.php?id=10.3346/jkms.2019.34.e37&fn=jkms-34-e37-s006.ppt
https://jkms.org/DownloadSupplMaterial.php?id=10.3346/jkms.2019.34.e37&fn=jkms-34-e37-s007.ppt
https://jkms.org/DownloadSupplMaterial.php?id=10.3346/jkms.2019.34.e37&fn=jkms-34-e37-s008.ppt
https://jkms.org/DownloadSupplMaterial.php?id=10.3346/jkms.2019.34.e37&fn=jkms-34-e37-s009.ppt
https://jkms.org


Supplementary Fig. 9
FE-SEM images of (A) LDH-CO3 and (B) FITC-LDH-CO3. (C) Particle size distributions and 
(D) zeta potentials of LDH-CO3 (solid line) and FITC-LDH-CO3 (dashed line), respectively.

Click here to view

Supplementary Fig. 10
Confocal microscopic images of MG63 cells treated with (A) 20 µg/mL FITC-LDH-CO3, (B) 
supernatant solution of 20 µg/mL FITC-LDH-CO3, and (C) 20 µg/mL FITC only.

Click here to view

Supplementary Fig. 11
In vitro proliferation of MG63 cells treated with osteogenic media containing different 
concentrations of pristine LDH, intact AL, or AL-LDH for (A) 2, (B) 3, and (C) 4 days. All 
experiments were performed at least three times for statistics.

Click here to view

Supplementary Fig. 12
In vitro ALP activity of MG63 cells treated with osteogenic media containing different 
concentrations of pristine LDH, intact AL, or AL-LDH for (A) 2, (B) 3, and (C) 4 days. All 
experiments were performed at least three times for statistics.

Click here to view
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