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Glioblastoma (GB) is the most common and devastating form of brain cancer. Despite
conventional treatments, progression or recurrences are systematic. In recent years,
immunotherapies have emerged as an effective treatment in a number of cancers, leaving
the question of their usefulness also faced with the particular case of brain tumors. The
challenge here is major not only because the brain is the seat of our consciousness but
also because of its isolation by the blood-brain barrier and the presence of a unique
microenvironment that constitutes the central nervous system (CNS) with very specific
constituent or patrolling cells. Much of the microenvironment is made up of immune cells
or inflammation. Among these, tumor-associated macrophages (TAMs) are of significant
interest as they are often involved in facilitating tumor progression as well as the
development of resistance to standard therapies. In this review, the ubiquity of TAMs in
GB will be discussed while the specific case of microglia resident in the brain will be also
emphasized. In addition, the roles of TAMs as accomplices in the progression of GB and
resistance to treatment will be presented. Finally, clinical trials targeting TAMs as a means
of treating cancer will be discussed.
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INTRODUCTION

Glioblastoma (GB) is the most frequent and malignant form of brain tumors. It is associated with a poor
prognosis and the median overall survival of GB patients is about 15 months after standard of care
(Stupp et al., 2009). Conventional treatments consist of maximal safe resection followed by external
radiotherapy and concomitant chemotherapy based on the use of the alkylating agent temozolomide
(TMZ) (Stupp et al., 2005). However, recurrence inevitably occurs. Currently, no therapy can completely
cure GB; current treatments can only marginally improve the overall survival of patients. The current
in.org April 2020 | Volume 11 | Article 3681

https://www.frontiersin.org/articles/10.3389/fphar.2020.00368/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00368/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00368/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00368/full
https://loop.frontiersin.org/people/899802
https://loop.frontiersin.org/people/899802
https://loop.frontiersin.org/people/165534
https://loop.frontiersin.org/people/165534
https://loop.frontiersin.org/people/650690
https://loop.frontiersin.org/people/650690
https://loop.frontiersin.org/people/392020
https://loop.frontiersin.org/people/392020
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:emmanuel.garcion@univ-angers.fr
https://doi.org/10.3389/fphar.2020.00368
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.00368
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.00368&domain=pdf&date_stamp=2020-04-08


Grégoire et al. Targeting Macrophages in Glioblastoma
strategy focuses mostly on targeting the tumor cells, failing to
account for other cellular constituents present in the tumor.
Hence, to cure and achieve a complete resection of GB tumors,
new therapeutic strategies are in great demand.

GB is a highly heterogeneous tumor, with diverse co-existing
cell types that include tumor cells, endothelial cells, fibroblasts
and different cell types from the immune system (Charles et al.,
2011; Quail and Joyce, 2017). A particular emphasis has been
placed on the immune system and especially on tumor-
associated macrophages (TAMs) as they are the dominant
infiltrating immune cell population in GB. These cells interact
with tumor cells to promote tumor growth and progression
(Feng et al., 2015). The host defense is composed of both innate
and adaptative immune cells and they are both involved in
cancer immune surveillance in early stages of the disease.
However, the tumor is able to escape this immune surveillance
during its development. At that point, the tumor can recruit
immune cells and change their original function to be one of its
accomplices (Brown et al., 2018; Finn, 2018). Tumor cells can
inhibit the cytotoxic function of the immune system by secreting
immunosuppressive factors or recruiting immunosuppressive
inflammatory cells. In relation to this, macrophages appear to
be a promising target to improve the effectiveness of actual
therapy as more and more information on their physiological
and pathological roles in the brain is being uncovered.

Macrophages are the most abundant infiltrating immune cells
in GB. Their function is different from their homolog in healthy
tissues (Nishie et al., 1999; Hussain et al., 2006). They are able to
discriminate the components of the self from the non-self
(microbes) but also the altered components of the self. When
recognizing the non-self or altered self-components, they can
begin their process of elimination. Macrophages located in the
tumor microenvironment are called tumor-associated
macrophages. Under normal physiological conditions,
macrophages are implicated in different processes such as
organ development, tissue homeostasis, host defense against
infections. These cells can also participate in metabolic
disorders, immune diseases and cancer development (Sica
et al., 2015). Normally, the myeloid population is the major
player of the innate immune system and represents up to 30% of
the tumor mass (Rossi et al., 1987; Graeber et al., 2002). Both the
activation status and the number of TAMs present in the tumor
microenvironment seem to influence GB prognosis (Komohara
et al., 2008; Lu-Emerson et al., 2013; Pyonteck et al., 2013).

Macrophages are characterized by their plasticity and
heterogeneity. They can be activated by different types of
stimuli (growth factors, cytokines, microbial products,
nucleotides) which in turn will affect macrophages differently
(Poh and Ernst, 2018). In vitro, the stimulation of macrophages
by interferon-g (IFN–g) and/or lipopolysaccharides (LPS)
induces the classical (M1) macrophage polarization (Nielsen
and Schmid, 2017). M1 macrophages favor the generation of T
helper Type 1 (Th1) lymphocytes. Classically activated
macrophages are good effectors to fight malignant tumors and
Frontiers in Pharmacology | www.frontiersin.org 2
are associated with chronic inflammation (Atri et al., 2018).
Those macrophages are characterized by a high expression of IL-
12, IL-23, and a low expression of IL-10. They can also produce
high levels of pro-inflammatory cytokines IL-1b, tumor necrosis
factor a (TNF-a), and IL-6, and increase the expression of
inducible nitric oxide synthase (iNOS, NOSII) and reactive
oxygen species (ROS). Another known stimulus for M1
macrophages is GM-CSF (Granulocyte Macrophage Colony-
Stimulating Factor). It activates STAT5, which leads to the
activation of the PI3K-AKT pathway (Jeannin et al., 2018).

On the contrary, macrophages stimulated in vitro by IL-4
and/or IL-13 are called alternatively activated (M2) macrophages
(Murray et al., 2014). They are known effectors for promoting
Th2 lymphocytes. They are involved in angiogenesis and tumor
progression (Martinez and Gordon, 2014). This phenotype is
associated with a low expression of IL-12, IL-23, and a high
expression of IL-10 and TGF-b. Furthermore, M2 macrophages
also have high levels of arginase 1 (Arg1), mannose receptors and
scavenger receptors. M-CSF (Macrophage Colony-Stimulating
Factor) and IL-34 also induce a M2 phenotype. M-CSF and IL-34
express the same receptor named CD115 and activate the MAP
kinases signaling pathway (Jeannin et al., 2018).

Although the traditional M1/M2 dichotomy is useful for
understanding the functionality of TAMs, recent analyzes, in
particular of single-cell, revealed a spectrum of activation states
much more complex than these traditional polarizations (Locati
et al., 2020). Hence, macrophages in cancer are double-edged
swords exerting pro- and antitumor functions. More than a real
opposition, the M1/M2 signature crystallize a continuum of two
extremes capable of specific adaptations (eg., chromatin remodeling,
epigenetic marks, trained immunity, metabolic reprogramming,…)
to various loco-regional cues (eg., cytokines, chemokines, miRNA,
or immune checkpoints). In addition, proliferatingmonocytes could
persist in a state of self-renewal within tumor tissues, rather than
immediately differentiate into macrophages indicating a much
higher complexity (Lin et al., 2019). It should again be
emphasized that the M1 and M2 markers are distinct across
species and in particular between humans and mice (eg., in
human NOSII and Arg1 do not account for M1 and M2
macrophages, respectively) (Thomas and Mattila, 2014). In this
regard, there are no specific surface markers in humans except a
privileged panel of produced cytokines.

TAMs that are described in the tumor have in most cases pro-
tumorigenic functions that promote tumor growth, invasion,
angiogenesis, and tumor metastasis. In the GB microenvironment,
both TAMs derive from blood monocytes; some originate from
resident macrophages called microglia. Hence, macrophages appear
to be an attractive target for new therapeutic strategies (Noy and
Pollard, 2014).

The goal of this review is to discuss whether macrophages are
worth considering as therapeutic targets in GB and to summarize
the existing drugs targeting macrophages. In the second part of
this review, the presence of microglia in brain tumor will be
discussed. Then, the roles of TAMs in regulating the tumor
April 2020 | Volume 11 | Article 368
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development, progression, and the response to conventional
therapy will be reviewed. Finally, a survey of clinical trials
testing drugs against macrophages in cancer will be presented.
THE PRESENCE OF TAMS IN GB:
REALITY OR NOT?

The World Health Organization (WHO) classification of Central
Nervous System (CNS) tumors was restructured in 2016. Diagnoses
are based on bothmolecular alterations and histopathologic features
(integrated diagnosis) in contrast to the 2007 WHO classification
that only included histopathologic features (Louis et al., 2007; Louis
et al., 2016). The tumor is essentially defined by the characteristics of
the tumor cells that compose it, independently of the ecosystem in
which they evolve and which they could themselves modify. GB also
consists of many different noncancerous cells. The following cells
are known to define the tumor microenvironment: endothelial cells,
pericytes, fibroblasts, and immune cells in addition to cancer cells
(Quail and Joyce, 2013).

The tumor microenvironment is now emerging as an important
regulator of cancer progression (Quail and Joyce, 2017). Data from
the literature seem to suggest that distinct molecular profiles in GB
are correlated with differences in their microenvironment
(Zhernakova et al., 2018). Even if the WHO classification now
includes molecular data, no information on the tumor
microenvironment has been integrated so far. Despite the fact
that a solid tumor has never been seen without infiltrating
immune cells, current diagnostic guidelines often forget
voluntarily to take this into account. Although this does not
necessarily modify the diagnosis as it is perceived today, it could
be useful as regards the consideration of patient management and
escape or not to new well identified therapies. The presence of
TAMs has already been well described in GB (Saha et al., 2017;
Séhédic et al., 2017; Roesch et al., 2018). In a mouse model, TAMs
were observed in perivascular areas in the tumor and seem to be
implicated in gliomagenesis Feng et al., 2015. Interestingly, their
localization in the tumor appears to depend on their phenotypes
Schiffer et al., 2018. In 2012, a meta-analysis showed that a high
density of TAMs appeared to be associated with a poor prognosis in
head and neck, ovarian and breast cancer and with a better
prognosis in colorectal cancer (Zhang et al., 2012; Yuan et al.,
2017; Zhao et al., 2017). Further evidence revealed that human GB
display a mixed population of M1/M2 macrophages, and the ratio
M1:M2 correlated with survival in IDH1 R132H wild type GB
(Zeiner et al., 2018). In high-grade gliomas, M2 macrophages were
correlated with an unfavorable prognostic (Sørensen et al., 2018).
Caponegro et al. also described a correlation between the presence
of TAMs and a poorest prognosis in GB (Caponegro et al., 2018).
Furthermore, a study based on magnetic resonance imaging in GB
showed that highly aggressive tumors were also correlated with the
presence of TAMs (Zhou et al., 2018). Taking into account these
findings, the presence of TAMs in GB has been well proven.
Macrophages are important for the progression of GB and
assessing them may give more information on the prognosis.
Frontiers in Pharmacology | www.frontiersin.org 3
MICROGLIA: THE RESIDENT
MACROPHAGES OF THE CNS

Microglia are the resident macrophages of the CNS and a healthy
CNS macrophage population consists only of resident microglia.
The blood brain barrier is impaired in neuropathological diseases,
thus allowing an infiltration of monocytes form peripheral blood. In
GB, both resident microglia and peripheral macrophages can be
detected (Lisi et al., 2017). It is crucial to understand their molecular
differences and their specific roles in the tumor. Resident microglia
and newly recruitedmacrophages, hereafter referred to as peripheral
macrophages have a distinct origin, as microglia arise from the yolk
sac primitive macrophages (Ginhoux et al., 2013; Ginhoux and
Guilliams, 2016). Although their origin differs, they share common
histologic characteristics. Differentiating between microglia and
peripheral macrophages is a difficult task, since they share
common surface markers. The name TAM may very well include
both resident microglia and monocyte-derived macrophages
(Szulzewsky et al., 2015; Kloepper et al., 2016). In order to
separate macrophages of hematopoietic origin from resident
microglia, CD45 was used in flow cytometry analysis (Badie et al.,
2000). However, resident microglia can upregulate their CD45
expression, making them indistinguishable from peripheral
macrophages (Müller et al., 2015). Using a genetically engineered
mouse, it was demonstrated that peripheral macrophages represent
the majority of TAMs in the tumor, and resident microglia form a
minor TAM population (Chen et al., 2017). Moreover, resident
microglia and peripheral macrophages have different preferential
localizations. Peripheral macrophages mostly appear in perivascular
areas while resident macrophages are usually located in the
peritumoral zone. A recent study showed that only a small batch
of common genes toward species (rat, mice, human) differentiates
GB-induced polarization of resident microglia (Walentynowicz
et al., 2018). Although many studies tried to decipher the origin
of TAMs in the tumor, no clear answer has yet been obtained.

Resident microglia are described to be involved in many
processes including tumor growth and progression
(Bryukhovetskiy et al., 2016; Matias et al., 2018). Microglia
were shown to contribute to the invasiveness of GB by
upregulating serpin family A member 3 (SERPINA3)
expression in GB stem cells (GSCs), that is implicated in the
remodeling of the extracellular matrix (Li et al., 2018). Resident
microglia were also shown to mediate GB progression and
stemness through the activation of interferon regulatory factor
7 (IRF7) that generates an inflammatory environment (Li Z.
et al., 2017). Resident microglia are also involved in antitumor
immunity processes through the expression of toll-like receptor 2
(TLR2) that down regulates their major histocompatibility
complex class II (MHCII) expression (Qian et al., 2018). In a
murine model, enhancer of zeste homolog 2 (EZH2) expression
in GB was shown to be involved in the polarization of TAMs
toward the M2 phenotype, creating an immune deficient
environment (Yin et al., 2017). A 6 cytokine-related gene
signature in resident microglia was shown to be sufficient to
predict survival and identify M2 cells in GB (Cai et al., 2015).
Both resident and peripheral macrophages are uniquely involved
April 2020 | Volume 11 | Article 368
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in supporting GB growth and progression. Hence, if we wish to
target TAMs as a mean to treat GB, we must first characterize
this population as peripheral macrophages and/or resident
microglia and counter their exact roles in GB initiation
and maintenance.
TUMOR-ASSOCIATED MACROPHAGES: A
PARTNER IN CRIME FOR TUMOR CELLS

A tumor can influence its microenvironment, and inversely. Thus,
the interactions between the tumor cells and the nearby non-tumor
cells are crucial to promote tumor angiogenesis, peripheral immune
tolerance, and tumor growth. As previously said, TAMs are highly
represented inside the tumor microenvironment. They are known
for their heterogeneous phenotype, which by simplification can be
with either anti-tumor (M1-like) or pro-tumor functions (M2-like).
As TAMs are highly plastic cells, they can program themselves into
both subpopulations. This gives them the ability to have different
functions in different tumor areas and at different times during the
tumor development.

Biology of the Tumor
Tumor Cells
The effect of TAMs on tumor cells is dependent on their type of
activation. The reprogrammed M1 TAMs suppress the growth of
GB cells (Li T. et al., 2017) meanwhile the M2 macrophages are
described to favor tumor growth and resistance to therapy (Xue
et al., 2017).

A macrophage with pro-tumor function in the tumor
microenvironment is a macrophage that enhances tumor
initiation and growth. TAMs and tumor cells actively
communicate with each other leading to tumor progression. Their
communication is mediated by interleukins IL-6 and IL-10 and
transforming growth factor-b1 (TGF-b1) (Wagner et al., 1999; Ye
et al., 2012). These cytokines activate signaling pathways in the
tumor cells that boost processes such as proliferation, invasion and
vascularization (Figure 1). TGF-b1 secretion by TAMs is
responsible for the recruitment of cancer stem-like cells (CSCs)
expressing CD133. Another consequence of TGF-b1 secretion is the
production of metalloproteinase 9 (MMP-9) by CSCs rendering
them highly invasive (Ye et al., 2012). TAMs are able to secrete
pleiotrophin (PTN); CSCs express the PTN receptor PTPRZ1 on
their cell surface. Once PTN is recognized by its receptor, it
stimulates CSCs maintenance and tumorigenic potential, and
therefore promotes GB growth (Shi et al., 2017). PTN- expressing
TAMs also express CD163 which is an M2 lineage marker. Wang
et al. showed that macrophages support GB invasiveness through
the CCL4-CCR5 axis that enhances MMP-9 expression (Wang
et al., 2016). Hypoxia was also shown to positively contribute to this
mechanism by enhancing CCL4 and CCR5 expression. An increase
of TAMs in a mouse model was shown to decrease the survival of
the mice associated with a reduction of CD8+ T cells (Chae et al.,
2015). On top of that, EGFR activation level correlates with TAM
infiltration. Consequently, EGF can induce an upregulation of
vascular cell adhesion molecule-1 (VCAM-1) that favors the
Frontiers in Pharmacology | www.frontiersin.org 4
interaction between TAMs and tumor cells, which in turn
promoted tumor cell invasion (Zheng et al., 2013). MerTK
(Myeloid-Epithelial-Reproductive Tyrosine Kinase) is a tyrosine
kinase expressed by macrophages that suppresses the innate
immune response. Its expression was shown to be higher in
tumor recurrences. TAMs that express MerTK are also associated
with tumor growth and resistance to treatment, making MerTK a
potential therapeutic target (Wu et al., 2018). The molecular
crosstalk between tumor cells and macrophages appears to be
important for tumor growth and malignant progression.
Therefore, modulating the exchange between those two cell
populations may be therapeutically relevant.

Angiogenesis
GB is a highly hypoxic tumor with prominent necrotic regions due
to the rapid proliferation of GB cells. The cell composition of the
tumor core is quite different from that of the peritumoral area. The
tumor core is more hypoxic, contains more CD163+ TAMs and has
a higher expression of VEGF-A (Tamura et al., 2018) (a major
factor for vascularization). A downstream effect of hypoxia and
necrosis is an increase in vascular proliferation. In the tumor
microenvironment, TAMs are located near blood vessels. In mice,
endothelial cells produce IL-6 that induces the expression of Arg1
and thus the alternative phenotype in TAMs (Wang et al., 2018).
This alternative activation is mediated by the hypoxia-inducible
factor-2a (HIF-2a).Wang et al. targeted IL-6 expression in amouse
model and improved the survival of GB-bearing mice. VEGF was
shown to be implicated in promoting pro-angiogenic functions of
TAMs in a GB rodent model (Turkowski et al., 2018). Gliomas
overexpressing VEGF were correlated with an increase in the
expression of MHCI and MHCII on macrophages. Endothelial
cells and TAMs interaction leads to angiogenesis through the
expression of TGF-b1 and integrin avb3, which induces the
activation of the SRC-PI3K-YAP signaling (Cui et al., 2018)
(Figure 1). The pro-angiogenic properties of TAMs are mediated
by the protein CRCR1. This protein activates the PDGFB–PDGFRb
pathways and promotes pericytes recruitment, migration, and
tumor angiogenesis (Zhu C. et al., 2017). In sum, TAMs have a
proangiogenic function in GB. Thus, targeting macrophages may
improve the response to anti-angiogenic therapies (Deng et al.,
2017; Gagner et al., 2017). Indeed, blocking the macrophages
recruitment by combining the chemokine SDF-1 and VEGF
inhibitors was more effective and decreased tumor invasiveness
and vascular density.

Immune Environment
Each tumor is characterized by an immune suppressive
environment that forms one hallmark of cancer (Hanahan
et al., 2011). This is in part due to the presence of TAMs in
tumors but also to a complex regulation of the expression of
immune and inflammatory genes by the global tumor ecosystem.
It was found that IKKb levels were reduced in GB; consequently,
the NF-kB expression was decreased leading to defective
immune and inflammatory gene expression in macrophages
(Mieczkowski et al., 2015). NF-kB signaling is required for
macrophage polarization and immune suppression in GB,
making NF-kB a suitable target to improve overall survival in
April 2020 | Volume 11 | Article 368
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GB (Achyut et al., 2017). TAMs strongly inhibit the proliferation
of antitumor T cells in the tumor microenvironment (Kumar
et al., 2017). It was shown that an inhibition of transcription
factors such as NF-kB, a mediator of M2 macrophages
polarization, led to slower tumor growth and prolonged
survival in a mouse model. It also decreased T cell induction
which made the tumor less immunosuppressive (Barberi et al.,
2018). Targeting NF-kB may improve the effectiveness of the
current standard therapies.

TAMs express IL-4Ra that promotes immunosuppression. In
mice, they also express Arg1 that is critical for T cell inhibition
(Kohanbash et al., 2013). Chemokine ligand 22 (CCL22) is
produced by TAMs and its expression is associated with a low
Frontiers in Pharmacology | www.frontiersin.org 5
survival rate and CD4+ T cell activation (Zhou et al., 2015). One
of the key regulators of the immunosuppressive environment in
GB is fibrinogen-like protein 2 (FGL2). Its expression was
correlated with a higher number of CD4+ T cells and M2
macrophages (Latha et al., 2018). The colony stimulating factor
receptor (CSF1R) is required for the recruitment of TAMs in the
tumor microenvironment. It is also involved in promoting the
polarization of macrophages toward the M2 phenotype.
Inhibition of CSF1R attenuates the recruitment of TAMs and
also increases the CD8+ T cell infiltration (Strachan et al., 2013)
(Figure 1). Another regulator of the immune microenvironment
is the receptor tyrosine kinase AXL that is expressed in TAMs
(Sadahiro et al., 2018). Its inhibition in a GB mouse model was
April 2020 | Volume 11 | Article 368
FIGURE 1 | Tumor-associated macrophage activities in glioblastoma progression. This figure shows the pro-tumoral (angiogenesis, invasion, proliferation and
immunosuppressive properties) and anti-tumor (Tumor cell killing, Th1 response and anti-tumor activity) activities of tumor-associated macrophages (TAMs) in brain
tumors. (1) Monocytes are recruited to the tumor where they differentiate into macrophages. The tumor is involved in their programming as it sends different signals
to induce a specific phenotype in favor of the tumor. (2) TAMs that are recruited can either polarize into a continuum of macrophage states that are described with
two extremes: an M1 (2a) or an M2 (2b) phenotype depending on the signal they receive (IFNg/LPS/GM-CSF for M1 and IL-4/IL-13/M-CSF for M2) Pyonteck et al.,
2013; Kast et al., 2017; Roesch et al., 2018. (3) M1-like TAMs are macrophages with anti-tumor properties such as tumor cell kill abilities mediated by the
production of NO, ROS, IFNg Kennedy et al., 2013; Leblond et al., 2017. They also mediate the Th1 response in the tumor through the activation of Th helper cells
by secreting CXCL9, CXCL10, IL-12 Poon et al., 2017. Finally, they also display an anti-tumor activity by activating cytotoxic T cells via TNFa and IL1b. (4) M2-like
TAMs have pro tumoral properties such as enhancing the invasive and proliferative ability of GB cells by secreting CSF-1, MMPs, Pyk2, TGFbIIR, TGFb, IL-6, IL-10,
and EGF. They can also mediate the immunosuppressive environment through the expression of IL-6, MIC-1, MIF, STAT3, and TGFb. Finally, TAMs also regulate
angiogenesis through the following factors: IL-6, MIC-1, MIF, STAT3, and TGFb. (5) The tumor controls the polarization of TAMs through the production of soluble
factors (CCL2/CCL7/SDF-1/CX3CL1/VEGF/POSTN/Ecrg4) Feng et al., 2015; Hambardzumyan et al., 2015; Lee et al., 2015; Zhou et al., 2015; Chang et al., 2016;
Chen and Hambardzumyan, 2018; Turkowski et al., 2018 and microvesicle factors (EGFRvIII, miR451, miR21) Van Der Vos et al., 2016; Manda et al., 2018. (6) The
tumor is also able to send signals to recruit new peripherical macrophages. (7) Environmental cues including radiotherapy, chemotherapy, O2 level, pH are involved in
the programing and functions of macrophages Hardee et al., 2012. (8) Healthy brain cells and TAMs probably interact and are involved in the programming of TAMs.
Their interaction has yet to be studied. CCL2, C-C motif chemokine ligand 2; CCL7, C-C motif chemokine ligand 7; CSF-1, colony stimulating factor 1; CXCL2, C-
X3-C motif chemokine ligand 2; CX3CL1, C-X3- C motif chemokine ligand 1; Ecrg4, esophageal cancer-related gene 4; EGF, endothelial growth fact; IGFBP1,
insulin-like growth factor-binding protein 1; IL-1b, interleukin-1 beta; IL-10, interleukin-10; IL-6, interleukin-6; MIC-1, macrophage inhibitory cytokine 1; MIF,
macrophage migration inhibitory factor; MMPs, matrix metalloproteinases; POSTN, periostin; Pyk2, proline rich tyrosine kinase 2; SDF-1, stromal cell-derived factor
1; STAT3, signal transducer and activator of transcription3; TGF-b, transforming growth factor-beta; TGFbIIR, TGF-beta type II receptor; VEGF, vascular endothelial
growth factor; bFGF, basic fibroblast growth factor.
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associated with prolonged survival. Furthermore, myeloid
derived suppressor cells (MDSC) such as TAMs have been
described to be activated by GB CSCs through MIF expression,
having then an immunosuppressive activity on CD8+ T cells,
notably through the Arg1 expression in mice models (Flavahan
et al., 2016). Overall, targeting TAMs may disturb the
immunosuppressive environment of the tumor, allowing the
immune cells to function more effectively.

Loco-Regional Cues for Metabolic Reprogramming
A peculiarity of GB is that it affects the seat of our consciousness, the
CNS, whose immune status remains privileged due notably to the
presence of the blood-brain barrier (BBB) and of unique resident
cells (microglia, astrocytes, endothelial cells) (cf. Box 1). Although a
precise control of the inflammatory or immune infiltrate is realized,
the physiological and anatomical characteristics of the CNS is fed by
the field of new recent knowledge, such as the identification of direct
vascular channels connecting skull bone marrow to the brain
surface enabling myeloid cell migration (Herisson et al., 2018),
and make evolve our representation of its immune status. It should
be stressed, however, that depending on the therapeutic strategy
envisaged, the drug used can have a distinct impact when used
according to a peripheral or loco-regional mode of administration
(cf. Tables 1–3). Hence, if TAMs influence immune and adaptive
signaling, reciprocally, loco-regional metabolic signals produced in
tumor environments (glucose, glutamine, cystéine, lactate, IDO,
adenosine, itaconic acid, acidic pH) impacted the polarization fate
and immunosuppressive functions of TAMs, thus possibly resulting
in immune tolerance and treatment resistance in GB (for review, see
Won et al., 2019). Hence, tolerance can be reversed at both the
promoters and enhancers of tolerized genes involved in metabolism
and lipid biosynthesis, leading to transcriptional programs that
rewired the intracellular signaling of innate immune cells thus
increasing the capability of macrophages to respond to
stimulation (for review see, Locati et al., 2020). In line with this, it
has been observed that inhibition of fatty acid synthase (FAS), which
catalyzes the synthesis of long-chain fatty acids, prevents the pro-
inflammatory response in macrophages (Carroll et al., 2018).
Interestingly, using metabolic profiling, it was found that exposure
to b-amyloid triggers acute reactive microglial inflammation
accompanied by metabolic reprogramming from oxidative
phosphorylation to glycolysis while metabolic boosting with
Frontiers in Pharmacology | www.frontiersin.org 6
recombinant interferon-g treatment reversed the defective
glycolytic metabolism and inflammatory functions of microglia
(Baik et al., 2019). Such microglial metabolic switch may also
have a strong impact on GB development.

TAMs and Therapeutics
TAMs and Surgical Resection
Surgical resection is the current standard treatment for GB.
However, limited data on the biological consequences of
surgical resection have been published so far. It was reported
that surgical resection increases proliferation and angiogenesis
(Kong et al., 2010). After surgical resection, TAMs were shown to
express higher levels of CD163, a M2 macrophage marker, and
their localization was close to the site of recurrence (Zhu H. et al.,
2017). Both TAMs and oligodendrocyte progenitor cells are
localized near the tumor periphery. They enhance the stemness
and chemo-radioresistance in GB cells (Hide et al., 2018). It was
shown that tumor phenotypes associated with telomerase
overexpression and TAMs infiltration were more complicated
to resect, probably due to improvement of GB cell migratory
capabilities (Hung et al., 2016). The inability to surgically remove
the whole tumor contributes to the poor prognosis and
recurrence of GB.
TAMs and Radiotherapy
Macrophages inside the tumor mass are involved in multiple
phenomena that include radiation resistance. Radiation therapy
itself induces changes in the tumor microenvironment and renders
the tumor more aggressive. In fact, recurrence mostly appears near
the irradiated area (Gupta and Burns, 2018). Radiotherapy induces a
rapid inflammatory response leading to TAMs recruitment. This
inflammatory response is correlated with a short survival time
(Tabatabaei et al., 2017). TAMs participate in the induction of GB
cell differentiation to a mesenchymal state through NF-kB
production, an event that correlated with radiation resistance
(Bhat et al., 2013). Recently, Leblond et al. showed that M1
macrophages are more sensitive to radiation than M2
macrophages (Leblond et al., 2017). The proportion of M2
macrophages in irradiated tissues is thus increased. Moreover, M2
macrophages were described to contribute to relapses in oral cancer
by promoting vascularization after radiation treatment (Okubo
BOX 1 | Non-cancerous brain cells alter macrophages polarization and functions.

Tumor cells cooperate with its surroundings such as the tumor microenvironment. The brain is also the home of specific cell types with their own characteristics and
functions; although those cells are not part of the tumor, they can also interact with it. The interaction between cells residing in the brain and TAMs are very poorly
understood in cancer but has been studied in depth in other pathologies, which will be quickly reviewed in this box. Both neurons and astrocytes can produce CX3CL1R,
the receptor for CX3CL1 found on microglia Matias et al., 2018. CX3CL1 promotes TAM recruitment and increases the expression of MMPs and thus invasive properties.
When an ischaemic stroke happens, ischaemic neurons are able to prime microglia toward an M1 phenotype during an injury Hu et al., 2012. Another cell type is
oligodendrocyte which accounts for the formation of the myelin sheath in the CNS. It was found that macrophages and oligodendrocyte progenitor cells colocalized near
the tumor border. At this site of colocalization, those cells induced stemness and resistance to therapy in GB cells Hide et al., 2018. In the peripheral nervous system,
Schwann cells are the cells responsible for myelin sheath formation. Schwann cells were shown to promote cancer invasion by direct contact with tumor cells Deborde
et al., 2016. The mechanism involved in this process remains unclear. In neurofibromas (peripheral nerve sheath tumors due to NF1 loss in Schwann cells), macrophages
were shown to be abundant Stratton et al., 2018. In this case, Schwann cells and macrophages communicate with each other and are involved in the regulation of
inflammatory gene expression. As Schwann cells and oligodendrocytes share a common function in normal tissue, it may be interesting to further study the involvement of
oligodendrocytes in GB. Non-cancerous cells of the CNS and peripheral nervous system interact with macrophages and lead them to polarize toward a specific
phenotype.
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et al., 2016). In a radioresistant GB model, the total RNA was
sequenced and it was found that there was a positive regulation of
macrophage chemotaxis following radiation (Doan et al., 2018).
Also, in a murine gliomamodel, an increase in SDF-1a at the tumor
invasion front after radiotherapy was correlated with the
recruitment of TAMs and radioresistance (Wang et al., 2013).
Irradiation of the tumor leads to the alteration of multiple
pathways. In particular, it modifies the macrophage activation
type, rendering them more supportive of tumor growth.
TAMs and Chemotherapy
The standard treatment of GB affects the molecular profiles of
the tumor. Temozolomide (TMZ) is commonly used to treat GB.
TAMs that express CD74 were described to be involved in TMZ
resistance by inducing AKT and Erk1/2 activation in tumor cells
(Kitange et al., 2010). Gene expression profiling showed that the
tumor that recurred after treatment did not match the primary
treatment-naïve tumor. After treatment, the polarization toward
the M2 phenotype was upregulated (Hudson et al., 2018). Tumor
protein 53 (p53) is involved in promoting the development of the
tumor. GB with the p53 isoform D133p53b had increased
CD163+ macrophages (Kazantseva et al., 2018). Moreover,
D133p53b supports cancer stemness (Arsic et al., 2015). In
addition, it is correlated with resistance to TMZ (Kazantseva
et al., 2018). GB is able to evade the toxic effects of chemotherapy,
but it can equally evade the action of the immune system. Hence,
a cocktail of multiple drugs targeting different pathways may
Frontiers in Pharmacology | www.frontiersin.org 7
provide the most effective therapy for GB and improve
overall survival.
CURRENT THERAPIES TARGETING
TUMOR-ASSOCIATED MACROPHAGES IN
CANCER

Targeting the Recruitment of TAMs
One strategy to target TAMs is to block their recruitment to the
tumor site. It can be achieved by targeting the chemokine ligand
2 (CCL2) - chemokine receptor 2 (CCR2) axis. CCL2 is an
inflammatory chemokine that can recruit macrophages and Treg
lymphocytes leading to an immunosuppressive environment
(Chang et al., 2016). To achieve this, a human IgG1k mAb
called Carlumab was developed. A survey of clinical trials
involving the CCL2-CCR2 axis is provided in Table 1.

A phase 2 study showed that this antibody was well-tolerated.
However, it did not block the CCL2-CCR2 axis or have any
antitumor activity as a single agent in metastatic prostate cancer
(Pienta et al., 2013) (NCT00992186). When Carlumab was
combined with four other chemotherapies, the treatment was
still well tolerated but the suppression of CCL2-CCR2 axis
remained elusive (Brana et al., 2015) (NCT01204996). In other
studies, Carlumab was shown to transiently suppress CCL2 and
had a preliminary antitumor activity (Sandhu et al., 2013)
(NCT00537368, 2007). PF-04136309 combined with
TABLE 1 | Clinical trials targeting the recruitment of macrophages.

Target Drugs Inhibitor
type

Clinical trial Tumor type Benefit

CCL2-CCR2
axis

Carlumab mAb NCT00992186 (2009) (completed,
has results)
NCT01204996 (2010) (Completed)
NCT00537368 (2007) (Completed)

Metastatic Castrate-Resistant Prostate
Cancer
Solid Tumors
Solid Tumors

Information about the disease’s
progression

PF-04136309 Small
molecule

NCT02732938 (2016) (Terminated) Metastatic Pancreatic Cancer Unknown

MLN1202 mAb NCT01015560 (2009) (Completed
with results)

Bone Metastases Well tolerated

CCX872-B Small
molecule

NCT03778879 (2018) (Not yet
recruiting)

Pancreatic Adenocarcinoma Unknown

BMS-813160 Small
molecule

NCT03496662 (2018) (Recruiting) Pancreatic Ductal Adenocarcinoma
(PDAC)

Unknown

CD47 Hu5F9-G4 mAb NCT02953509 (2016) (Recruiting)
NCT03248479 (2017) (Recruiting)
NCT02216409 (2014) (Active, not
recruiting)
NCT02678338 (2016) (Recruiting)
NCT02953782 (2016) (Recruiting)

B-cell Non-Hodgkin’s Lymphoma
Haematological Malignancies
Haematological Malignancies

Haematological Malignancies
Colorectal Cancer

Unknown

TTI-621 Small
molecule

NCT03530683 (2018) (Recruiting)
NCT02663518 (2016) (Recruiting)

Refractory Lymphoma, Myeloma
Hematologic Malignancies and Selected
Solid Tumors

Unknown

ALX148 Small
molecule

NCT03013218 (2017) (Recruiting) Solid Tumors and Lymphoma Unknown

SRF231 mAb NCT03512340 (2018) (Recruiting) Solid and Hematologic Cancers Unknown
CC-90002 mAb NCT02367196 (2015) (Recruiting) Solid and Hematologic Cancers Unknown
IBI188 mAb NCT03763149 (2018) (Not yet

recruiting)
NCT03717103 (2018) (Recruiting)

Malignant Tumors and Lymphomas
Advanced Malignancies

Unknown
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chemotherapy was also shown to be well-tolerated and led to a
tumor response (Nywening et al., 2016).

Reprogramming of TAMs Toward an
Antitumoral Phenotype
As mentioned previously, TAMs can exist in different functional
states between the M1 and M2 phenotypes, making them highly
heterogeneous and plastic cells (Biswas and Mantovani, 2010).
Thus, they can be either pro- or anti-tumoral (Wynn et al., 2013).
Frontiers in Pharmacology | www.frontiersin.org 8
Reprogramming the TAMs toward a tumoricidal or a tumor-
inhibition state may be a plausible therapeutic strategy. Different
strategies are being studied in the clinic. These are reported in
Table 2 (please refer also to Box 2).

Inhibition of CD47
Inhibition of CD47 is a strategy that can facilitate phagocytosis of
tumor cells by macrophages. Indeed, CD47 expressed by cancer
cells inhibits phagocytosis through its interaction with signal
TABLE 2 | Clinical trials with toll-like receptor (TLR) agonists for macrophages reprogramming.

Target Drugs Inhibitor
type

Clinical trial Tumor type Benefit

CD40 APX005M mAb NCT03502330 (2018) (Recruiting)
NCT02482168 (2015) (Active, not
recruiting)
NCT03123783 (2017) (Recruiting)
NCT03389802 (2018) (Recruiting)
NCT03165994 (2017) (Recruiting)

Non-small Cell Lung Cancer, Renal Cell Carcinoma
Solid tumors
Non-small Cell Lung Cancer or Metastatic Melanoma
Pediatric CNS Tumors
Resectable Esophageal and Gastroesophageal Junction Cancers

Unknown

Selicrelumab mAb NCT02304393 (2014) (Recruiting) Locally Advanced and/or Metastatic Solid Tumors Unknown
ChiLob 7/4 mAb NCT01561911 (2012) (Completed) Non-Hodgkin Lymphoma Unknown
CP-870,893 mAb NCT00607048 (Completed) Non-Hodgkin Lymphoma Unknown
CDX-1140 Small

molecule
NCT03329950 (Recruiting) Advanced Malignancies Unknown

TLR7 LHC165 Small
molecule

NCT03301896 (2017) (Recruiting) Advanced Malignancies Unknown

Imiquimod Small
molecule

NCT01421017 (2011) (Completed)
NCT00899574 (2009) (Completed with
results)

Breast Cancer With Skin Metastases
Chest Wall Recurrence or Skin Metastases

Well tolerated.
Partial response:
tumor
regression and
immune
response

NKTR-262 Small
molecule

NCT03435640 (2018) (Recruiting) Locally Advanced or Metastatic Solid Tumor Malignancies Unknown

IMO-8400 Small
molecule

NCT02252146, (Completed with
results)

Diffuse Large B Cell Lymphoma (DLBCL) Lack of efficacy

Resiquimod Small
molecule

NCT00821652 (2009) (Completed) Surgically resected Stage IIB, IIC, Stage III or Stage IV (AJCC criteria)
Melanoma

Unknown

DSP-0509 Small
molecule

NCT03416335 (2018) (Recruiting) Advanced Solid Tumors Unknown

TLR8 VTX-2337 Small
molecule

NCT02431559 (2015) (Completed)
NCT01294293, (Completed)
NCT01334177, (Completed)
NCT02452697 (2015) (Recruiting)

Platinum-Resistant Ovarian Cancer
Ovarian Epithelial, Fallopian Tube, or Peritoneal Cavity Cancer
Ovarian Epithelial, Fallopian Tube, or Peritoneal Cavity Cancer
Myeloid and Lymphoid Malignancies

Unknown

TLR9 EMD
1201081

Small
molecule

NCT01040832 (2009) (Completed with
results)

Recurrent or Metastatic Squamous Cell Carcinoma of the Head and
Neck

EMD 1201081
was well
tolerated in
combination
with cetuximab,
but no clinical
efficacy was
observed Ruzsa
et al., 2014

DUK-CPG-
001

Small
molecule

NCT02452697 (2015) (Recruiting) Myeloid and Lymphoid Malignancies Unknown

IMO-2055 Small
molecule

NCT00719199 (2008) (Completed)
NCT00633529 (2008) (Completed)

Colorectal Cancer
NSCLC

Unknown

CMP-001 Small
molecule

NCT03618641 (2018) (Recruiting)

NCT03507699 (2018) (Recruiting)

Stage IIIB/C/D Melanoma Patients With Clinically Apparent Lymph
Node Disease
Metastatic Colorectal Cancer

Unknown

SD-101 Small
molecule

NCT03007732 (2017) (Recruiting)
NCT03410901 (Recruiting)
NCT02927964 (2016) (Recruiting)
NCT02254772 (2014) (Completed with
results)

Hormone-Naïve Oligometastatic Prostate Cancer
Low-Grade B-Cell Non-Hodgkin Lymphoma
Refractory Grade 1-3A Follicular Lymphoma
Recurrent Low-Grade B-Cell Lymphoma

Well tolerated
but progression
of the tumor
was observed
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regulatory protein-a (SIRPa) expressed by macrophages thus
sending out a “do not eat me” signal. Alternatively, CD47 can
serve as a receptor for thrombospondin 1 (TSP1) to trigger
specific signaling. Many tumors are described to overexpress
CD47 (Zhang et al., 2015; Zhao et al., 2016). Inhibition of CD47
in a preclinical model showed a modification of microglia
phenotypes in GB that was correlated with better survival
(Hutter et al., 2019). Furthermore, in vivo, the anti-CD47
treatment is able to shift the macrophage phenotype toward an
M1 type (Zhang et al., 2016) and induces anti-tumor effects (Li F.
et al., 2017). The preclinical study of Hu5F9-G4 in pediatric
malignant primary brain model demonstrated that this CD47
inhibitor is a safe and effective therapeutic agent (Gholamin
et al., 2017). Hu5F9-G4 was also shown to be well tolerated in a
Frontiers in Pharmacology | www.frontiersin.org 9
clinical trial (Sikic et al., 2018) (NCT02216409, Table 2). TTI-
621, a small molecule inhibiting CD47, is being investigated in an
ongoing clinical trial. Interestingly, however, it has recently been
observed that CD47 inhibition may result in cancer cell
resistance to chemotherapy through escape to senescence
(Guillon et al., 2019).

Activation of CD40
CD40 is expressed on monocytes, macrophages, dendritic cells,
and B cells. It is a receptor that belongs to the TNF receptor
superfamily. Many clinical trials targeting CD40 notably through
agonistic or activating antibodies are ongoing (Table 3). In a
mouse model, targeting CD40 was useful in producing antitumor
effects that greatly improved the overall survival (Shoji et al.,
TABLE 3 | Clinical trials using drugs to deplete macrophages from the tumor’s microenvironment.

Target Drugs Inhibitor type Clinical trial Benefit

CSF1R Pexidartinib Small molecule NCT02777710 (2016) (Recruiting) Metastatic/Advanced Pancreatic or Colorectal Cancers Unknown
DCC-3014 Small molecule NCT03069469 (2017) (Recruiting) Advanced Malignancies Unknown
LY3022855 mAb NCT03153410 (2017) (Recruiting)

NCT02718911 (2016)
(Completed)
NCT03101254 (2017) (Recruiting)

Pancreas Adenocarcinoma
Advanced Solid Tumors
Melanoma

Unknown

PLX3397 Small molecule NCT01004861 (2009)
(Completed)
NCT02452424 (2015)
(Completed)
NCT01349036 (2011)
(Completed)
NCT02371369 (2015) (Active, not
recruiting)

Solid Tumors
Melanoma and Other Solid Tumors
Recurrent Glioblastoma
Pigmented Villonodular Synovitis (PVNS) or Giant Cell
Tumor of the Tendon Sheath (GCT-TS)

Unknown

MCS110 Small molecule NCT03694977 (2018) (Not yet
recruiting)

Gastric Cancer Unknown

IMC-CS4 Small molecule NCT01346358 (2011)
(Completed)

Advanced Solid Tumors Unknown

Cabiralizumab mAb NCT03697564 (2018) (Not yet
recruiting)
NCT02526017 (2015) (Active, not
recruiting)

Stage IV Pancreatic Cancer Unknown

SNDX-6352 mAb NCT03238027 (2017) (Recruiting) Solid Tumors Unknown
JNJ-
40346527

Small molecule NCT03557970 (2018) (Not yet
recruiting)

Acute Myeloid Leukemia Unknown

ARRY-382 Small molecule NCT02880371, (Recruiting)
NCT01316822 (2011)
(Completed)

Acute Myeloid Leukemia
Advanced or Metastatic Cancers

Unknown

BLZ945 Small molecule NCT02829723 (2016) (Recruiting) Advanced Solid Tumors Unknown
RO5509554 Small molecule NCT01494688 (2011)

(Completed)
Advanced Solid Tumors Unknown

NA Clodronate Bisphosphonate NCT01198457 (2010)
(Completed)
NCT00009945 (2010) (2003)
(Completed with results)
NCT00909142 (2009)
(Completed)
NCT00003232 (2004)
(Completed)
NCT00127205 (2005) (Active, not
recruiting)

Breast Neoplasms, Prostatic Neoplasms, Multiple Myeloma
Stage I or Stage II Breast Cancer

Bone neoplasms
Hormone Refractory Metastatic Prostate Cancer
Primary Breast Cancer

Treatment with clodronate
suggests a benefit in
recurrence rates for

postmenopausal women
with breast cancer

Paterson et al., 2012

Zoledronate Bisphosphonate NCT00301873 (2006)
(Completed, has results)
NCT00885326 (2009) (Active, not
recruiting)
NCT01345019 (2011), (Active,
not recruiting)

Primary Malignant Glioma

High-Risk Neuroblastoma

Multiple Myeloma
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2016). Targeting CD40 modulated the immune cell number and
led to an antitumor response (Vonderheide et al., 2013; Nowak
et al., 2015). In a mouse model, the combination of CSF1R
inhibition and CD40 activation induced the reprogramming of
TAMs (Hoves et al., 2018), thus allowing the protective response
of T cells (Perry et al., 2018).

TLR Agonist
Toll-like receptors (TLRs) are normally activated by microbial
moieties (including nucleic acids) allowing macrophages to
acquire a M1 phenotype. Using a TLR agonist to reprogram
macrophages was thus of interest in cancer treatment (Feng et al.,
2019). Numerous TLR7 ligands, TLR9 ligands, and one TLR8
ligand have been tested for their antitumoral properties in
clinical trials (Table 2). For example, the TLR7 agonist
Imiquimod has been tested. It was well tolerated and
associated to tumor regression and increased lymphocytic
infiltrate (Adams et al., 2013) (NCT00899574). The TLR7
agonist 852A was also well tolerated with reversible side effects
(Dudek et al., 2007). IMO-2055, a TLR9 agonist, demonstrated a
possible antitumor activity when combined with erlotinib and
bevacizumab (Smith et al., 2014) (NCT00633529).
Depletion of TAMs
The activation of TAMs is dependent on the CSF1R signaling
pathway. Therefore, CSF1R may be a way to target macrophages
specifically. Many small molecules and antibodies were
developed against CSF1R, and numerous clinical trials have
been completed or are ongoing (Table 3). PLX3397 is a small
molecule targeting CSF1R, it reduced the number of TAMs in a
preclinical GB model and showed an antitumor activity
(Coniglio and Segall, 2013; Yan et al., 2017). In clinical studies,
PLX3397 was also well tolerated and showed anti-tumor
responses after treatment (Tap et al., 2015) (NCT01004861).
PLX3397 was also well tolerated but showed no efficacy in GB
(Butowski et al., 2016) (NCT01349036). BLZ945, another small
molecule inhibitor of CSF1R, can alter the polarization of TAMs
in glioma (Pyonteck et al., 2013). It is currently being assessed in
a clinical trial.

Another way to deplete the number of TAMs in the tumor is
to use bisphosphonates. They are described for both direct and
indirect anti-tumor effects such as induction of tumor apoptosis
and inhibition of cell adhesion. More importantly, they alter the
behavior of TAMs (Van Acker et al., 2016). Bisphosphonates are
Frontiers in Pharmacology | www.frontiersin.org 10
divided in two classes depending on their structure and
mechanism of action. Clodronate belongs to the first group
while zoledronate belongs to the second group. Both
zoledronate and clodronate are still being assessed in clinical
trials (Table 3).
CONCLUSION

In GB microenvironment, both resident and peripheral
macrophages are present and there is an urgent need to
understand their specific roles in tumor progression and
resistance to treatment. It is obvious that macrophages may be
a useful target to improve the outcome of cancer. Currently,
many drugs targeting macrophages are being tested in the clinic.
However, only a few are tested specifically in GB. The immune
landscape in GB, and in cancer in general, has to be investigated
further as there is a lack of efficacy in the clinic when only TAMs
are targeted. The targeting of TAMs must be implemented hand
in hand with the standard treatment to potentially improve the
overall effect. In summary, TAMs seem to be a promising target
to overcome resistance that arises in GB.
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