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1  | INTRODUC TION

Alternative splicing (AS) modifies over 90% of human genes by 
removing most introns and selectively including or excluding 
specific exons.1-3 It regulates the specificity of gene expression,4 
plays an important role in the diversity of mRNA isoforms with 
a limited set of genes and down-regulates the translation of 
mRNA isoforms.5-7 AS is also an essential mechanism in physio-
logical processes, such as hematopoiesis and muscle function,8,9 
and in cancer-causing pathological processes, including prolif-
eration, apoptosis, hypoxia, angiogenesis, immune escape and 

metastasis.10,11 Furthermore, changes and defects in splicing 
patterns and generation of peculiar mRNA isoforms can trigger 
cancer.11-13 Thus, AS participates in oncogenesis, and the profiling 
of AS events may provide novel potential biomarkers for cancer 
prognosis, diagnosis and treatment.

In 2012, the estimated number of new cases of kidney cancer 
worldwide was 338 000.14 Currently, kidney cancer is the 9th most 
common carcinoma in men and the 14th most common in women 
globally. Renal cell carcinoma comprises more than 90% of this ma-
lignant tumour, and clear cell carcinoma accounts for a large pro-
portion of approximately 70%.15 The relevance of AS events in 
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analyses revealed some potential functions of prognostic AS events. This study pro-
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kidney cancer is gradually being revealed. The importance of the 
AS of enhancer of zeste 2 polycomb pre-mRNA in the tumorigenic 
potential of kidney cancer has been reported.16 The AS variants of 
doublecortin-like kinase 1 are overexpressed in kidney renal clear 
cell carcinoma (KIRC) and may be implicated in immune response.17 
In addition, differentially splicing isoforms between KIRC and non-
tumour tissues have been studied, and a cassette exon differentially 
skipped in DAB adaptor protein 2 in KIRC has been identified.18 
The importance of the systemic profiling of survival-associated AS 
has been emphasized in lung, ovarian and prostate cancers.19-21 
However, the survival-associated AS events in KIRC have yet to be 
systematically studied.

Bioinformatics analysis is a scientific method to examine ge-
netic information and employ approaches to acquire, store, visu-
alize and interpret medical or biological data.22 Bioinformatics is 
widely used in cancer studies.23,24 Machine learning, which is an 
important bioinformatics method, is applied to considerable clin-
ical data sets to develop robust risk models and redefine patient 
classes.25 The least absolute shrinkage and selection operator 
(LASSO) regression is one of the machine learning methods suit-
able for the regression of massive and multivariate variables.26 
These methods provide an optimized approach for the systematic 
study of AS in KIRC.

The Cancer Genome Atlas (TCGA) is a project that provides 
the detailed mRNA expression data and clinical information of 
patients with cancer.27 In the current study, we comprehensively 
profiled the genome-wide AS events in 537 patients with KIRC 
from TCGA. We discovered a number of survival‐associated AS 
events through bioinformatics analysis. Using LASSO regres-
sion, we built a high-power prognostic model based on the per 
cent spliced in (PSI) value of AS for patients with KIRC. We also 
revealed interesting function pathways in correlative genes and 
the potential mechanisms of AS influencing the prognosis of such 
patients. We aimed to construct an optimized survival‐predicting 
model and provide useful data resources for future in-depth stud-
ies on AS mechanisms in KIRC.

2  | MATERIAL S AND METHODS

2.1 | Data acquisition and processing

First, the RNA-seq data and clinical information of the KIRC co-
hort were downloaded from the TCGA data portal (https ://tcga-
data.nci.nih.gov/tcga/) by using the GDC tool. mRNA expression 
counts were converted into an expression value by using DEseq 
R package, and only the expression counts of more than 2 were 
included.28 Furthermore, only patients with at least 30 days of 
overall survival (OS) were retained in the study. Second, AS events 
with PSI value of KIRC were obtained from the TCGA SpliceSeq 

data portal (https ://bioin forma tics.mdand erson.org/TCGAS plice 
Seq/PSIdo wnload.jsp). AS events were divided into seven differ-
ent types, so the intersections between these types and the quan-
titative analysis of these interactive sets were presented by the 
UpSet plot.29 PSI value is a visualized ratio for quantifying an AS 
event from 0 to 1, and it is calculated for the seven types of AS 
events. A PSI value of 0 or 1 was then filtered, and the correspond-
ing splicing patterns whose exon was NA were deleted. Third, a 
matrix with the seven types of AS events was built. The PSI value 
of the AS events was combined with the OS information and sur-
vival stage by gene symbols.

2.2 | Univariate survival analysis

COX regression allows us to calculate a special form of rate ra-
tios known as hazard ratios (HRs) and investigate the relationship 
of predictors and time to event. Using COX regression, we can 
obtain a P value provided by the log-rank test and estimate an ef-
fect with its confidence intervals (CIs). To determine the survival-
associated AS events, we performed univariate COX regression 
analysis between AS and OS by using ‘survival’ and ‘survminer’ 
R package. Furthermore, we divided the survival-associated AS 
events into high- or low-risk groups by using the surv_cutpoint 
function and applied a log-rank test to verify the cut-point ac-
curacy. Kaplan-Meier (K–M) curves were built to demonstrate 
the survival probability variation with time in high- and low-risk 
groups. P < .05 was considered significant, and all reported P val-
ues were two-sided.

2.3 | LASSO regression for multivariate prognostic 
model construction

To gain the final highly important prognostic predictors with less 
errors, we applied LASSO regression rather than multivariate COX 
regression, which may not be that suitable for this type of data, 
among survival-associated AS events.30 This process, which is one 
of the machine learning methods adopted in several studies, was 
performed using glmnet package in R.31,32 A multivariate regression 
formula was constructed on the basis of the PSI value of AS events. 
Lastly, several notable predictors with non-zero LASSO coefficients 
were obtained.

2.4 | Training and testing for multivariate 
prognostic models

The tumour samples obtained from the TCGA data portal were 
randomly distributed into two parts, namely training and test 
groups, by using classification and regression training (caret) 
packages. In the training set, a risk score was calculated for each 

F I G U R E  1   AS events in KIRC. A, AS events were divided into seven types. Blue columns represent AS number, and red columns 
represent gene number. B, Interactions between the seven types of AS events in KIRC presented by UpSet plot. Red dots represent splicing 
type, yellow columns represent AS number, and blue columns represent the interactive number of AS events

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://bioinformatics.mdanderson.org/TCGASpliceSeq/PSIdownload.jsp
https://bioinformatics.mdanderson.org/TCGASpliceSeq/PSIdownload.jsp
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patient, and the data were divided into high- and low-risk groups 
based on the cut-point of a risk score. The K-M curve was then 
applied to verify whether the prognostic model could distinguish 
patients with long or short OS.33 Receiver operator characteristic 
(ROC) curves in different years were built by using the survival 
ROC package to assess the efficiency of the prognostic model. In 
the test group, the same processes were performed to validate the 
prognostic model of this group.

2.5 | Correlation analysis for the source genes of AS

After several final important prognostic AS predictors were ob-
tained, the correlation between the expression levels of AS source 
genes and human protein-code genes was analysed through Pearson 
correlation analysis. P < .05 was identified to be correlative genes.

2.6 | Gene ontology (GO) analysis

Gene ontology (GO) analysis includes three categories: molecular 
function (MF), biological process (BP) and cellular component (CC). In 
this study, we selected BP to perform GO analysis through an enrich 
GO function in the clusterProfiler package(version 3.5) and obtained 
the original database from ‘org.Hs.eg.db’ package.34 To speculate the 
potential functions of survival-associated AS events leading to KIRC, 
we chose the source genes of notable AS events whose univariate 
regression P < .01 to perform GO analysis. In addition, to speculate 
the potential functions of the final AS predictors, we selected the 
top 500 correlative genes to perform GO analysis. For the AS events 
in GO analysis, we considered the adjusted P < .05 significant.

2.7 | Statistical analysis

R-studio platform (v. 3.5.1) was used for UpSet plot, univariate Cox 
regression, LASSO regression, K-M curves, ROC analysis, Pearson 
correlation and GO analysis. P < .05 indicated statistically significant 
difference. Regression coefficient (R) >0.5 was the cut-off of cor-
relation analysis.

3  | RESULTS

3.1 | Overview of AS events in KIRC cohort

AS events were comprehensively analysed in 537 patients with KIRC. 
AS events were divided into seven types, namely alternative acceptor 
site (AA), alternative donor site (AD), alternative promoter (AP), alter-
native terminator (AT), exon skip (ES), mutually exclusive exons (ME) 
and retained intron (RI), as presented in (Figure 1A). In the KIRC cohort, 
we obtained 42 522 mRNA splicing events in 10 600 genes containing 

3821 AAs in 2683 genes, 3270 ADs in 1486 genes, 5693 APs in 955 
genes, 8555 ATs in 1021 genes, 18 117 ESs in 3954 genes, 235 MEs 
in 12 genes and 2831 RIs in 489 genes (Figure 1 A). Nearly half of the 
AS events was ES, demonstrating that ES was the prevalent type. In 
Figure 1B, most of the AS events were from one gene, which could 
have several types of AS events. For example, one gene might contain 
up to six AS types, such as ES, AP, AT, AA, AD and RI. Furthermore, ES 
was the most common type of AS, whereas ME was the least.

3.2 | Survival‐associated AS events and GO analysis

To study the prognostic value of mRNA splicing events, we per-
formed univariate regression analysis to identify survival-asso-
ciated AS events (both prognostic P value and log-rank P < .005 
were considered significant). Consequently, we detected 12 888 
survival-associated AS events in KIRC. The top 10 HR >1 and 
the top 10 HR <1 survival-associated AS events are presented in 
Figure 2A, which contains information on gene ID and symbol, 
splicing type, exon site, HR, 95% CI and P value. We discovered 
that the AT of C4orf19 in exon site 6 was a favourable prognostic 
predictor, whereas the AT of C4orf9 in exon site 5 was a poor prog-
nostic predictor, indicating that a specific type of splicing event in 
different exon sites of one gene could have the opposite or dis-
tinctly different outcomes in KIRC. The top 10 HRs >1 and the top 
10 HRs <1 AS events showed considerable power in distinguish-
ing the good or poor outcome of patients with KIRC (Figure 2.B 
and C). To speculate the potential functions of survival-associated 
AS events, we utilized 6055 source genes of 12 888 AS events 
for bioinformatics analysis with GO. Top 10 significant GO terms 
were identified in BPs (adjusted P < .05), such as autophagy and 
their associated pathways, protein targeting and protein catabolic 
process; furthermore, the top 10 significant MF and CC pathways, 
such as cell adhesion and their associated pathways, were identi-
fied (adjusted P < .05) (Figure 2D).

3.3 | Multivariate AS prognostic model

After conducting univariate regression analysis, we obtained 12 888 
survival-associated AS events (P < .05). We then selected 8632 
significant survival-associated AS events (P < .01) as candidates in 
identifying the final prognostic predictors for patients with KIRC. 
As shown in (Figure 3A and B), LASSO logistic regression was per-
formed to the 8632 candidate AS events. Certain coefficients were 
accurately reduced to zero by forcing the total absolute value of 
the regression coefficients to be less than the constant value, and 
the most powerful prognostic predictors were selected. The final 
prognostic model of LASSO regression analysis is presented in 
Figure 3C as follows: first, the AP of KIAA0930 (HR = 1.9e + 01, 95% 

F I G U R E  2   Survival-associated AS events in KIRC. A, Top 10 hazard ratio (HR) >1 AS events and top 10 HR <1 AS events. B, K-M curves 
for top 10 HR >1 survival-associated AS events. C, K-M curves for top 10 HR <1 survival-associated AS events. AS, alternative splicing;  
CI, confidence interval. D, Top 10 GO terms. Adjust P value <0.05 was considered significant. Red columns represent biological process (BP), 
yellow columns represent cellular function (CF), and blue columns represent molecular function (MF)
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CI 7.3-47, P = 6.3e-10, LASSO coefficient was 0.1187852); second, 
the AP of uveal autoantigen with coiled-coil domains and ankyrin 
repeats(UACA, HR = 1.5e-02, 95% CI 4.1e-03-5.7e-02, P = 5.5e-10, 
LASSO coefficient was −0.2499786); third, the AA of ribosomal pro-
tein S24 (RPS24, HR = 1.0e-02, 95% CI 2.7e-03-3.7e-02, P = 6.3e-12, 
LASSO coefficient was −0.6294935); and fourth, the AT of BRCA2 
and CDKN1A interacting protein (BCCIP, HR = 1.1e-04, 95% CI 4.9e-
06-2.3e-03, P = 5.5e‐09, LASSO coefficient was −0.3275939). Most 
of these events were the same as the top important AS events pre-
sented in Figure 2A containing the AP of KI990, the AP of UACA 
and the AA of RPS24. This coincidence of overlapping indicated the 
science and efficiency of LASSO regression.

3.4 | Training for the multivariate AS 
prognostic model

Initially, a risk score was calculated for each patient in the training 
set by combining the PSI value of AS and the corresponding LASSO 
coefficient. The cut-off point generated from the optimal sensitiv-
ity and specificity based on the ROC curve was then used to di-
vide the patients into high- or low-risk groups (Figure 4A and C). 
Patients with risk scores of ≥ −17.13 were allocated to the high‐risk 
group, whereas the remaining patients were in the low-risk group 
(Figure 4A). Patients with high-risk scores likely expressed a high PSI 
value of the risky AS events (HR >1), whereas patients with low-risk 

F I G U R E  3   Multivariate prognostic 
model constructed by LASSO regression. 
A, Selection of the tuning parameter (λ) 
in the LASSO model through 10-fold 
cross-validation procedure was plotted as 
a function of log(λ). The y-axis represents 
partial likelihood deviance, and the lower 
x-axis represents the log(λ). Numbers 
along the upper x-axis represent the 
average number of predictors. Red dots 
indicate average deviance values for each 
model with a given λ, where the model 
provides its best fit to data. B, LASSO 
coefficient profiles of the 8632 survival-
associated AS events. The black dotted 
vertical line was the value selected using 
tenfold cross-validation in A. C, Final 
multivariate prognostic model containing 
four survival-associated AS events
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scores tended to express a high PSI value of protective AS events 
(HR <1) (Figure 4A). To study the relationship between risk score 
and survival status, we performed K-M curves and log-rank test 
on the training sets. As shown in Figure 4B, patients with high-risk 
scores likely had a low survival probability, whereas those with low-
risk scores had a high survival probability (HR = 7.7, 95% CI: 5.5-11; 
P < .001). As shown in Figure 4C, we used AUCs at 1, 3 and 5 years 
to assess the prognostic power of the final model. The AUCs of the 
ROC curves at 1, 3 and 5 years were >0.88, revealing a powerful 
prognostic ability.

3.5 | Testing for the multivariate AS 
prognostic model

To verify the results of the training set, we performed the same anal-
yses on the patients in the test set. As shown in Figure 5A,B,C, the 
results corresponded to our observation in the training set (HR = 3.9, 
95% CI: 2.7-5.7; P < .001). The AUCs in the test set were 0.759, 0.739 

and 0.764 at 1, 3 and 5 years, respectively. This observation verified 
the prognostic power of the final prognostic model in patients in the 
test set (Figure 5C). Hence, the prognostic model could satisfactorily 
predict the prognosis of patients with KIRC.

3.6 | Potential functions of genes from AS 
predictors in the multivariate AS prognostic model

We analysed the co‐expression between genes from the final AS 
predictors and other protein-code genes to obtain a co-expression 
relationship. (Figure 6A–D) illustrates the positive and negative 
correlations as examples. We then chose the top 500 correlated 
protein-code genes based on regression coefficients and P < .05 
to perform GO and speculate the functions of genes from the final 
AS predictors. The top significant BPs of KIAA0930 correlative 
genes were mainly associated with immunocyte and inflamma-
tory cell pathways, including T cell, neutrophil, leucocyte, mono-
nuclear and lymphocyte (Figure 6A). The significant GO terms of 

F I G U R E  4   Training for AS multivariate 
prognostic model. A, Upper part shows 
the distribution of risk score; the middle 
shows patients' survival time and status. 
The black dotted line represents the 
optimum cut-off point dividing patients 
into low- and high-risk groups; the bottom 
shows the heat map of the PSI value of 
the final AS predictors. B, Upper part 
shows the Kaplan-Meier (K-M) curves 
for high- and low-risk groups; the middle 
shows the number of living patient 
variation with time in high- and low-risk 
groups; the bottom shows the number of 
censoring variation with time in high- and 
low-risk groups. Green colour represents 
low-risk group data, whereas red colour 
represents high-risk group data.  
C, Receiver operator characteristic (ROC) 
curves for patients under training set at 
1, 3 and 5 years. Red colour represents 
1 year, green colour represents 3 years, 
and blue colour represents 5 years. AUC, 
area under the curve
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UACA correlative genes indicated that extracellular structure and 
oxidative phosphorylation were associated with ATP pathways 
(Figure 6B). The significant GO terms of RPS24-related genes in-
dicated viral gene expression, including transcription and transla-
tion (Figure 6C). The significant GO terms of BCCIP-related genes 
corresponded to pathways related to ATP metabolism (Figure 6D). 
Most of the abovementioned GO terms were closely associated 
with oncogenesis, and this finding revealed the potential func-
tions of the final prognostic model influencing the outcome of 
patients.

4  | DISCUSSION

In the present study, we first demonstrated the comprehensive fea-
ture of seven different types of AS in KIRC and then provided im-
portant information about the systematic analyses of AS events in 
KIRC. Consistent with other studies, our research showed that AS is 
a common process in KIRC and involved in oncogenesis. We identi-
fied massive AS events closely associated with survival via univariate 
regression analysis. We uncovered the potential functions of these 
AS events through GO analysis. Among BP pathways, autophagy is 

F I G U R E  5   Testing for AS multivariate 
prognostic model. A, Distribution of risk 
score and heat map of the genes from 
the final prognostic model. The black 
dotted line represents the optimum cut-
off point dividing patients into low- and 
high-risk groups. B, Survival analysis of 
patients under the test set. Green colour 
represents low-risk group, whereas red 
colour represents high-risk group. C, ROC 
curves for patients under the test set at 
1, 3 and 5 years. Red colour represents 
1 year, green colour represents 3 years, 
and blue colour represents 5 years. AUC, 
area under the curve
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the most remarkable and widely explored as a vital factor of onco-
genesis, tumour progression and cancer therapy.35-37 Moreover, au-
tophagy plays an important role in KIRC.38,39 Protein targeting and 

catabolic process are associated with oncogenesis.40 Aberrant cell 
adhesion is normally associated with tumour progression and cancer 
metastasis.41,42 Our results indicated several top GO terms closely 
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related to cell adhesion in CC and MF. The top significant GO terms 
were closely connected to oncogenesis, demonstrating that the 
results of GO analysis were reasonable. In addition, combining the 
results of GO analysis and previous studies suggested that survival-
associated AS events potentially influenced the abovementioned 
pathophysiological processes leading to KIRC.

We systematically studied the prognostic value of AS events in 
patients with KIRC. By applying LASSO regression analysis for sur-
vival-associated AS events, we first constructed an independent and 
efficient prognostic model, including AP of KIAA0930, AP of UACA, 
AA of RPS24 and AT of BCCIP. Traditionally, multivariate COX re-
gression is chosen to build a multivariate model, which generally 
focuses on several variables.19,20,43 By contrast, LASSO regression 
is preferably suitable for the regression of massive and multivari-
ate variables. To verify the prognostic model, we first constructed a 
novel classifier consisting of four AS events in the training and test 
sets. The results of K-M curves in the training and test sets revealed 
that the final prognostic model could successfully subdivide patients 
into a high- or low-risk group with poor or favourable OS, respec-
tively. In comparison with other studies, this study showed that the 
results of AUCs of ROC curves manifested favourable sensitivity 
and specificity. For instance, the AUC in the prognostic model of 
prostate carcinoma is 0.756, and the AUC in bladder carcinoma is 
0.748, indicating acceptable sensitivity and specificity.21,43 Thus, by 
calculating the risk scores combining the PSI value of AS and the 
corresponding LASSO coefficient, we constructed a powerful high-
performance prognostic model for risk stratification in KIRC, and it 
had promising implication in clinical practice. Given the high preva-
lence of splicing defects in cancer, the small-molecule modulators of 
RNA processing showed potential for novel therapeutic strategies in 
cancer treatment. Therefore, the AS events in this model could be 
targets in KIRC therapy.

Genes with correlative expression levels perform similar 
functions.44 Though the roles of the final AS predictors and their 
source genes in KIRC have not yet been studied, we performed 
co-expression and GO analyses to speculate the function of these 
AS source genes. For the four AS events in the prediction model, 
the most significant BPs were closely associated with inflamma-
tory cell activation, oxidative phosphorylation and ATP metabo-
lism-associated pathways, which are potentially related to cancer 
cell activation and changes in cellular metabolism and immuno-
logical function in KIRC.45-48 Thus, the prognostic model could 
differentiate the prognosis of patients with KIRC and provide sci-
entific evidence for future in-depth studies on AS mechanisms 
in KIRC.

However, this study has limitations. For example, our results 
were verified only by the TCGA data set because an additional ex-
ternal data set is unavailable. In addition, the prognostic model is 
not yet clinically validated. Thus, our next work may focus on clinical 
evaluation and application after prospective clinical trials. In conclu-
sion, we unveiled the systematic feature of AS events in KIRC for 
the first time and highlighted this field. Second, we built a powerful 
prognostic model combining multiple types of AS events in KIRC and 

possibly provided a significant basis for conducting future clinical 
studies. This study discovered massive important AS sites and pre-
sented scientific data for further mechanism studies.
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