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Spinal cord injury is a devastating disease which disrupts the connections between the brain and spinal cord, often resulting in
the loss of sensory and motor function below the lesion site. Most injured neurons fail to regenerate in the central nervous system
after injury. Multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration after injury. MicroRNAs
can modulate multiple genes’ expression and are tightly controlled during nerve development or the injury process. Evidence has
demonstrated that microRNAs and their signaling pathways play important roles in mediating axon regeneration and glial scar
formation after spinal cord injury.This article reviews the role and mechanism of differentially expressed microRNAs in regulating
axon regeneration and glial scar formation after spinal cord injury, as well as their therapeutic potential for promoting axonal
regeneration and repair of the injured spinal cord.

1. Introduction

Spinal cord injury (SCI), one of the most severe injuries,
causes the death of many kinds of cells such as neurons,
oligodendrocytes, and astrocytes, in which extensive loss of
sensory and motor functions occurs below the injury site
[1]. Two different mechanisms have been proposed for the
pathogenesis of SCI: a primary mechanical injury and a
secondary injury induced by multiple biological processes,
including ongoing apoptosis, inflammation, excitotoxicity,
and extensive demyelination of axons [1, 2]. Prior studies have
suggested that, unlike the peripheral nervous system (PNS),
the adult mammalian central nervous system (CNS) has lim-
ited axon regeneration ability after SCI, predominantly due
to the inability of neurons to regenerate axons through the
inhibitory milieu of the glial scar and injured spinal cord
lesion [3], which impede the functional recovery after
trauma. Numerous lines of evidence suggest that axonal
regeneration and functional recovery can be influenced by
intrinsic and extrinsic factors, and the regeneration and
recovery of SCI is a complex multicellular response, with

multiple cell types having numerous roles in distinct regions
of the nerve.

The axonal regeneration ability mainly depends on
extrinsic environment inhibitory elements and neuronal
intrinsic regenerative potential [3–7]. The injured adult CNS
is a nonpermissive environment for axon regeneration due to
the abundance of inhibitory proteins and glycoproteins [5].
Moreover, intrinsic neuronal mechanisms initiating a growth
program are also very limited in injured adult CNS neurons
[6]. Because of the failure of CNS axons to spontaneously
regenerate, sensory, motor, autonomic, or cognitive deficits
resulting from CNS injury are often permanent [8].

Epigenetic regulation plays a pivotal role in various
physiological and pathological processes by regulating gene
expression, such as apoptosis, proliferation, hematopoiesis,
differentiation, regeneration, and development [9–14]. Mic-
roRNAs are a big class of critical epigenetic regulation factors,
and about 77% of the identified mature noncoding microR-
NAs have been discovered in the rodent spinal cord [15].
MicroRNAs play important roles in regulating the process of
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Table 1: Differentiated expression of microRNAs in different spinal cord injury models.

Expression patterns Spinal cord injury model Reference
Ischemia-reperfusion injury Contusion injury

Upregulation

miR-204, miR-365, miR-323, miR-672,
miR-760-5p, miR-376b-5p, miR-369-5p,
miR-133a, miR-505, miR-466d, miR-132,

miR-665, miR-463

miR-1, miR-15b, miR-20a, miR-20b-5p,
miR-21, miR-30a, miR-31, miR-92a,
miR-92b, miR-93, miR-98, miR-106b,

miR-145, miR-146b, miR-152,
miR-199a-3p, miR-203, miR-206,

miR-214, miR-221, miR-223, miR-290,
miR-333, miR-374, miR-378, miR-672,

miR-674-5p, miR-872, miR-17, miR-146a,
miR-124, miR-486

[15, 23, 24, 112, 113]

Downregulation miR-210, miR-146a, miR-199a-3p

miR-30b-5p, miR-30c, miR-30d,
miR-34a, miR-129, miR-137, miR-138,
miR-219-2-3p, miR-219-5p, miR-323,
miR-325-3p, miR-338, miR-379,

miR-384-5p, miR-495, miR-543, miR-708,
miR-125-3p, miR-126, miR-let-7b,
miR-129-1, miR-129-2, miR-129-3p,

miR-342

[21, 36, 37, 113, 114]

Early: upregulation;
late: downregulation∗

miR-99a, miR-100, miR-103, miR-107,
miR-124, miR-127, miR-128, miR-154,

miR-181a, miR-434, miR-487b, miR-124a,
miR-133a, miR-133b, miR-45

[15, 23, 90]

∗MicroRNAs are significantly upregulated at 4 hours and then downregulated at 7 days after SCI.

neuronal plasticity, neuronal degeneration, axonal regenera-
tion, and remyelination via translational repression or leading
to mRNA degradation [16–19]. Alterations in the expression
ofmany genes during spinal cord process have been shown to
play vital roles in the pathogenesis of secondary SCI or
axon regeneration [20]. Evidence has shown that plenty of
microRNAs changed dramatically [21], which suggests that
microRNAs are involved in the pathogenesis of SCI. In this
review, we summarize the dysregulated microRNAs after SCI
and their roles in mediating glial scar formation and intrin-
sic and extrinsic axon degeneration. We also discuss the
microRNA-based therapeutic strategies for promoting axonal
regeneration after SCI.

2. Altered MicroRNAs Expression
following SCI

More and more evidences have demonstrated that microR-
NAs are highly abundant in the spinal cord and are dysregu-
lated following SCI (Table 1). Actually, a total of 3,361microR-
NAs have been identified to be expressed in the spinal cord
of adult rats [22], and among them 60 microRNAs are
reported to be dysregulated at different time-points after SCI.
In another study, 32 microRNAs, including miR-124, miR-
129, and miR-1, are significantly downregulated, but miR-21
is significantly upregulated in the injury sites of contused
rat spinal cords [23]. Similar observations are made in
another microarray study of a rat contusive SCI model, in
which 343 microRNAs are found to be modulated following
injury, and most of them are downregulated at day 7 after
injury compared with baseline [24]. Interestingly, in a mouse

SCI model, miR-223 expression is maintained upregulated
until 3 days after SCI. However, miR-124a expression is
significantly decreased from day 1 to day 7 after injury [21]. In
consistency with these findings, several other microRNAs
profiling studies also suggest that abnormal expression of
microRNAs may contribute to the pathogenesis of SCI [25–
27].

Bioinformatic analysis indicates that the potential targets
of dysregulated microRNAs after SCI include genes that are
involved in the pathogenesis of SCI, including inflammation,
oxidation, apoptosis, and neuroplasticity. Thus, the dysregu-
latedmicroRNAs are considered as potential targets for thera-
peutic interventions following SCI [15]. Among those dysreg-
ulated microRNAs after SCI, microRNA-21 and microRNA-
146a have been evidenced to promote neurological function
through reducing apoptosis and astrocytes hypertrophic
response to injury [28, 29]. miR-181a, miR-411, miR-99a,
miR-133b, and miR-15b can enhance the inflammation
response to injury [29–32]. Meanwhile, miR-221, miR-126,
miR-223, and Let-7a repress inflammation by targeting sev-
eral proinflammatory genes [33–35]. In addition, several
other studies show thatmicroRNAs can also regulate endoge-
nous antioxidant systems after SCI [36–38] and modulate
remyelination via targeting superoxide dismutase (SOD), the
antioxidant enzyme defense system [39]. Therefore, microR-
NAs have been suggested as biomarkers as well as therapeutic
targets of the pathological process of SCI [40].

3. MicroRNAs and Glial Scar Formation

SCI induces a chronic wound state that undergoes expansion
andmaintained demyelination resulting in impaired recovery
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and progressive tissue degeneration [41, 42]. Maladaptive
inflammation, specifically the activation of glial cells, is likely
a contributor. Astrocyte is the most abundant cell type in
the CNS comprising over 50% of total glial cell number [43].
After SCI, astrocytes can be activated by undergoing prolif-
eration (astrocytosis) and hypertrophy (astrogliosis). A large
number of studies report that the astrogliosis can influence
myelin debris secretion and scar tissue formation via reg-
ulating inflammation response and astrocytes hyperplastic
[43–46]. Astrogliosis, myelin debris, and scar tissue play the
decisive role in the process of axon regeneration failure after
CNS damage, which may be essential for wound repair,
but also inhibit axonal regrowth [47, 48]. Hence, a poten-
tial treatment to injuries in the CNS could be controlling
glial scar formation by modulating the proliferation and
hypertrophy extents of astrocytes surrounding the injured
site.

It is also possible to promote axon regeneration after SCI
by targeting astrogliosis, which has been verified by some
researches. For example, blocking the reactive gliosis after
SCI can enhance functional recovery and promote axon
regrowth to some extent [49]. Astrogliosis inhibition can also
result in increased axon densitywithin the lesion site. Regard-
less of neuron-astrocyte coculture or neurite guidance spot
assay, the astrogliosis usually shows inhibitory effects on
neuron growth [49]. Surprisingly, a recent study shows that
contrary to the prevailing dogma astrocyte scar formation
aids rather than prevents CNS axon regeneration. Using
three genetically targeted loss-of-function manipulations in
adult mice, researchers provide evidence showing that pre-
venting astrocyte scar formation, attenuating scar-forming
astrocytes, or ablating chronic astrocytic scars all failed to
result in spontaneous regrowth of transected corticospinal,
sensory, or serotonergic axons through severe SCI lesions
[50].

Astrogliosis is regulated by several well-known pathways,
such as cAMP, STAT3, NF-kB, Rho-kinase, JNK, and mTOR
[51–54]. For example, astrocytic reactivity is dependent on
RhoA signaling pathway activity and the astrocytic reactivity
can be reduced by targeting RhoA [50]. Injury-induced
cytokines, such as ciliary neurotrophic factor (CNTF),
interleukin-6, transforming growth factor alpha, fibroblastic
growth factor-2, and epidermal growth factor, have been
reported to enhance astrocyte activity, attributed to glial scar
formation [55]. In addition, PTEN might have a role in early
stage of reactive astrogliosis in vivo via P13K/Akt/mTOR sig-
naling pathway [53], and Jagged-1 can regulate the activation
of astrocytes viamodulation ofNF-kB and JAK/STAT/SOCS3
signaling pathway [56, 57]. In recent years, new evidences
also suggest that microRNAs are involved in the major
signaling pathway participating in astrogliosis. For example,
microRNA-582 and microRNA-590 target NF-kB signaling
pathway; miR-205 inhibits tumor growth by targeting cAMP;
miR-146a, miR-133b, andmiR-124 can directly regulate RhoA
signaling pathway [35, 58]. Although direct evidences are
lacking, these findings suggest that these microRNAs might
also be involved in the process or recovery of SCI through
regulating these important pathways.

Several other microRNAs might also play critical roles in
astrogliosis and glial scar formation. Overexpression of miR-
21 in wild-type serum-derived astrocytes causes a dramatic
reduction in cell size accompanied by reduction in glial fib-
rillary acidic protein (GFAP) levels. Conditional ablation of
BMPR1a fromGFAP-expressing cells leads to defective astro-
cytic hypertrophy, increased infiltration by inflammatory
cells, and reduced axon density. BMPR1b knockoutmice have
an attenuated glial scar in the chronic stages following injury.
Further analysis demonstrates that BMPR1a and BMPR1b
exert opposing effects on the posttranscriptional regulation
of astrocytic miR-21. Hence, targeting miR-21 has been sug-
gested as a therapeutic approach for manipulating gliosis and
enhancing functional outcomes after SCI [59]. miR-145, a
microRNA enriched in spinal neurons and astrocytes, is
significantly downregulated after SCI [39]. Overexpression
of miR-145 in astrocytes by a lentivirus-mediated pre-
microRNAdelivery systemwith GFAP promoter at the spinal
cord lesion site reduces the density of astrocytes at the
lesion border of the injured spinal cord [39]. In parallel,
overexpression of miR-145 decreases the size of astrocytes
and the number of related cell processes, as well as cell
proliferation and migration. These findings suggest that the
downregulation of miR-145 in astrocytes is a critical factor
inducing astrogliosis after SCI [39]. In contrary to miR-145,
miR-125b is upregulated in interleukin-6- (IL-6-) stressed
normal human astrocytes (NHA), a treatment known to
induce astrogliosis [48]. In vitro, anti-miR-125b treatment in
IL-6-stressed NHA cultures attenuates glial cell proliferation
and increases the expression of the cyclin-dependent kinase
inhibitor 2A (CDKN2A), a negative regulator of cell growth.
Interestingly, a strong positive correlation between miR-
125b abundance and GFAP/vimentin also exists in CNS of
advanced Alzheimer’s disease and Down’s syndrome patients
[48]. Astrocyte enriched miR-181a is increased in vulnera-
ble regions and decreased in ischemia-resistant areas [60].
Antagomir to miR-181a can reduce infarct size in focal
ischemia [61], which suggests that modulation of miR-181
may be a novel therapeutic intervention for injuries in the
CNS.

4. MicroRNAs and Extrinsic Determinants of
Axon Regeneration

Extrinsic barrier mechanisms for injured axons of CNS
mainly include the CNS myelin in the injury milieu and the
growth inhibitory molecules in the glial scar, and extrin-
sic inhibitory elements are mainly distributed in oligoden-
drocytes, astrocytes, microglia, and fibroblast. After injury,
these cells can be activated and increased. Then the large
number of myelin-associated inhibitors (MAIs) or other
inhibitory moles would be released by these cells and form
the nonpermissive environment to impede axon regener-
ation and/or sprouting. Three myelin-associated proteins,
namely,myelin-associated glycoprotein (MAG),Nogo-A, and
oligodendrocyte myelin glycoprotein (OMgp), and various
chondroitin sulfate proteoglycans (CSPGs), like NG2 or
Versican, semaphorins, and ephrins, have been identified
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Figure 1: MicroRNAs in the pathogenesis of SCI. SCI triggers a series of pathophysiological responses in the spinal cord, including axon
myelination, astrocyte activation, and intrinsic axon regeneration. The activation and inhibition of microRNAs are indicated by a red arrow
line and a blue T-shape line, respectively.

to be main molecular obstacles to axon regeneration [5].
These inhibitory molecules can be overexpressed in the
microenvironment after SCI. A wide number of studies
indicate that MAG can inhibit or promote neurite outgrowth
depending on the developmental status of the neuron and
other factors [4, 62, 63], which provides the potential to
improve the neurological function after SCI via promoting
axon sprouting or axon regeneration through modulating
these extrinsic factors. How to decrease MAIs and other
inhibitors and how to impede hostile environment for axon
growth after SCI are remaining as challenge questions that
desperately need to be solved in this research field.

MicroRNAs are essential for the development of astro-
cytes, and astrogliogenesis can be completely blocked by
inhibiting microRNA genesis in the spinal cord [64]. For
example, miR-130b, miR-21, miR-146a, miR-155, miR-22,
miR-622, and miR-145 can regulate astrocytes proliferation,
activation, terminal differentiation, and astrocyte-related
inflammation [39, 64, 65]. Among these microRNAs, miR-21
is themost well studied (Figure 1) in SCImodel [23]. By using
transgenic mice in which miR-21 is either overexpressed
or inhibited specifically in astrocytes, researchers tested the
functions ofmiR-21 in response to SCI. miR-21 is expressed at
low levels in the uninjured spinal, and neither overexpression
of miR-21 nor the miR-21 sponge produces observable phe-
notypic changes in astrocytes in uninjured spinal cords [66].

miR-21 overexpression in astrocytes attenuates the beneficial
hypertrophic response, whereas inhibiting the microRNA
augments it, suggesting that miR-21 has a significant role in
regulating astrocytic hypertrophy and glial scar progression.
Inhibition of miR-21 function in astrocytes increases axon
density within the lesion site [66], which suggests thatmiR-21
might be a potential molecular target formanipulating gliosis
and enhancing functional outcome after SCI.

A recent study shows that axonal microRNAs regulate
axonal growth bymodulating local protein composition [67].
In cultured cortical neurons, axonal application of CSPGs
inhibits axonal growth and alters axonal microRNA expres-
sion profiles, whereas elevation of axonal cyclic guanosine
monophosphate (cGMP) levels by axonal application of
sildenafil reversed the effect of CSPGs on inhibition of axonal
growth and on microRNA expression profiles. These data
demonstrate that axonalmicroRNAsmight play an important
role in mediating the inhibitory action of CSPGs on axonal
growth [67].miR-146a, a glial-enrichedmicroRNA [68, 69], is
reported to target superoxide dismutase (SOD) 2, an endoge-
nous mitochondrial antioxidant enzyme, and regulate cell
viability inH

2
O
2
treated PC12 cells [70]. Another study shows

that modulation of miR-146a expression by transfection of
astrocytes with anti-miR146a ormimic regulated not only the
expression levels of downstream targets ofmiR-146a (IRAK-1,
IRAK-2, and TRAF-6), but also the expression of IL-6 and
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COX-2 and several cytokines such as IL-6 and TNF-𝛼. These
observations indicate that in response to inflammatory cues
miR-146a is induced as a negative-feedback regulator of
the astrocyte-mediated inflammatory response [71]. More-
over, miR-146a also directly targets some astrocyte-specific
mRNAs, such asNlgn1, Nova1, and Syt1 to induce neural stem
cell to differentiate into astrocytes [68]. Interestingly, miR-
146a has the opposite effect on proneuronal differentiation
by targeting neuroligin 1 (Nlgn1) [70]. These data suggest
thatmiR-146amight provide novel clues formodulating axon
regeneration through targeting astrocytes.

A regeneration-permissive environment after SCI has
been created by precisely regulating miR-125b expres-
sion levels in the regeneration-competent axolotl sala-
mander (Ambystoma mexicanum), versus the regeneration-
incompetent rat [72]. A single dose ofmiR-125b targetsmulti-
ple pathways that improve functional recovery after complete
transection of the spinal cord. This comparative study offers
the first substantial translation of new molecular insights
aimed at defining a new biological understanding of major
mammalian pathways and new avenues for the development
of innovative treatments for human spinal cord injuries [72].
It will be interesting to explore the roles and molecular
network of other astrocyte-enriched microRNAs in spinal
cord models in axon regeneration in the future research.

It is well known that damage of myelin membranes and
failure of remyelination after nerve injury can disrupt neural
signals, leading to nerve degeneration. Remyelination has
been demonstrated in animal models to be mediated by
oligodendrocyte progenitor cells (OPCs), which migrate into
the lesion, proliferate, and differentiate into mature OLs and
then ensheathe the demyelinated axons. Dicer1 deletion leads
to a substantial increase of OPC proliferation and a drastic
reduction in myelination, suggesting that microRNAs are
required for normal OPC cell cycle exit and differentiation
[73, 74]. Actually, miR-219, miR-338, and miR-17–92 are
enriched in human white matter and highly expressed in
acutely isolated human OLs. In addition, both rodent and
human OLs express high levels of closely related microRNAs
(miR-219-1-3p, miR-219-2-3p, miR-1250, miR-657, miR-3065-
5p, and miR-3065-3p). High expression of microRNAs in
OLs suggests that they may regulate myelination program
[75]. In support of this, a recently published study suggests
that the process of precursor cell transit into mature myeli-
nating OLs is modulated by miR-17–92, miR-199a-5p, and
miR-145 [76]. Indeed, miR-219, miR-138, and miR-338 are
robustly upregulated upon OPC differentiation, and miR-219
is necessary and sufficient to promote OPC differentiation
[73]. In another study, miR-219 is found to be enriched in
young and environmental enrichment (EE) serum-derived
exosomes, which is necessary and sufficient for production of
myelinating oligodendrocytes by reducing the expression of
inhibitory regulators of differentiation [77]. miR-23 is abun-
dantly expressed in OLs and involved in oligodendrocyte
differentiation, myelin synthesis, maintenance, and proper
myelin folding [78, 79]. The overexpression of miR-23a in
transgene (TG) mice led to 50%, 80%, and 35% increases
in MBP, CNP, and MAG levels, respectively, in the corpus

callosum as compared to wild-type mice [78]. The phos-
phatase and tensin homologue/phosphatidylinositol trispho-
sphate kinase/Akt/mammalian targets of rapamycin path-
way are then identified as downstream targets of miR-23a.
Hence, miR-23 treatment could be employed to elevate the
expression levels of these myelin genes in the local OLs,
and thus facilitating their remyelination process after nerve
injury in the CNS [78]. In the PNS, let-7 is found to be
abundant during PNS myelination, and its expression levels
are inversely correlated to the expression of Lin28B, an
antagonist of let-7 accumulation. Sustained expression of
Lin28B and consequently reduced levels of let-7 results in a
failure of Schwann cell myelination in transgenic mouse
models and in cell cultures. Let-7 promotes expression of the
myelination-driving master transcription factor Krox20
(also known as Egr2) through suppression of myelination
inhibitoryNotch signaling. As let-7 is also highly expressed in
CNS, it remains unknown if let-7 is also responsible for CNS
myelinations [80].

5. MicroRNAs and Intrinsic Determinants of
Axon Regeneration

Although the glia scar and extrinsic inhibitory elements are
the most important barrier of axon regeneration, most axons
still cannot regenerate after even eliminating glia scar and
improving the hostile environment. There are some intrinsic
factors that have been shown to be playing pivotal roles in
axon regeneration in CNS. The Krüppel-like family of tran-
scription factors (KLFs) are a set of zinc finger DNA-binding
proteins that regulate gene expression. Several KLFs family
members have been shown to be playing pivotal roles in axon
regeneration. KLF6 and KLF7 have the opposite functions in
neurite growth while deletion of KLF4 improves neurite
growth in vitro and in optic nerve regeneration after crush in
vivo [81–83]. Conditioned deletion of PTEN and/or SOCS3
genes in mice can significantly improve the intrinsic axon
regeneration potential and promote the axon regrowth into
lesion sites [84]. In addition, a series of signaling alternations,
including p53, calcium, MAPK, JAK/STAT, and mTOR path-
way, also have been detected after injury [53, 54]. Obvious
axon regeneration has been obtained bymodulating different
injury-induced signaling pathways, such as KLFs, PTEN,
GSK3𝛽, mTOR, STAT3, b-RAF, SOX11, DLK-1, cAMP, RhoA,
and SOCS3 [62, 85–88].

Emerging evidences demonstrate that there is a close rela-
tionship between microRNAs and intrinsic determinants of
axon regeneration. For example, miR-133b, which is specif-
ically expressed in mammalian midbrain dopaminergic
neurons (DNs) and is deficient in midbrain tissue from
patients with Parkinson’s disease [89], has been proved as an
important determinant in spinal cord regeneration in adult
zebra fish by directly reducing RhoA protein levels [90]. miR-
133b has also been shown to be promoting neurite outgrowth
in the primary cortical neurons and PC12 cells [91]. miR-
133b increases axon growth and attenuates axon growth
restrictions from CSPG in PCNs via ERK1/2 and PI3K/Akt
signaling pathway by suppressing RhoA [91].
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There are several other microRNAs which have been
identified as important regulators of axon regeneration, and
some of them have crosstalk with the critical genes involving
axon regeneration after CNS injury and degeneration. In
our recently published research, we found that miR-26a pro-
motes axon regeneration by suppressing GSK3𝛽 expression
in mammals [92]. In retinal ganglion cells, miR-30b has
been proved to promote axon outgrowth by inhibiting the
expression of semaphorin 3A (Sema3A), which is a major
inhibitory factor of optic nerve (ON) regeneration after injury
[93]. miR-132, one of the brain enriched microRNAs, is
abundant in developing axons relative to mature axons, and
it can promote axon extension of cultured DRG axons
through repressing the Ras GTPase activator Rasa1, a novel
target in neuronal function [94]. Interestingly, miR-132 is the
target of the transcription factor, cAMP-response element
binding protein (CREB). miR-132 regulates neuronal mor-
phogenesis by decreasing levels of the GTPase-activating
protein, p250GAP [95].miR-431, one of nerve injury-induced
microRNAs, stimulates regenerative axon growth by silenc-
ing Kremen1, an antagonist of Wnt/beta-catenin signaling
[96]. Both the gain-of-function of miR-431 and knockdown
of Kremen1 significantly enhance axon outgrowth in murine
dorsal root ganglion neuronal cultures. More recently, miR-
431 is also found to regulate motor neuron neurite length by
targeting several molecules, such as chondrolectin and Kif3B,
previously identified to play a role in motor neuron axon
outgrowth [97].

miR-124, the most abundant and well-conserved brain-
specific microRNA, is involved in regulating neurite elonga-
tion by targeting ROCK1, KLFs, and STAT3 [98]. STAT3 and
KLFs can be regulated by miR-185, miR-19b, let-7, miR-22,
miR-203, miR-93, miR-10b, miR-337, miR-145, and so on [99–
103], and some of these microRNAs are dysregulated after
SCI (Table 1). In contrast, KLF4 can directly upregulate miR-
203 to promote cell senescence [104]. Furthermore, a mutual
negative feedback loop between miR-138 and SIRT1 exists in
the process of axon regeneration following peripheral nerve
injury [105]. In the future,more investigations are still needed
to fully reveal the complex regulatory network involving
multiple genetic and epigenetic factors in axon regeneration.

6. Therapeutic Potentials of MicroRNAs for
the Treatment of SCI

SCI is a devastating disease and often leads to severe disability.
Several therapeutic strategies have been proposed to support
axon regeneration and neurologic function rehabilitation,
such as conditioned lesion, cell transplantation, epigenetic
regulation, artificial scaffold transplantation, and gene ther-
apy [106, 107]. However, there are still no effective medica-
tions currently available for treatment of SCI. As microRNAs
have the ability of fine-tuning the expression of multiple
targets and they usually have tissue-specific expression pat-
terns, it is easier to design tissue-specific gene targeting tools
which have great therapeutic potentials for treatment of SCI
[108]. As discussed above, microRNAs compose a complex
network with both intrinsic and extrinsic determinants of

axon regeneration after SCI. For example, miR-199a, miR-
124, and miR-133b regulate neurite outgrowth by targeting
intrinsic factors PTEN, POCK1, and RhoA, respectively
(Table 2). While miR-21, miR-145, miR-146, miR-181, miR-
125b, and miR-486 play various roles in astrocytosis and
astrogliosis, let-7,miR-9,miR-23,miR-138,miR-219, andmiR-
146 promote myelination after SCI (Table 2). Manipulating
the expression of microRNAs in injury sites might not only
neutralize the local environment to make it more permissive
for nerve regeneration, but also activate intrinsic genes in
neurons that contribute to axon regeneration.

In principle, the functional recovery could be achieved
by intrinsic or extrinsic promoting of axonal regrowth: the
regeneration of lesioned axons which will reconnect to their
original targets and the sprouting of spared axons that form
new circuits and compensate for the lost function.Therefore,
the important approaches in spinal cord are to manipulate
and neutralize the local environment, such as modulating
glial scar formation and oligodendrogenesis, to make it more
permissive for nerve regeneration, although recreation of the
growth-promoting environment after nerve injuries remains
challenging [6].

So far, there are no clinical trials on microRNA-based
treatment for SCI in humans. MicroRNA-based therapies
could involve the administration of a specific microRNA
mimic to downregulate target genes or antisense probes for
the blocking of certainmicroRNAs to increase the expression
of target genes in injury sites. In recent years, microRNA
delivery technology development is growing rapidly and gives
us high expectation for microRNAs as therapeutics. Virus-
based microRNA delivery technology has shed light on the
development of microRNAs delivery systems for SCI treat-
ment. It has been demonstrated that serotype 9 of AAV
(AAV9) vectors shows the highest tropism for neural tissue
and can cross the blood-brain barrier, and the authors have
shown that intrathecal delivery of AAV9 yields relatively high
gene transduction into dorsal root ganglia or spinal cord
[109]. More importantly, intracardiac injections of tyrosine-
mutant pseudotype AAV9/3 vectors result in extensive and
widespread transgene expression in the spinal cords of adult
mice, which suggests that tyrosine-mutant AAV9/3 vectors
may be effective vehicles for delivery of therapeutic genes,
including microRNAs, into the spinal cord for treating dis-
eases [110]. However, one of the most important challenges in
this field is the need for the development of noninvasive
approaches to delivering ncRNA modulators, such as anti-
microRNAs or microRNA mimics, into the spinal cord
without significant off-target effects [111].

7. Conclusion and Perspective

SCI is a devastating disease and often leads to severe disability.
Unfortunately, there is still no clinical treatment currently
available that can achieve the same outcome as in animals.
The regeneration capacity of nerve tissues after SCI is very
limited. This poor regeneration is mainly contributed by
both the hostile microenvironment at the injured sites and
the limited axon regrowth potential of adult CNS neurons.
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MicroRNAs take part in a series of pathophysiological
processes and play pivotal roles in the process of main-
taining homeostasis following SCI. MicroRNAs can regu-
late inflammation, eliminate myelin debris, suppress exces-
sive astrogliosis to improve hostile microenvironment, and
directly or indirectly modulate gene expression to promote
intrinsic axon regeneration ability. As microRNAs are small
molecules that can be easily delivered, usually have tissue-
specific expression properties, and fine-tune the expression
of multiple genes at a time, they have great therapeutic
potentials for SCI gene therapy. To date, we still know
very little about the molecular mechanisms underlying axon
regeneration and the pathogenesis of SCI, and the complete
regulatory network involving microRNAs and other genetic
and epigenetic factors is largely unknown. In addition, great
efforts should also be made to examine the therapeutic
potentials ofmicroRNAs and to develop effectivemicroRNA-
based treatment approaches for SCI.
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and Y.-H. Fu, “MicroRNA-23a promotes myelination in the
central nervous system,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 110, no. 43, pp.
17468–17473, 2013.

[79] S.-T. Lin and Y.-H. Fu, “miR-23 regulation of lamin B1 is crucial
for oligodendrocyte development and myelination,” Disease
Models and Mechanisms, vol. 2, no. 3-4, pp. 178–188, 2009.

[80] D. Gökbuget, J. A. Pereira, S. Bachofner et al., “The Lin28/let-7
axis is critical formyelination in the peripheral nervous system,”
Nature Communications, vol. 6, article 8584, 2015.

[81] M. G. Blackmore, Z. Wang, J. K. Lerch et al., “Krüppel-like
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