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A major increase of bacterial resistance to colistin, a last-resort treatment for severe
infections, was observed globally. Using colistin in livestock rearing is believed to be the
ground of mobilized colistin resistance (mcr) gene circulation and is of crucial concern to
public health. This study aimed to determine the frequency and virulence characteristics of
colistin-resistant Gram-negative bacteria from the milk of mastitic cows and raw
unpasteurized milk in Egypt. One hundred and seventeen strains belonging to
Enterobacteriaceae (n = 90), Pseudomonas aeruginosa (n = 10), and Aeromonas
hydrophila (n = 17) were screened for colistin resistance by antimicrobial susceptibility
testing. The genetic characteristics of colistin-resistant strains were investigated for mcr-
1–9 genes, phylogenetic groups, and virulence genes. Moreover, we evaluated four
commonly used biocides in dairy farms for teat disinfection toward colistin-resistant
strains. Multidrug-resistant (MDR) and extensive drug-resistant (XDR) phenotypes were
detected in 82.91% (97/117) and 3.42% (4/117) of the isolates, respectively. Of the 117
tested isolates, 61 (52.14%) were colistin resistant (MIC >2 mg/L), distributed as 24/70
(34.29%) from clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and 27/36 (75%)
from raw milk. Of these 61 colistin-resistant isolates, 47 (19 from clinical mastitis, 8 from
subclinical mastitis, and 20 from raw milk) harbored plasmid-bornemcr genes. Themcr-1
gene was identified in 31.91%, mcr-2 in 29.79%, mcr-3 in 34.04%, and each of mcr-4
and mcr-7 in 2.13% of the colistin-resistant isolates. Among these isolates, 42.55% (20/
47) were E. coli, 21.28% (10/47) A. hydrophila, 19.12% (9/47) K. pneumoniae, and
17.02% (8/47) P. aeruginosa. This is the first report of mcr-3 and mcr-7 in P. aeruginosa.
Conjugation experiments using the broth-mating technique showed successful transfer of
colistin resistance to E. coli J53-recipient strain. Different combinations of virulence genes
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were observed among colistin-resistant isolates with almost all isolates harboring genes.
Hydrogen peroxide has the best efficiency against all bacterial isolates even at a low
concentration (10%). In conclusion, the dissemination of mobile colistin resistance mcr
gene and its variants between MDR- and XDR-virulent Gram-negative isolates from dairy
cattle confirms the spread ofmcr genes at all levels; animals, humans, and environmental,
and heralds the penetration of the last-resort antimicrobial against MDR bacteria.
Consequently, a decision to ban colistin in food animals is urgently required to fight
XDR and MDR bacteria.
Keywords: colistin, Gram-negative bacteria, mastitis, milk, mcr, virulence factors, multidrug-resistance
INTRODUCTION

Escherichia coli, Klebsiella pneumoniae, and Pseudomonas
aerug inosa are the most common Gram-nega t ive
environmental pathogens in dairy farms. They could infect the
mammary glands of dairy cows through the teat end and
colonize the mammary tissue, causing mastitis (Scatamburlo
et al., 2015; Gao et al., 2017). Although Aeromonas species are
autochthonous to aquatic environments, Aeromonas hydrophila
has been reported as a common contaminant in a diverse variety
of foods such as milk and milk products (Sharma and Kumar,
2011). Contamination of milk with pathogenic Gram-negative
bacteria is often derived directly from the udder excretion of
infected animals or the farm environment, thus putting the
consumers who consume unpasteurized milk at a high risk for
developing foodborne diarrheal diseases (Garcia et al., 2019).

In Egypt, there are no regulations that control the use of
antibiotics in animal husbandry for growth promotion or the
prevention and treatment of bacterial diseases (WHO, 2013).
The misuse of antibiotics in dairy production is a matter of
concern for the effective antibiotic therapy of infected cows, food
safety, and occupational exposure, and a potential threat to
public health due to the selection of multidrug-resistant
(MDR) bacteria and entry of antibiotic residues into bulk tank
milk (Oliveira and Ruegg, 2014; Locatelli et al., 2019). The
emergence of MDR and extensive drug-resistant (XDR) Gram-
negative bacteria in livestock production increased the interest in
the use of colistin (polymyxin E) as a last-resort antibiotic for the
treatment of these pathogens (Kempf et al., 2016). Although
colistin was prohibited in developed countries, it is still used in
animal husbandry in Egyptian dairy farms (Lima Barbieri et al.,
2017; Dandachi et al., 2019). Hence, the extensive use of colistin
increases colistin-resistant Gram-negative bacteria. Also, it
imposes a major public health concern (Lima Barbieri et al.,
2017) due to the dissemination of colistin resistance genes (mcr)
through mobilized plasmids among animal strains and
subsequently transmitted to humans through the food chain or
direct contact (McEachran et al., 2015; Garcıá et al., 2018; Hmede
and Kassem, 2019). Nine plasmid-borne mcr-family genes (mcr-
1–mcr-9) have been reported in over 40 countries from different
continents across the globe; most of them were detected in
several enterobacteria, including E. coli and K. pneumoniae
(Luo et al., 2020). The mcr-1 gene has been detected in most
gy | www.frontiersin.org 2
continents, while other genes have only been found in a few
countries (Ling et al., 2020). The mcr-1 gene has been reported
previously in colistin-resistant E. coli isolated from raw milk
(Coton et al., 2012; Hassen et al., 2019), mastitis bovine milk
(Filioussis et al., 2019; Liu G. et al., 2020), and cheese (Coton et al.,
2012; Hammad et al., 2019). A higher frequency of mcr-1
compared with other mcr genes has been reported in colistin-
resistant E. coli (98.9%), K. pneumoniae (100%), and P. aeruginosa
(100%) recovered from animal and human sources (Javed et al.,
2020). The implementation of pre- and post-milking teat
disinfection is a critical effective means of reducing the incidence
of clinical and subclinical mastitis as well as new intramammary
infections caused by Gram-negative environmental pathogens in
dairy farms such as E. coli, K. pneumoniae, and P. aeruginosa
(Tiwari, 2013; Kamal and Bayoumi, 2015; Böhm et al., 2017; Rowe
et al., 2018). Choosing the ideal disinfectant with an accurate
concentration is vital to control resistant bacteria in dairy farms.
The resistant bacteria can survive at concentrations many folds
below the minimum inhibitory concentration (MIC) of the
biocidal agents (Hughes and Andersson, 2012). Notably, Gram-
negative bacteria have a risk for promoting antibiotic resistance
after exposure to sublethal concentrations of some disinfectants
such as chlorhexidine (Kampf, 2018).

Most putative virulence determinants contributing to the
pathogenicity of E. coli, K. pneumoniae, Aeromonas species,
and P. aeruginosa are chromosomally encoded. However,
previous studies have indicated the occurrence of some
virulence factors on plasmids of E. coli (Rodriguez-Siek et al.,
2005; Johnson et al., 2006; Mellata et al., 2010; Cyoia et al., 2015),
K. pneumoniae (Dolejska et al., 2013; Chen et al., 2020),
Aeromonas species (Brown et al., 1997), and P. aeruginosa
(Morales-Espinosa et al., 2012). E. coli strains possess virulence
genes that play a significant role in the survival and pathogenesis
of the strain in the host through bacterial adhesion (ipfA),
hemolysis (hlyF), iron acquisition (iroN and ireA), and increased
serum survival and resistance to phagocytosis (iss and traT)
(Sarowska et al., 2019; Adzitey et al., 2020). K. pneumoniae
hypervirulent strains possess different genes that determine
virulence and severity of infection in the host. These virulence
genes include entB (enterobactin biosynthesis gene), allS
(associated with allantoin metabolism), ybtS and irp
(yersiniabactin biosynthesis), and mrkD and fimH (fimbrial
adhesin that mediates binding to the extracellular matrix to
November 2021 | Volume 11 | Article 761417
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form the biofilm) (Rosen et al., 2008; Wasfi et al., 2016; Ye et al.,
2016; Russo and Marr, 2019). The most important A. hydrophila
virulence factors include hemolysin A (hlyA), aerolysin (aer),
cytotonic heat-stable enterotoxin (ast), cytotoxic enterotoxin
(act), and lipases (lip) (Furmanek-Blaszk, 2014; Rather et al.,
2014). P. aeruginosa produces extracellular products that
contribute to its pathogenicity, such as protein exotoxin A
(toxA), proteases (lasB), type III secretion system exoenzymes
(exoU and exoS) (Casilag et al., 2016; Fadhil et al., 2016), and
genes responsible for pyocyanin production (phzM) (Nowroozi
et al., 2012). Genes encoding virulence and MDR/XDR are often
found with mcr genes on plasmids in environmental isolates
(Anyanwu et al., 2020). There are limited reports that studied the
occurrence of plasmid-encoded virulence and colistin resistance
genes (mcr) among colistin-resistant Gram-negative bacteria
isolated from cow’s milk in our geographic region. Hence, the
current study aimed to: (1) determine the frequency of colistin-
resistant Gram-negative bacteria from the milk of mastitic cows
as well as raw unpasteurized milk; (2) screen for mcr resistance
determinants in bacterial isolates and their virulence
characteristics; (3) evaluate four frequently used biocides in
dairy farms for teat disinfection toward colistin-resistant isolates.
MATERIALS AND METHODS

Gram-Negative Bacterial Strains
A total of 117 Gram-negative bacterial strains belonging to
Enterobacteriaceae (n = 90), P. aeruginosa (n = 10), and A.
hydrophila (n = 17) were included in this study. The bacterial
isolates were recovered previously from milk samples of dairy
cows showing mastitis as well as bulk tank raw milk during 2018–
2020. Gram-negative isolates were selected based on the provided
data from the Microbiology Department, Faculty of Veterinary
Medicine, Zagazig University, Egypt. Enterobacteriaceae strains
included non-O157 E. coli (n = 30), O157 E. coli (n = 12), K.
pneumoniae (n = 18), Enterobacter species (n = 10), and
Citrobacter species (n = 20). The isolated bacteria were sourced
from different farms. All the isolates were independent and were
not clonally duplicated from the same source. The presumptive
bacterial isolates were confirmed adopting the standard
microbiological procedures (Quinn et al., 1994). In brief,
MacConkey’s, eosin methylene blue (Oxoid, Cambridge, UK)
and HiCrome klebsiella-selective agar media (Himedia, Mumbai,
India) were used for the cultivation of Enterobacteriaceae strains.
Aeromonas species were grown on Rimler-Shotts medium
(HiMedia, India) with a novobiocin (Oxoid, UK) supplement,
while P. aeruginosa strains were cultivated on Pseudomonas
cetrimide agar (Oxoid, UK). Serotyping of E. coli was applied
using diagnostic polyvalent and monovalent O and H antisera
(Denka Seiken Co., Tokyo, Japan). Genomic DNA was extracted
from fresh bacterial cultures using the QIAamp DNA Mini kit
(Qiagen, Hilden, Germany) following the manufacturer’s
instructions. Polymerase chain reaction (PCR)-based confirmation
of Gram-negative bacteria was applied using genus- and species-
specific primer sets depicted in Supplementary Table S1.
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Antimicrobial Susceptibility Testing
The antimicrobial susceptibilities of Gram-negative bacterial
strains (n = 117) against a panel of 24 commonly used
antimicrobial agents were determined using the Kirby-Bauer
disk diffusion assay following the Clinical and Laboratory
Standards Institute guidelines and interpretative criteria (CLSI,
2019). The tested antimicrobial discs (Oxoid, Cambridge, UK)
were ampicillin (10 µg), amoxicillin-clavulanic acid (30 µg),
piperacillin-tazobactam (40 µg), cefazolin (30 µg), cephalothin
(30 µg), cefoxitin (30 µg), ceftriaxone (30 µg), cefotaxime (30 µg),
ceftazidime (30 µg), cefepime (30 µg), imipenem (10 µg), nalidixic
acid (30 µg), ciprofloxacin (5 µg), levofloxacin (5 µg), gentamicin
(10 µg), tobramycin (10 µg), amikacin (30 µg), trimethoprim-
sulphamethoxazole (25 µg), chloramphenicol (30 µg), tetracycline
(30 µg), aztreonam (30 µg), tigecycline (15 µg), fosfomycin (50
µg), and colistin (25 µg). The minimum inhibitory concentration
(MIC) of colistin (Sigma-Aldrich, Seelze, Germany) was
determined against Gram-negative bacterial strains by broth
microdilution technique following the relevant CLSI document
(CLSI, 2019).

The multiple antibiotic resistance (MAR) indices were
evaluated as documented elsewhere (Tambekar et al., 2006),
while the MDR and XDR phenotypes were reported according
to Magiorakos et al. (2012). E. coli ATCC 25922, P. aeruginosa
ATCC 27853, and A. hydrophila ATCC 7966 were used as quality
control strains.

Detection of Plasmid-Mediated Colistin
Resistance Genes
Plasmid DNAs were extracted from colistin-resistant Gram-
negative bacterial strains (E. coli, K. pneumoniae, P. aeruginosa,
and A. hydrophila) using Plasmid DNA Miniprep Kits (Thermo
Fisher Scientific, Waltham, MA, USA) following the
manufacturer’s instructions. PCR amplifications of colistin
resistance genes (mcr-1 to mcr-9) from phenotypic colistin-
resistant Gram-negative bacteria isolates were performed using
oligonucleotide primer sequences and their annealing
temperatures listed in Supplementary Table S1. Conventional
PCRs were performed using a programmable 2720 thermal cycler
(Applied Biosystem, Waltham, MA, USA) in a total reaction
volume of 25 ml containing 12.5 mL of EmeraldAmp Max PCR
Master Mix (Takara, Japan), 1 ml of each primer (20 pmol)
(Sigma-Aldrich, Co., St. Louis, MO, USA), 5 ml of template
DNA, and 5.5 ml of nuclease-free water. The amplified products
were visualized after 30 min of electrophoresis on a 2% agarose gel
containing ethidium bromide.

DNA Sequencing and Phylogenetic
Analysis of mcr Genes
DNA sequencing of the PCR products was applied to validate
their genetic identity and to verify any mutations in the mcr
genes. The amplified DNA fragments were purified with the
QIAquick PCR purification kit (Qiagen, Courtaboeuf, France).
Sanger sequencing was performed in both directions using
Bigdye Terminator V3.1 cycle sequencing kit (Perkin-Elmer,
Inc. Waltham, MA, USA) in an applied Biosystems 3130
November 2021 | Volume 11 | Article 761417
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genetic analyzer (Hitachi, Tokyo, Japan). The nucleotide
sequences were compared with those available in the National
Center for Biotechnology Information (NCBI; www.ncbi.nlm.
nih.gov). Nucleotide and deduced protein sequences were
analyzed using the MEGA7 program (Kumar et al., 2016). To
investigate the genetic relatedness and the evolutionary distance
among Gram-negative strains harboring the mcr genes, a
phylogenetic tree was constructed using the neighbor-joining
(maximum composite likelihood) method. DNA sequences
generated in the study were deposited into the GenBank
database with accession numbers MW811398-MW811434 and
MZ648218-MZ648227.

Conjugation Assay
The transmissibility of colistin-resistant mcr genes between
donors (mcr-positive isolates) and the recipient bacteria (E. coli
J53; Na azide-resistant) was evaluated by the conjugation assays
using the broth mating technique (Wang et al., 2003). An equal
ratio (1:1) of donor and recipient cells (0.5 ml of each) in a
logarithmic phase were added to 4 ml of sterile Luria-Bertani
(LB) broth (Sigma-Aldrich, USA) then incubated overnight at
37°C without shaking. The mating mixture was serially diluted
then the transconjugants were cultured on LB agar (Sigma-
Aldrich, USA) supplemented with colistin (2 mg/L) or Na
azide (100 mg/L). MICs for the donors, recipients, and
transconjugants were determined by the broth microdilution
method following the CLSI guidelines (CLSI, 2019). Potential
transconjugants were examined for the existence of mcr genes
using PCR assays. The conjugation efficiency was calculated as
the number of transconjugants per donor as previously
documented (Wang et al., 2003).

PCR Amplification of Virulence-Associated
Genes
PCR detection of virulence-related genes of E. coli (hlyF, ireA,
iroN, iss, lpfA, and traT), K. pneumoniae (entB, alls, mrkD, fimH,
ybtS, and irp1), P. aeruginosa (exoU, exoS, lasB, toxA, and phzM),
and A. hydrophila (hlyA, aer, lip, ast, and act) was performed in
conventional PCR assays using the oligonucleotide primer
sequences presented in Supplementary Table S1.

Disinfectant Susceptibility Testing
Gram-negative bacterial strains (three of each species exhibiting
colistin resistance) were evaluated against four commonly used
biocides in dairy farms for teat disinfection, namely
chlorhexidine gluconate (0.5% in alcohol 70%; Pfizer,
Manhattan, NY, USA), hydrogen peroxide (H2O2; 6%, w/v),
iodine (0.5%, w/v), and alcohol (ethanol; 70% v/v) (El Nasr
Pharmaceutical Chemicals Co., Cairo, Egypt). The disinfectants
were diluted (10–90%) using sterile distilled water, in which the
original concentrations were considered stock solutions. The
agar well diffusion method was applied to evaluate their
effectiveness against the suspected strains of equivalent
turbidity to that of 0.5 McFarland standards. Diameters of
inhibition zones from the well edge to the inhibition front
equal to or larger than 15 mm were regarded as susceptible
(Wanja et al., 2020). The MICs of teat disinfectants against
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
bacterial strains were determined as described before (Baron and
Feingold, 1990).

Bioinformatics and Data Analysis
Statistical analyses were performed using the software SAS (SAS
Institute Inc., 2012). Results of conjugation efficiency of Gram-
negative bacteria were graphed by a boxplot through GraphPad
Software (version 8.0.1, GraphPad Software Inc., La Jolla, CA,
USA). Resistance phenotypes and frequencies of virulence genes
among isolates were compared using the Chi-squared (c2) test.
P < 0.05 was considered significant. A heatmap with hierarchical
clustering was generated to visualize the overall distribution of
mcr variants and antimicrobial resistance phenotypes in colistin-
resistant isolates using the “pheatmap” package in R software
(version 3.4.2) (Kolde, 2019). To determine the shared mcr
variants among colistin-resistant isolates from different
sources, a Venn diagram was generated using the Venny 1.0
tool, https://bioinfogp.cnb.csic.es/tools/venny/index.html.
Spearman correlations were used to provide an estimate for the
association among various variables (resistance phenotypes,
colistin resistance, and virulence genes). The correlation
coefficients and their p-values were visualized using a
correlation plot. The correlation analyses and visualization
were done using R packages rcorr (https://hbiostat.org/R/
Hmisc/) and corrplot (https://github.com/taiyun/corrplot).
Genes or phenotypes that were present or absent in all
analyzed subjects were not considered in these analyses.
RESULTS

Resistance Phenotypes of Gram-Negative
Bacteria Isolated From Mastitis
and Raw Milk
Overall, the MDR phenotype was determined for 70
Enterobacteriaceae isolates including 37/42 (88.1%) E. coli (27/
30 were non-O157 and 10/12 were O157 E. coli), 18/18 K.
pneumoniae (100%), 10/10 Enterobacter species (100%), and 5/
20 Citrobacter species (25%). All P. aeruginosa and A. hydrophila
isolates were MDR with MAR indices ranged from 0.33 to 0.79.
Three P. aeruginosa and one E. coli (O111:H4) exhibited an XDR
phenotype as being resistant to at least one antibiotic of all tested
antimicrobial classes but remained susceptible to two classes
(carbapenems and monobactams in P. aeruginosa, carbapenems
and glycylcyclines in E. coli).

E. coli isolates showed high resistance to ampicillin,
cephalothin, cefazolin, ceftazidime (100% each), cefoxitin
(97.62%), cefotaxime (95.23%), and amoxicillin-clavulanic acid
(90.47%). In addition, over 50% of isolates were resistant to
piperacillin-tazobactam (71.43%), colistin, and fosfomycin
(57.14%, each).

All K. pneumoniae isolates were resistant to ampicillin,
amoxicillin-clavulanic acid, fosfomycin, cefoxitin, cefazolin, and
cephalothin.Meanwhile, 94.4% of the isolates were resistant to both
ceftazidime and piperacillin-tazobactam, 88.89% were resistant to
tigecycline, 77.78% to ceftriaxone, cefotaxime, and colistin, and
55.56% were resistant to sulfamethoxazole-trimethoprim.
November 2021 | Volume 11 | Article 761417
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A. hydrophila isolates were sensitive to amikacin, imipenem,
ciprofloxacin, and levofloxacin (100% each). However, the
highest resistance was for the tetracycline and cephalosporins
groups (ceftriaxone, cefotaxime, ceftazidime, cefoxitin, and
cephalothin (100% each)) followed by colistin (88.24%),
nalidixic acid (76.47%), sulfamethoxazole-trimethoprim
(70.59%), and cefazolin (58.8%).

P. aeruginosa isolates exhibited resistance to sulfamethoxazole-
trimethoprim, amoxicillin-clavulanic acid, fosfomycin, cefoxitin,
cefazolin, and cephalothin (100% each); tetracycline,
chloramphenicol, and ampicillin (90% each); colistin and
nalidixic acid (80% each); and ceftazidime, ciprofloxacin, and
levofloxacin (60% each). However, the most active antimicrobial
agents against P. aeruginosa isolates were imipenem (100%),
aztreonam (90%), piperacillin-tazobactam, and ceftriaxone
(80% each).

Cephalosporins (cefotaxime, ceftazidime, cefoxitin, cefazolin,
and cephalothin), ampicillin, and amoxicillin-clavulanic acid
were the least active antimicrobials against both Enterobacter
and Citrobacter species as well as cefepime, sulfamethoxazole-
trimethoprim, and tetracycline in Enterobacter species (100%
resistance rate). Citrobacter species were completely sensitive to
both sulfamethoxazole-trimethoprim and tetracycline.
Meanwhile, both species were highly sensitive to imipenem,
gentamicin, tobramycin, amikacin, ciprofloxacin, levofloxacin,
colistin, piperacillin-tazobactam, and tigecycline (100% each).

Trends in Bacterial Resistance and
MAR Indices
The overall resistance rates of Gram-negative isolates from
clinical mastitis, subclinical mastitis, and raw milk to each
tested antimicrobial were analyzed using c2 test. As revealed in
Table 1, a significant (p < 0.05) difference in resistance rates of
isolates from clinical, subclinical mastitis, and raw milk was
observed against ampicillin, cefazolin, ceftriaxone, nalidixic acid,
tobramycin, fosfomycin, colistin, and tetracycline. All isolates
from different sources were highly resistant to the first and
second generations of cephalosporins especially cephalothin
(100%). Furthermore, the MAR index of each antimicrobial
was calculated to understand the level of antibiotic use. High
MAR index (0.04) of ampicillin, amoxicillin-clavulanic acid, and
the first and second generations of cephalosporins was observed.
This implies the excessive use of these antimicrobials in the
veterinary sector and human medicine. Meanwhile, imipenem
achieved a lower MAR index.

Frequency of Colistin Resistance
mcr Genes in MDR and XDR
Gram-Negative Bacteria
In total, 61/117 tested isolates (52.14%), 24/70 (34.29%) from
clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and
27/36 (75%) from raw milk were colistin resistant, showing
colistin MICs >2 mg/L. Among them, 19 (27.14%), 8 (72.73%),
and 20 (55.56%) isolates from clinical, subclinical mastitis, and
raw milk, respectively, were positive for plasmid-borne
mcr genes.
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From the PCR and DNA sequencing results, the mcr-1 gene
was identified in 31.91% (13 MDR and two XDR isolates), mcr-2
in 29.79% (13 MDR and one XDR), mcr-3 in 34.04% (15 MDR
and one XDR), and each of mcr-4 and mcr-7 in 2.13% of the
colistin-resistant Gram-negative isolates (Table 2). Of these
isolates, 42.55% (20/47) were E. coli, 21.28% (10/47) A.
hydrophila, 19.12% (9/47) K. pneumoniae, and 17.02% (8/47)
P. aeruginosa (Figure 1).

A Venn diagram (Supplementary Figure S1) was generated
to determine the shared mcr variants between colistin-resistant
isolates from clinical mastitis, subclinical mastitis, and raw milk.
E. coli mcr-4 and both mcr-7 and mcr-2 of P. aeruginosa were
unique for clinical mastitis; whereas K. pneumonia mcr-3 and A.
hydrophila mcr-1 to mcr-3 variants were exclusive for raw milk.
Only E. coli mcr-3 and K. pneumonia mcr-2 were common
among all sources.

Phylogeny of Colistin Resistance
mcr Variants
As presented in Figure 2, the phylogenetic tree was constructed
based on nucleotide sequences for all identified colistin resistance
mcr variants (mcr-1 to mcr-4 and mcr-7) in 47 Gram-negative
bacteria isolates of various species. The phylogenetic analysis
revealed five potential clusters indicating sequence heterogeneity
among the mcr variants. Despite the overall diversity of bacterial
isolates, which were originating from different on-farm locations/
sources, the phylogenetic tree demonstrated the presence of the
same clonal lineages of each mcr variant separately. Nonetheless,
two mcr variants (mcr-4, accession number MW811433, and
mcr-7, accession number MW811434) were clonally related;
whereas the latter shared the same lineage with another mcr-2
variant (accession number MW811412).

Transferability of mcr Genes
Transconjugation assays revealed that representative Gram-
negative isolates harboring mcr-1, mcr-2, mcr-3, mcr-4, and
mcr-7 were capable of transferring their genes to the E. coli
J53-recipient strain. The conjugation efficiencies of these isolates
ranged from 2.01 ± 0.816 × 10−6 to 9.50 ± 2.663 × 10−3 CFU/
donor (Table 3 and Figure 3). As expected, the recipient J53
strain did not grow on colistin and Na azide-incorporated media.
The colistin MICs for transconjugants ranged from 4 to 64 µg/
ml, demonstrating an increase of three to sevenfold relative to E.
coli J53-recipient strain (MIC = 0.5 µg/ml) (Table 3).

Virulence Characteristics of Colistin-
Resistant Gram-Negative Bacteria
The profiles of virulence-associated genes detected in 47 colistin-
resistant isolates are depicted in Table 2. Different combinations
of virulence genes were observed among colistin-resistant
isolates with almost all isolates harboring genes ranging from
one to six. LpfA was the most frequently detected gene in the
tested E. coli isolates (20/20; 100%) followed by hlyF (17/20;
85%), iroN (16/20; 80%), iss (15/20; 75%), ireA (13/20; 65%), and
traT (12/20; 60%). The entB gene was detected in all nine
colistin-resistant K. pneumoniae isolates examined; both mrkD
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TABLE 1 | Resistance rates of 117 Gram-negative bacteria from milk samples against the tested antimicrobial agents and the overall multiple antibiotic resistance (MAR) index.

Raw milk MAR
indexa

p-value*

. pneumoniae
(n = 7)

A.
hydrophila
(n = 17)

7 (100.00) 9 (52.94) 0.04 0.0004

7 (100.00) 8 (47.06) 0.04 0.0000007

7 (100.00) 17 (100.00) 0.04 NA

7 (100.00) 10 (58.82) 0.04 0.0002

7 (100.00) 17 (100.00) 0.04 0.7128

6 (85.71) 17 (100.00) 0.04 0.6633

6 (85.71) 17 (100.00) 0.04 0.1211

6 (85.71) 17 (100.00) 0.02 0.00088

4 (57.14) 4 (23.53) 0.01 0.8673

0 (00.00) 0 (00.00) 0.00 0.7128

1 (14.28) 13 (76.47) 0.01 0.00466

2 (28.57) 0 (00.00) 0.006 0.7614

0 (00.00) 0 (00.00) 0.005 0.799

0 (00.00) 4 (23.53) 0.005 0.0005

0 (00.00) 0 (00.00) 0.001 0.2763

0 (00.00) 4 (23.53) 0.005 0.2512

3 (42.86) 12 (70.59) 0.02 0.623

5 (71.43) 6 (35.29) 0.01 0.632

0 (00.00) 8 (47.06) 0.005 0.068

6 (85.71) 1 (5.88) 0.02 0.429

1 (14.28) 7 (41.17) 0.01 0.1378

7 (100.00) 2 (11.76) 0.02 0.0001
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AMA Clinical mastitis Subclinical mastitis

E. coli
(n = 25)

K.
pneumoniae

(n = 8)

Enterobacter
species
(n = 10)

Citrobacter
species
(n = 20)

P. aeuriginosa
(n = 7)

E. coli
(n = 5)

K. pneumoniae
(n = 3)

P. aeuriginosa
(n = 3)

E. coli
(n = 12)

K

AM 25
(100.00)

8 (100.00) 10 (100.00) 20 (100.00) 6 (85.71) 5
(100.00)

3 (100.00) 3 (100.00) 12
(100.00)

AMC 25
(100.00)

8 (100.00) 10(100.00) 20 (100.00) 7 (100.00) 5
(100.00)

3 (100.00) 3 (100.00) 8 (66.67)

CEF 25
(100.00)

8 (100.00) 10 (100.00) 20 (100.00) 7 (100.00) 5
(100.00)

3 (100.00) 3 (100.00) 12
(100.00)

CFZ 25
(100.00)

8 (100.00) 10 (100.00) 20 (100.00) 7 (100.00) 5
(100.00)

3 (100.00) 3 (100.00) 12
(100.00)

FOX 24
(96.00)

8 (100.00) 10 (100.00) 20 (100.00) 7 (100.00) 5
(100.00)

3 (100.00) 3 (100.00) 12
(100.00)

CAZ 25
(100.00)

8 (100.00) 10 (100.00) 20 (100.00) 4 (57.14) 5
(100.00)

3 (100.00) 2 (66.67) 12
(100.00)

CTX 23
(92.00)

5 (62.50) 10 (100.00) 20 (100.00) 1 (14.28) 5
(100.00)

3 (100.00) 1 (33.33) 12
(100.00)

CRO 6 (24.00) 6 (75.00) 5 (50.00) 15 (75.00) 2 (28.57) 0
(00.00)

3 (100.00) 0 (00.00) 6 (50.00)

FEB 9 (36.00) 2 (25.00) 10 (100.00) 0 (00.00) 1 (14.28) 2
(40.00)

1 (33.33) 1 (33.33) 5 (41.67)

IPM 0 (00.00) 1(12.50) 0 (00.00) 0 (00.00) 0 (00.00) 0
(00.00)

0 (00.00) 0 (00.00) 0 (00.00)

NA 5 (20.00) 0 (00.00) 0 (00.00) 5 (25.00) 5 (71.43) 1
(20.00)

0 (00.00) 3 (100.00) 5 (41.67)

CIP 4 (16.00) 0 (00.00) 0 (00.00) 0 (00.00) 4 (57.14) 0
(00.00)

0 (00.00) 2 (66.67) 4 (33.33)

LVX 4 (16.00) 0 (00.00) 0 (00.00) 0 (00.00) 4 (57.14) 0
(00.00)

0 (00.00) 2 (66.67) 4 (33.33)

TOB 1 (4.00) 0 (00.00) 0 (00.00) 0 (00.00) 3 (42.86) 2
(40.00)

2 (66.67) 1 (33.33) 0 (00.00)

AK 0 (00.00) 0 (00.00) 0 (00.00) 0 (00.00) 3 (42.86) 0
(00.00)

0 (00.00) 1 (33.33) 0 (00.00)

CN 3 (12.00) 0 (00.00) 0 (00.00) 0 (00.00) 3 (42.86) 0
(00.00)

0 (00.00) 1 (33.33) 3 (25.00)

SXT 10
(40.00)

6 (75.00) 10 (100.00) 0 (00.00) 7 (100.00) 0
(00.00)

1 (33.33) 3 (100.00) 4 (33.33)

TGC 11
(44.00)

8 (100.00) 0 (00.00) 0 (00.00) 3 (42.86) 1
(20.00)

3 (100.00) 1 (33.33) 2 (16.67)

ATM 5 (20.00) 1 (12.50) 0 (00.00) 0 (00.00) 0 (00.00) 0
(00.00)

0 (00.00) 0 (00.00) 0 (00.00)

TPZ 21
(84.00)

8 (100.00) 0 (00.00) 0 (00.00) 0 (00.00) 3
(60.00)

3 (100.00) 0 (00.00) 5 (41.67)

CHL 5 (20.00) 2 (25.00) 0 (00.00) 0 (00.00) 6 (85.71) 0
(00.00)

0 (00.00) 3 (100.00) 5 (41.67)

FOF 15
(60.00)

8 (100.00) 0 (00.00) 0 (00.00) 7 (100.00) 5
(100.00)

3 (100.00) 3 (100.00) 3 (25.00)
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and fimH were identified in 88.8%, ybtS and irp1 in 77.7%, and
alls in 44.4% of K. pneumonia isolates. The frequencies of toxA,
exoS, lasB, exoU, and phzM genes in eight colistin-resistant P.
aeruginosa isolates were 100%, 87.5%, 87.5%, 75%, and 25%,
respectively. The aer gene is the most prevalent (70%) in A.
hydrophila isolates followed by lip (30%) and act (20%). Both ast
and hlyA genes were detected in one A. hydrophila isolate (10%).
There are significant differences in the frequencies of virulence
genes among E. coli isolates (p = 0.04), A. hydrophila (p = 0.01),
and P. aeruginosa (p = 0.005).

Correlations Between the Antimicrobial
Resistance and Virulence Traits
The correlation plots among pairs of antimicrobial resistance
phenotypes, colistin resistance genes (mcr), and virulence genes
in E. coli, K. pneumoniae, P. aeruginosa, and A. hydrophila are
displayed in Supplementary Figure S2 and Supplementary
Tables S2A–H . Significant positive correlations were
pronounced between fluoroquinolone resistance and the
existence of mcr-1 gene in E. coli (r = 0.58–0.67; p < 0.001).
On the other hand, a strong positive correlation was significantly
detected between a fimH virulence gene and the resistance to
certain antimicrobials; ceftazidime, cefotaxime, ceftriaxone, and
piperacillin-tazobactam in K. pneumonia isolates (r = 1; p <
0.001). Correlations between virulence traits and antimicrobial
resistance were obvious in P. aeruginosa and A. hydrophilus
isolates. Concerning P. aeruginosa, non-significant positive
correlations were found between the analyzed virulence genes
and antimicrobial agents/genes including the last-resort ones.
The correlations between exoU and phzM virulence genes and
gentamicin (r = 0.58; p = 0.1), exoS and fluoroquinolones (r =
0.65; p = 0.07), exoU and tigecycline (r = 0.58; p = 0.1), phzM and
mcr2 (r = 0.65; p = 0.07), and phzM and tigecycline (r = 0.58; p =
0.1) were mostly distinct. For A. hydrophila, the hlyA gene
showed significant positive correlations with tobramycin (r =
0.67; p = 0.03) or piperacillin-tazobactam (r = 1; p < 0.001). Of
interest, significant strong positive correlations were detected
between the last resort antimicrobials; mcr-2 and tigecycline
(r = 0.76; p = 0.01) andmcr-2 and fosfomycin (r = 0.67; p = 0.03).

Efficacy of Disinfectants on Colistin-
Resistant Gram-Negative Bacteria
According to the agar well-diffusion results, certain disinfectants
had a wide efficacy against the test bacteria. However, some
disinfectants were ineffective even at high concentrations
(Supplementary Table S3). E. coli and K. pneumonia isolates
were resistant to chlorohexdine gluconate at concentrations
lower than 50% (MIC = 40%), whereas P. aeruginosa and A.
hydrophila were sensitive to such disinfectant even at low
concentrations (MIC = 10%). E. coli and K. pneumoniae were
sensitive to iodine at high concentrations (MIC = 80%), while P.
aeruginosa and A. hydrophila exhibited resistance at all tested
concentrations. On the other hand, hydrogen peroxide had the
best inhibitory effect against all tested bacterial isolates even at a
low concentration (10%), except for E. coli, which was sensitive
to H2O2 at a concentration of 50%. All tested bacteria were
resistant to ethanol at all concentrations.
T
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TABLE 2 | Resistance phenotypes, virulence genes profiles, and plasmid-mediated mcr genes of 47 Gram-negative bacteria recovered from milk samples.

Isolate
No.

Species Source Antimicrobial resistance patterns MAR
index

MIC
(mg/L)

mcr
gene

Accession
No.

Virulence gene

1 E. coli
O111:H4

Clinical
mastitis

CFZ, FOX, AM, AMC, TPZ, CEF, CAZ, FOF, CTX, TET,CHL,
TGC, CST

0.54 128 mcr-2 MW811407 hlyF, ireA, iss, lpfA

2 O26:H11 Raw milk CFZ, FOX, AM, AMC, TPZ, CEF, CAZ, FOF, CTX, CST 0.42 8 mcr-3 MW811419 hlyF, ireA, iroN,
lpfA, traT

3 O111:H4 Subclinical
mastitis

CFZ, FOX, AM, AMC, TET, TPZ, CEF, CAZ, CST, FOF, CTX, NA 0.5 32 mcr-3 MW811420 hlyF, iroN, lpfA

4 O111:H4 Clinical
mastitis

CFZ, FOX, AM, AMC, TET, TPZ, CEF, CAZ, CTX, TGC, CST,
CN, CRO

0.54 64 mcr-3 MW811421 ireA, iroN, iss, lpfA

5 O114:H21 Clinical
mastitis

CFZ, CRO, FOX, SXT, AM, AMC, TPZ, CEF, CAZ, TGC, CST,
TET, ATM, FOF, FEP, CTX

0.67 128 mcr-2 MW811408 hlyF, ireA, iroN,
lpfA, traT

6 O114:H21 Clinical
mastitis

CFZ, FEP, FOX, AM, AMC, TPZ, CEF, CAZ, FOF, TGC, CST 0.46 64 mcr-3 MW811422 hlyF, iroN, iss,
lpfA, traT

7 O111:H4 Clinical
mastitis

CFZ, FOX, AM, AMC, TPZ, CEF, CAZ, CTX, TGC, CST, FOF 0.46 16 mcr-4 MW811433 hlyF, iroN, iss,
lpfA, traT

8 O114:H4 Subclinical
mastitis

CFZ, FOX, AM, AMC, CEF, CAZ, CTX, FEP, FOF, CST 0.42 16 mcr-3 MW811427 hlyF, iroN, lpfA

9 O111:H4 Clinical
mastitis

CN, CFZ, TPZ, CEF, CRO, CAZ, CTX, FEP, NA, CIP, LVX, SXT,
ATM, AM, AMC, CHL, TE, FOF, CST

0.79 16 mcr-1 MW811398 hlyF, ireA, iroN,
iss, lpfA, traT

10 O114:H21 Clinical
mastitis

CFZ, TPZ, CEF, CAZ, CTX, CRO, FEP, FOX, SXT, AM, ATM,
AMC, TET, CST, FOF

0.63 16 mcr-2 MW811409 hlyF, ireA, iroN,
lpfA, traT

11 O111:H4 Clinical
mastitis

CFZ, CAZ, CEF, CRO, FEP, FOX, CTX, NA, CIP, LVX, SXT,
ATM, AM, TPZ, AMC, CHL, CST, FOF

0.75 64 mcr-3 MW811423 hlyF, ireA, iroN,
iss, lpfA

12 O26:H11 Clinical
mastitis

CFZ, CEF, FEP, FOX, CAZ, CTX, SXT, TGC, AM, TPZ,
AMC, CST

0.5 8 mcr-2 MW811410 hlyF, iroN, iss,
lpfA, traT

13 O111:H4 Subclinical
mastitis

CFZ, CEF, TOB, FOX, CAZ, CTX, FEP, AM, AMC, FOF, CST 0.46 128 mcr-3 MW811424 ireA, iroN, iss,
lpfA, traT

14 O26:H11 Clinical
mastitis

CFZ, CEF, FOX, CAZ, CTX, AM, TPZ, AMC, CST 0.38 16 mcr-2 MW811411 hlyF, ireA, iroN,
iss, lpfA, traT

15 O146:H- Clinical
mastitis

CFZ, CEF, FOX, CAZ, CTX, TGC, TPZ, AM, AMC, CST 0.42 16 mcr-2 MW811412 hlyF, iroN, iss, lpfA

16 O146:H- Clinical
mastitis

CFZ, CEF, FOX, CAZ, CTX, FEP, ATM, AMC, FOF, CST 0.42 32 mcr-3 MW811425 hlyF, ireA, iss,
lpfA, traT

17 O157:H7 Clinical
mastitis

CFZ, CEF, FOX, CAZ, CTX, CRO, FEP, SXT, TPZ, AM, AMC,
CST, TET

0.54 >128 mcr-2 MW811413 hlyF, ireA, iss,
lpfA, traT

18 O157:H7 Raw milk CFZ, CEF, FOX, CAZ, CTX, NA, CIP, LVX, AM, AMC, CST, TET 0.5 64 mcr-2 MW811414 ireA, iroN, iss,
lpfA, traT

19 O157:H7 Raw milk CFZ, CEF, FOX, CAZ, CTX, NA, CIP, LVX, AM, AMC, CST, TET 0.5 >128 mcr-1 MW811399 hlyF, iroN, iss,
lpfA, traT

20 O157:H7 Raw milk CFZ, CEF, FOX, CAZ, CTX, AM, CST, TET 0.33 128 mcr-3 MW811426 hlyF, ireA, iroN,
iss, lpfA

21 K. pneumoniae Raw milk CFZ, CEF, FOX, CAZ, CTX, CRO, SXT, TGC, ATM, TPZ, AM,
AMC, CHL, FOF, CST

0.63 8 mcr-2 MW811415 entB, alls, mrkD,
fimH, ybtS

22 K. pneumoniae Raw milk CFZ, CEF, FOX, CAZ, CTX, CRO, SXT, TGC, CIP, TPZ, AM,
AMC, TET, FOF, CST

0.63 128 mcr-2 MW811416 entB, mrkD, fimH,
ybtS, irp1

23 K. pneumoniae Raw milk CFZ, CEF, FOX, ATM, AMC, FOF, CST 0.29 4 mcr-1 MW811400 entB, mrkD, ybtS,
irp1

24 K. pneumoniae Raw milk CFZ, CEF, FOX, CAZ, CTX, CRO, FEP, TPZ, AM, AMC,
FOF, CST

0.5 128 mcr-1 MW811401 entB, alls, mrkD,
fimH, irp1

25 K. pneumoniae Clinical
mastitis

CFZ, CEF, FOX, CAZ, CTX, CRO, FEP, SXT, TGC, TPZ, AM,
AMC, FOF, CST

0.58 64 mcr-3 MW811428 entB, alls, mrkD,
fimH, irp1

26 K. pneumoniae Raw milk CFZ, CEF, FOX, CAZ, CTX, CRO, FEP, TGC, TPZ, AM, AMC,
FOF, CST

0.54 64 mcr-1 MW811402 entB, mrkD, fimH,
ybtS, irp1

27 K. pneumoniae Raw milk CFZ, CEF, FOX, CAZ, CTX, CRO, TGC, TPZ, AM, AMC, TET,
FOF, CST

0.54 8 mcr-3 MW811429 entB, alls, mrkD,
fimH, ybtS

28 K. pneumoniae Subclinical
mastitis

CFZ, CEF, FOX, CAZ, CTX, CRO, TGC, TPZ, AM, AMC,
FOF, CST

0.5 16 mcr-1 MW811403 entB, fimH, ybtS,
irp1

29 K. pneumoniae Subclinical
mastitis

CFZ, CEF, FOX, CAZ, CTX, CRO, TOB, TGC, TPZ, AM, AMC,
TET, FOF, CST

0.58 32 mcr-2 MW811417 entB, mrkD, fimH,
ybtS, irp1

30 P. aeuriginosa Clinical
mastitis

CEF, FOX, CAZ, CFZ, NA, CIP, LVX, SXT, TGC, AM, AMC,
CHL, FOF, CST, TET

0.63 >128 mcr-7 MW811434 toxA, exoS, lasB,
exoU

31 P. aeuriginosa Clinical
mastitis

AK, CN, TOB, CEF, CFZ, FOX, CTX, CRO, NA, CIP, LVX, SXT,
AM, AMC, CHL, FOF, TGC, CST, TET

0.79 128 mcr-2 MW811418 toxA, exoS, lasB,
exoU, phzM

(Continued)
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DISCUSSION

The recent global dissemination of mcr genes has raised the
alarm of colistin resistance as a serious and urgent threat to
public health (WHO, 2019). Consequently, large numbers of
studies were carried out to explore the distribution of mcr genes
in different reservoirs. Herein, we studied colistin-resistant
Gram-negative bacteria isolated from bovine milk concerning
the mcr resistance determinants and virulence characteristics.
Unfortunately, 52% of the tested isolates were colistin resistant.
The high proportion of colistin-resistant bacteria and the
diversity of mcr variants detected here indicates a lot of
independent acquisitions of mcr genes by colistin-sensitive
bacteria and confirm the hypothesis that animals and food
chain may play a key role in mcr transmission (Luo et al.,
2020). This is considering an alarming ratio since previous
studies have detected colistin resistance in 37%, 40%, and 41%
of bacterial isolates from pigs, poultry, and human clinical
samples, respectively (Savin et al., 2020; Lay et al., 2021; Qadi
et al., 2021). Of note, we identified these isolates in milk samples,
which included various bacterial species. These findings could be
attributed to the frequent usage of colistin in dairy farms that in
turn could be responsible for the development of colistin
resistance. This is consistent with a previous report of a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
Canadian dairy farm, which uses colistin to increase the milk
yield although its usage is not officially licensed in veterinary
medicine (Saini et al., 2012; Webb et al., 2017).

Colistin-resistant E. coli isolates exhibited resistance to
cephalothin, cefazolin, ceftazidime, ampicillin, amoxicillin-
clavulanic acid, cefoxitin, cefotaxime, piperacillin-tazobactam,
and fosfomycin. Concurrently, nearly similar patterns were
obtained recently for E. coli against several antibiotics in India,
Croatia, and Egypt (Zdolec et al., 2016; Singh et al., 2018; Ramadan
et al., 2021; Soliman et al., 2021). For K. pneumoniae isolates, the
antibiotic resistance pattern was closely like the pattern of Brazilian
MDR K. pneumoniae isolates (Ferreira et al., 2019). They showed
resistance to cefazolin, cephalothin, cefoxitin, ceftazidime,
cefotaxime, ceftriaxone, sulfamethoxazole-trimethoprim, and
tigecycline. On the contrary, our colistin-resistant P. aeruginosa
isolates showed resistance to most groups of antibiotics; however,
previous colistin-resistant P. aeruginosa isolates from Iran showed
only resistance to ticarcillin, ciprofloxacin, aztreonam, ceftazidime,
gentamicin, imipenem, and piperacillin/tazobactam (Goli et al.,
2016). Our A. hydrophila isolates have an antimicrobial resistance
pattern much akin to the antibiotic resistance profiles of
pathogenic aeromonads isolated from ornamental fish with
resistance to gentamicin, cephalothin, cefoxitin, ceftazidime,
cefotaxime, ceftriaxone, nalidixic acid, sulfamethoxazole-
TABLE 2 | Continued

Isolate
No.

Species Source Antimicrobial resistance patterns MAR
index

MIC
(mg/L)

mcr
gene

Accession
No.

Virulence gene

32 P. aeuriginosa Subclinical
mastitis

TOB, CEF, FOX, CAZ, CFZ, NA, AM, AMC, SXT, CHL, FOF,
TET, CST

0.54 32 mcr-1 MW811404 toxA, exoS, lasB

33 P. aeuriginosa Clinical
mastitis

AK, CN, TOB, CEF, FOX, CAZ, CFZ, SXT, NA, CIP, LVX, AM,
AMC, CHL, FOF, TET, CST

0.71 64 mcr-3 MW811430 toxA, exoS, exoU

34 P. aeuriginosa Subclinical
mastitis

CEF, FOX, CFZ, NA, CIP, LVX, SXT, AM, AMC, CHL, FOF,
TET, CST

0.54 64 mcr-3 MW811431 toxA, exoS, lasB

35 P. aeuriginosa Clinical
mastitis

TOB, CEF, FOX, CFZ, SXT, AM, AMC, CHL, FOF, TET, CST 0.45 32 mcr-1 MW811405 toxA,lasB, exoU

36 P. aeuriginosa Clinical
mastitis

AK, CN, CEF, FOX, CFZ, CRO, FEP, NA, CIP, LVX, SXT, TGC,
AM, AMC, CHL, FOF, TET, CST

0.75 16 mcr-3 MW811432 toxA, exoS, lasB,
exoU, phzM

37 P. aeuriginosa Subclinical
mastitis

AK, CN, CEF, FOX, CFZ, CAZ, CTX, FEP, NA, CIP, LVX, SXT,
TGC, AM, AMC, CHL, FOF, TET, CST

0.79 >128 mcr-1 MW811406 toxA, exoS, lasB,
exoU

38 A. hydrophila Raw milk CAZ, CTX, CEF, CRO, FOX, NA, SXT, AM, AMC, CHL,
CST, TET

0.5 128 mcr-1 MZ648218 aer

39 A. hydrophila Raw milk CFZ, CEF, FOX, CAZ, CTX, CRO, NA, SXT, ATM, AM, CST,
TET

0.5 16 mcr-1 MZ648219 act

40 A. hydrophila Raw milk TOB, CEF, FOX, CAZ, CTX, CRO, TGC, AM, AMC, FOF, CHL,
CST, TET

0.54 32 mcr-2 MZ648224 aer, lip

41 A. hydrophila Raw milk TOB, CEF, CFZ, FOX, CAZ, CTX, CRO, FEP, NA, SXT, AM,
AMC, CHL, CST, TET

0.63 64 mcr-1 MZ648220 aer, lip

42 A. hydrophila Raw milk CEF, FOX, CAZ, CTX, CRO, NA, SXT, CST, TET 0.38 64 mcr-3 MZ648226 lip
43 A. hydrophila Raw milk CN, CEF, FOX, CAZ, CFZ, CTX, CRO, NA, SXT, ATM,

CST, TET
0.5 128 mcr-3 MZ648227 aer

44 A. hydrophila Raw milk CN, TOB, CEF, FOX, CAZ, CTX, CRO, NA, SXT, ATM, TPZ,
AMC, CHL, CST, TET

0.63 128 mcr-1 MZ648221 hlyA, aer

45 A. hydrophila Raw milk CEF, FOX, CAZ, CFZ, CTX, CRO, NA, SXT, ATM, AMC,
CST, TET

0.5 64 mcr-1 MZ648222 act

46 A. hydrophila Raw milk CEF, FOX, CAZ, CTX, CRO, FEP, NA, SXT, TGC, CST, TET 0.46 32 mcr-2 MZ648225 aer
47 A. hydrophila Raw milk CEF, FOX, CAZ, CFZ, CTX, CRO, NA, SXT, TGC, ATM,

CST, TET
0.5 >128 mcr-1 MZ648223 aer, ast
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AM, ampicillin; AMC, amoxicillin-clavulanic acid; TPZ, piperacillin-tazobactam; CFZ, cefazolin; CEF, cephalothin; FOX, cefoxitin; CAZ, ceftazidime; CTX, cefotaxime; CRO, ceftriaxone; FEB,
cefepime; IPM, imipenem; CN, gentamicin; TOB, tobramycin; AK, amikacin; NA, nalidixic acid; CIP, ciprofloxacin; LVX, levofloxacin; CST, colistin; TET, tetracycline; TGC, tigecycline; CHL,
chloramphenicol; SXT, sulfamethoxazole-trimethoprim; ATM, aztreonam; FOF, fosfomycin. All isolates are multidrug resistant (MDR) except the bold ones are extensive drug resistant (XDR).
1 | Article 761417

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Tartor et al. Colistin Resistance mcr Variants in Milk
FIGURE 1 | A heatmap supported by a dendrogram for colistin-resistant Gram-negative isolates (n = 47) from bovine mastitis and raw milk showing their
antimicrobial resistance phenotypes and the distribution of mcr genes. Mcr variant, source, and species are color-coded feature categories. AM, ampicillin; AMC,
amoxicillin-clavulanic acid; TPZ, piperacillin-tazobactam; CFZ, cefazolin; CEF, cephalothin; FOX, cefoxitin; CAZ, ceftazidime; CTX, cefotaxime; CRO, ceftriaxone; FEB,
cefepime; IPM, imipenem; CN, gentamicin; TOB, tobramycin; AK, amikacin; NA, nalidixic acid; CIP, ciprofloxacin; LVX, levofloxacin; CST, colistin; TET, tetracycline;
TGC, tigecycline; CHL, chloramphenicol; SXT, sulfamethoxazole-trimethoprim; ATM, aztreonam; FOF, fosfomycin.
FIGURE 2 | A phylogenetic tree shows the genetic relationship between mcr gene sequences of colistin-resistant Gram-negative bacteria recovered from clinical,
subclinical mastitis, and raw milk. The tree was constructed using a neighbor-joining method with a bootstrap value for 1,000 replicates.
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TABLE 3 | Conjugation efficiencies of some mcr-1-, mcr-2-, mcr-3-, mcr-4-, and mcr-7-positive isolates and colistin MIC values for transconjugants.

Bacterial
species

Code
No.

mcr
gene

Transferability Transconjugant MIC
(µg/ml)*

CFU/ml

Recipient
(E. coli J53)

Donor Transconjugant Conjugation
efficiency

E. coli 9 mcr-1 + 16 2.62 × 108 (3.14 ± 0.548) ×
105

(2.31 ± 0.142) ×
103

(7.36 ± 2.101) × 10−3

K. pneumoniae 26 mcr-1 + 32 (4.63 ± 0.856) ×
106

(1.36 ± 0.211) ×
103

(2.94 ± 0.621) × 10−4

P. aeruginosa 37 mcr-1 + 64 (7.12 ± 0.891) ×
107

(5.70 ± 1.224) ×
102

(8.01 ± 2.663) × 10−6

A. hydrophila 41 mcr-1 + 64 (5.53 ± 1.024) ×
104

(3.24 ± 0.882) ×
102

(5.86 ± 1.174) × 10−3

E. coli 10 mcr-2 + 16 (1.69 ± 0.442) ×
105

(7.01 ± 1.663) ×
102

(4.15 ± 1.111) × 10−3

K. pneumoniae 21 mcr-2 + 8 (5.46 ± 1.105) ×
105

(4.08 ± 1.022) ×
102

(7.47 ± 2.337) × 10−4

P. aeruginosa 31 mcr-2 + 32 (3.91 ± 0.462) ×
106

(4.11 ± 1.121) ×
102

(1.05 ± 0.184) × 10−4

A. hydrophila 40 mcr-2 + 16 (7.23 ± 1.335) ×
105

(2.64 ± 0.451) ×
102

(3.65 ± 0.326) × 10−4

E. coli 3 mcr-3 + 8 (3.61 ± 0.710) ×
105

(3.43 ± 0.352) ×
103

(9.50 ± 2.663) × 10−3

K. pneumoniae 27 mcr-3 + 4 (6.40 ± 0.633) ×
106

(4.26 ± 0.222) ×
104

(6.66 ± 1.812) × 10−3

P. aeruginosa 34 mcr-3 + 32 (3.12 ± 0.223) ×
107

(6.47 ± 1.362) ×
103

(2.07 ± 0.634) × 10−4

A. hydrophila 42 mcr-3 + 32 (6.46 ± 0.384) ×
106

(2.23 ± 0.331) ×
102

(3.45 ± 1.125) × 10−5

E. coli 7 mcr-4 + 16 (4.15 ± 0.361) ×
106

(1.81 ± 0.114) ×
103

(4.36 ± 1.632) × 10−4

P. aeruginosa 30 mcr-7 + 64 (5.46 ± 0.966) ×
107

(1.30 ± 0.314) ×
102

(2.01 ± 0.816) × 10−6
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*Colistin MIC value = 0.5 µg/ml.
Conjugation efficiency = number of transconjugants/number of donor cells.
CFU, colony-forming unit.
CFU values were retrieved from duplicate measurements from two independent experiments.
FIGURE 3 | Transconjugation frequencies of 14 mcr-harboring Gram-negative isolates from bovine milk. The data are presented as mean values ± standard
deviations. Code numbers of isolates are shown in Table 2.
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trimethoprim, aztreonam, and chloramphenicol (Saengsitthisak
et al., 2020). Colistin-resistant isolates found in this study
exhibited extreme emergence and spread of antimicrobial
resistance and high virulence as well.

It is almost established that E. coli is deemed to be the top-
most bacteria for the mcr genes by carrying mcr-1 up to mcr-5
with the chance for coexistence of more than one mcr gene (Yin
et al., 2017; Hammerl et al., 2018). Similarly, colistin-resistant E.
coli isolates in our study were found to carrymcr-1,mcr-2,mcr-3,
ormcr-4 genes; 20% out of which were from rawmilk and carried
mcr-1, mcr-2, or mcr-3 genes. It is the first detection of mcr-
carrying isolates in raw milk samples. A previous study has
identified mcr-1 gene in one E. coli isolate from a cow suffering
from subclinical mastitis in Egypt (Khalifa et al., 2016). Although
the mcr-1 gene was detected frequently from different samples
(Khalifa et al., 2016; Lima Barbieri et al., 2017; Ramadan et al.,
2021), it is foremost found here in the raw milk samples.
Marvelously, one E. coli isolate carrying mcr-1 gene obtained
from hard cheese made from raw milk was reported in Egypt
very lately (Ombarak et al., 2021), which in turn lightens the
importance of raw milk quality control checks in Egypt, focusing
on farm workers as well as the animal itself.

The prevalence of mcr-3 gene in our isolated E. coli was the
dominant one, followed by the mcr-2 gene. Only one E. coli
isolate was mcr-4 positive. However, in this study, the mcr-1,
mcr-2, and mcr-3 genes were found in E. coli isolated from raw
milk as well as clinical and subclinical mastitis samples; however,
the only mcr-4-positive E. coli was isolated from a clinical
mastitis sample. The variants mcr-2, mcr-3, and mcr-4 were
identified formerly in E. coli isolates from Belgium, China, and
Italy, respectively, and were isolated from calves and pigs (Xavier
et al., 2016; Carattoli et al., 2017; Yin et al., 2017). All these data
confirmed that E. coli is the chief bacteria carrying mcr genes
from different samples and in different geographical areas.

Notably, all our colistin-resistant A. hydrophila were isolated
from raw milk samples, and the predominant gene in them was
mcr-1 followed bymcr-2 andmcr-3. In contrast, colistin-resistant
A. hydrophila were found to harbor mcr-7 gene in cooked and
raw meats and in environmental samples (Liu Y. et al., 2020). No
previous reports until now showed the isolation of colistin-
resistant A. hydrophila from raw milk samples. Our findings
warrant that the source of raw milk contamination is most
probably the farm workers rather than the animal source,
particularly, that mcr-3 gene was previously identified in
isolates from human rectal swabs (Shen et al., 2018).

Of the identified colistin-resistant isolates, 19.12% were
K. pneumoniae and were carrying mcr-1, mcr-2, or mcr-3
genes. The three variants were identified in the isolates from
raw milk samples, while mcr-1 was found in subclinical mastitis
isolates and mcr-2 in both isolates from clinical and subclinical
mastitis. It is almost agreed that the mcr-1 gene is one of the few
and clear examples of animal origin of a resistance trait that
could hit the entire human health system (Poirel and Nordmann,
2016). Appealingly, three mcr-1-positive K. pneumoniae isolates
were isolated from rawmilk samples ensuring the role of humans
in contamination and the transmission from animals to humans.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
On the other hand, no colistin-resistant P. aeruginosa were
found in the raw milk samples. They were isolated only from
clinical and subclinical mastitis and were carrying mcr-1, mcr-2,
mcr-3, ormcr-7 genes. Although, we detected 37.5% and 12.5% of
the colistin-resistant P. aeruginosa isolates carrying mcr-1 and
mcr-2 genes; respectively, it was found lately in Egypt that
colistin-resistant P. aeruginosa were negative for mcr-2 gene
and 50% were positive for mcr-1 (Abd El-Baky et al., 2020).
We also found that the mcr-3 variant was prevalent with 37.5%
among our colistin-resistant P. aeruginosa isolates. Even, to our
knowledge, there is no report detected on mcr-3 in P. aeruginosa
isolates before. Moreover, this is the first-time reporting mcr-7
from Egyptian isolates, and it was identified in P. aeuriginosa
from clinical mastitic milk. The first plasmid-mediated colistin
resistance gene mcr-7 was detected in K. pneumoniae from
chickens in China (Yang et al., 2018). Recently, the mcr-7 gene
was detected in a water sample from an environment of an
alligator (dos Santos et al., 2020). The detection of mcr-7 in our
isolate from clinical mastitis confirms the dissemination of mcr
gene and its variants at all levels; humans, animals, and
environmental. This was confirmed here while application of
the conjugation assay as the plasmid harboringmcr genes (mcr-1
to mcr-4, and mcr-7) successfully transferred colistin resistance
to the recipient strain through a broth-mating assay,
representing their capability to mobilize the mcr-genes between
isolates (Migura-Garcia et al., 2020).

The virulome of our colistin-resistant isolates was screened in
each species. Many of the identified virulence genes in our study
were required for bacterial survival and had a role in causing
mastitis (Tartor and El-Naenaeey, 2016; Gao et al., 2019; Guerra
et al., 2020). This in turn raises the alarm that most of the colistin-
resistant Gram-negative isolates are highly pathogenic. Here, the
establishment of an interplay between antimicrobial resistance and
virulence traits corresponded to each analyzed Gram-negative
bacteria, revealing positive correlations between the existence of
certain virulence genes and resistance to antimicrobial agents/
genes. A previous study suggested that the mobile genetic elements
of proficient pathogens favor the coselection of both resistance and
virulence-associated traits (Hennequin and Robin, 2016).

The virulome, as well as the resistome patterns of our colistin-
resistant isolates, confirmed the elevated pathogenicity and the
widespread antibiotic resistance that correlated to these isolates.
The phylogenetic analysis of the nucleotide sequences of our
colistin resistance mcr variants showed three distinguishable
clusters. Interestingly, each cluster has the same mcr variant,
and this is in accordance with what was reported before about
mcr-1, mcr-2, and mcr-3 (Zhang et al., 2018). The presence of
each variant of the mcr gene in the same clonal lineage despite
the different sources of isolation confirms the high spread of
colistin resistance from one source to another. Each of the mcr-4
and mcr-7 variants was shown in a unique cluster. This was
unsurprising since our study showed the first report of mcr-7 in
P. aeruginosa. Similarly, mcr-4 was previously found in a unique
phylogenetic group (Zhang et al., 2019). Our findings proved
that each mcr gene has a distinct evolution and spread path
producing a characteristic phenotypic colistin resistance.
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All the above information has raised the alert for controlling
the spread of colistin-resistant isolates. Thus, we decided to
evaluate four commonly used biocides in the dairy farms
against colistin-resistant isolates. In accordance with Lanjri
et al. (2017), all isolates were sensitive to chlorhexidine with
different concentrations. This is attributed to its cationic nature
that helps in electrostatic interaction with the anionic group
lipopolysaccharide in the cytoplasmic membrane of Gram-
negative bacteria, resulting in modification of the membrane
permeability and causing membrane disruption and cell death
due to coagulation of the cytoplasm (Estrela et al., 2003). Another
tested biocide was iodine; it showed an inhibitory effect on E. coli
and K. pneumoniae at high concentrations and no inhibition
effect on P. aeuriginosa and A. hydrophila at all tested
concentrations. Iodine is proven to be considered a broad-
spectrum, rapidly acting bactericidal, and effective against all
mastitis-causing bacteria (Gleeson et al., 2009). It acts through
its penetration into the proteins, nucleotides, and fatty acids of
microorganisms causing cell death (Gupta et al., 2018), which
makes the development of resistance unlikely. However, in the
field, the presence of some residues in the environment like the
organic matter of the teat skin or in the challenge suspension may
have been reacting with the disinfectant and thus less germicidal
activity may have been produced (Enger et al., 2015). These
conditions permit some bacteria to be exposed too much to lower
concentrations of the active ingredients consequently and thus
increasing their resistance to the used disinfectants (Wales and
Davies, 2015). These results were in agreement with what was
reported earlier that a dip containing the highest free iodine
provided a greater significantly superior reduction of pathogens
compared with a lower concentration of iodine dip (Foret et al.,
2005). Furthermore, all isolates showed a sensitivity to H2O2, and
this had been confirmed previously. H2O2 produces oxidants as
singlet oxygen, superoxide radicals, and hydroxyl radicals with
high penetration power and not specific in the points of contact
by attacking bacteria at any essential cell components, leading to a
decrease in the probability of bacteria to create resistance with
these compounds (Nilima, 2011; Benavides, 2014). This was in
contrast with Enger et al. (2015) who reported that H2O2 was the
least efficacious tested teat dip, and these differences may be due
to the evolution of resistance by the gradual use of the disinfectant
(Wales and Davies, 2015). However, different concentrations of
ethanol showed no antimicrobial activity against all tested
bacteria, and this is in agreement with what was proved before
about ethanol effectiveness (Al-Dabbbagh et al., 2015). This
ethanol tolerance mainly appears to result in large part from
adaptive and evolutionary changes in cell membrane composition
(Ingram, 1990).
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CONCLUSION

Ultimately, the spread of mobile mcr genes between MDR and
XDR virulent Gram-negative isolates from dairy cattle confirms
the dissemination of the mcr gene and its variants at all levels:
human, animal, and environmental. Consequently, a decision to
stop using colistin in food animals is a principal demand to defy
XDR and MDR emergence. Additionally, establishing a perfect
quality control check system in Egypt, focusing on both farm
workers and the animal itself is urgent.
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