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Influence of different elicitors 
on BIA production in Macleaya 
cordata
Peng Huang1,2,7, Liqiong Xia3,7, Li Zhou1,7, Wei Liu1,4, Peng Wang1, Zhixing Qing5* & 
Jianguo Zeng1,6*

Sanguinarine (SAN) and chelerythrine (CHE) have been widely used as substitutes for antibiotics for 
decades. For a long time, SAN and CHE have been extracted from mainly Macleaya cordata, a plant 
species that is a traditional herb in China and belongs to the Papaveraceae family. However, with 
the sharp increase in demand for SAN and CHE, it is necessary to develop a new method to enhance 
the supply of raw materials. Here, we used methyl jasmonate (MJ), salicylic acid (SA) and wounding 
alone and in combination to stimulate aseptic seedlings of M. cordata at 0 h, 24 h, 72 h and 120 h and 
then compared the differences in metabolic profiles and gene expression. Ultimately, we found that 
the effect of using MJ alone was the best treatment, with the contents of SAN and CHE increasing by 
10- and 14-fold, respectively. However, the increased SAN and CHE contents in response to combined 
wounding and MJ were less than those for induced by the treatment with MJ alone. Additionally, 
after MJ treatment, SAN and CHE biosynthetic pathway genes, such as those encoding the protopine 
6-hydroxylase and dihydrobenzophenanthridine oxidase enzymes, were highly expressed, which 
is consistent with the accumulation of SAN and CHE. At the same time, we have also studied the 
changes in the content of synthetic intermediates of SAN and CHE after elicitor induction. This study 
is the first systematic research report about using elicitors to increase the SAN and CHE in Macleaya 
cordata.

The benzophenanthridine alkaloids (BIAs) are a large and diverse alkaloid group, and these compounds, such 
as sanguinarine (SAN), chelerythrine (CHE), protopine (PRO), and allocryptopine (ALL), exhibit a wide 
range of biological  activities1. SAN has a wide spectrum of biological activities, including strong  antitumour2, 
 antimicrobial3 and anti-inflammatory  activities4. In addition, SAN and CHE are as natural growth promoters that 
can be used as alternatives to antibiotic growth promoters in the livestock  industry5. In addition, SAN has real 
potential as an effective antischistosomal  drug6. Both PRO and ALL were demonstrated to have anti-bacterial, 
anti-viral, anti-fungal and anti-parasitic  effects7–10. PRO has potential uses as a neuroprotective agent in stroke 
and as an antidepressant for mood  disorders11. Currently, SAN and CHE are extracted from mainly Macleaya 
cordata, a plant species that is a traditional herb in China and belongs to the Papaveraceae  family5,12. In 2006, 
with the ban of using low-dose antibiotics as growth promoters added in animal feed in the European Union, 
natural growth promoters (NGPs), such as phytogenics, are extensively exploited as alternatives to antibiotics in 
livestock  production13. Currently, the annual requirement for this plant is increasing daily due to its commercial 
value. Unfortunately, this plant has generally been collected from the wild for SAN commercial production. 
Therefore, the massive collection of wild resources of M. cordata caused a decline in its population and we need 
to establish a new stable supply method and develop a viable alternative to SAN production.

Plant tissue culture has become a promising alternative strategy for the sustainable and industrial-scale pro-
duction of secondary metabolites. There are multiple advantages of medicinal plant tissue culture. (i) It is not 
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affected by environmental or geographic conditions. (ii) It can strictly control production and quality and (iii) 
shorten the growth cycle compared to that of the intact plant. (iv) It avoids taking land resources. In fact, some 
plant secondary metabolites have been produced using this method, such as  shikonin14,15, ginseng  saponins16 
and  paclitaxel17–19, over the past decades. Based on this strategy, some elicitors have been widely used to enhance 
secondary metabolite production in many plant species. For example, methyl jasmonate (MJ) treatments were 
found to enhance the production of camptothecin in Ophiorrhiza mungos20 and the content of olide A, witha-
nolide A, withanone, and withaferin A in Withania somnifera21. In addition, salicylic acid (SA) can increase the 
accumulation of secondary metabolites in Salvia miltiorrhiza  cells22 and Daucus carota23. Moreover, wounding 
responses have always occurred. For example, wind, hail, sand and cuts can increase the secondary metabolite 
production of  plants24,25. In fact, some researchers have to enhance SAN in Argemone Mexicana by MJ, Fusarium 
oxysporum  homogenates26. Additionally, the sequential application of MJ, SA and YE also can increase the SAN 
content over 9 times in A. Mexicana27. Although the continuous treatment of MJ, SA and YE also can increase 
SAN 5.5 times in Eschscholtzia californica28. However, another research found that the effect of MJ treatment 
was  better29. In addition, manganese chloride is also used to try to increase BIAs in E. californica30. However, 
there still is no report available regarding the elicitor or mechanical damage effect on BIA production in the 
tissue culture of M. cordata.

In 2017, the whole genome of M. cordata was sequenced, which is the first species in Papaveraceae to have 
a completed genome-wide  sequence5. Research on elicitors of M. cordata will further promote the study of the 
regulation of SAN synthesis. Currently, the protocol of regeneration and transformation in M. cordata has been 
established, and the SAN biosynthetic pathway and genes in M. cordata have been validated (Fig. 1)5,31–33. The 
aim of this study was to evaluate the effects of MJ, SA and wounding on BIA metabolism in plant tissue culture 
seedlings to enhance SAN production in M. cordata. Moreover, multiple processing at different times was evalu-
ated. Additionally, the effect of different elicitors was evaluated on the basis of the metabolic profile and gene 
expression in the SAN and CHE biosynthesis pathway.

Materials and methods
Plant materials and treatments. Sixty-day-old lines of M. cordata were maintained in hormone-free 
solid medium. All the cultures were under a 16/8 h (light/dark) cycle (4500 to 9000  lx) until used for trans-
formation, and these tissues were used for all experiments. MJ (≥ 98%) and SA (≥ 99%) were purchased from 
Sigma (USA). They were filter sterilized using 0.22 μM membrane filters (Millipore, USA) and diluted in DMSO 
(dimethyl sulfoxide). For wounding treatment, 60-day-old M. cordata seedlings were wounded in the leaves of 
the seedlings using sterile needles and placed in Murashige and Skoog (MS) solid medium. For the combined 
treatment, seedlings were first wounded and then placed in MS containing 100 μM MJ or 100 μM SA. The sam-
ples of the control group were also placed in MS medium without any treatments. All the samples were grown at 
25 °C under a 16 h photoperiod. For gene expression and metabolic profile studies, samples treated as described 
above were harvested at different time points. Finally, all samples were immediately frozen in liquid nitrogen and 
stored at − 70 °C for future experiments. All the samples were collected at 0 h, 24 h, 72 h and 120 h to test the 
optimum incubation time required for the treatment to evoke the maximum response. Samples were collected 
in triplicate each time.

Metabolite extraction from M. cordata and LC/triple-quadrupole (QQQ) MS analysis. The 
methods of alkaloid extraction and metabolic analysis were performed using previously described  methods5. 
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Figure 1.  The metabolic pathway of sanguinarine and chelerythrine. 6OMT, norcoclaurine 
6′-O-methyltransferase; CNMT, coclaurine-N-methyltransferase; NMCH, N-methylcoclaurine hydroxylase; 
4OMT, 4′-O-methyltransferase; BBE, berberine bridge enzyme; CFS, cheilanthifoline synthase; SPS, stylopine 
synthase; TNMT, tetrahydroprotoberberine cis-N-methyltransferase; MSH, (S)-cis-N-methylstylopine 
14′-hydroxylase, P6H, protopine 6′-hydroxylase; DBOX, dihydrobenzophenanthridine oxidase; TDC, (S)-
canadine synthase; SMT, (S)-scoulerine 9′-O-methyltransferase.
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The freeze-dried plant tissues (0.5 mg) were mixed with methanol (25 mL). Then, the samples were extracted 
for 30 min by ultrasonication, centrifuged at 14,000 rpm for 15 min and filtered through a 0.22-mm membrane 
filter. Finally, the solution was chromatographically separated by an ultra-HPLC Agilent 1290 instrument using 
a BEH C18 column. The automatic sampler temperature was set at 6 °C. Ultra-High-Performance Liquid Chro-
matography (UHPLC) was coupled with a QQQ mass spectrometer (6460A, Agilent). A calibration curve was 
generated using 5 points and was used to evaluate the absolute quantification of the target compound.

RNA extraction and qRT-PCR analyses. Control and treated (elicitors and wounding) seedling tissues 
(100 mg) were collected at the different time points (0 h, 24 h, 72 h and 120 h) for RNA extraction. All tissues 
were ground in liquid nitrogen, and total RNA was extracted with an RNA extraction kit (TaKaRa, MiniBEST 
Plant Genomic DNA, China) according to the manufacturer’s instructions. We used PrimeScript™RT Master 
Mix (TaKaRa, China) to synthesize cDNA according to the manufacturer’s instructions. The primers used for 
gene expression by qPCR are listed in Table 1. We performed quantitative PCR (qPCR) using an ABI 7300 and 
SYBR Premix (Roche, Switzerland) according to the manufacturer’s instructions. The 18S gene was applied as 
the housekeeping gene in all applications. The relative gene expression was calculated by the formula  2−ΔΔCt.

Statistical analysis. All the experiments were performed in triplicates. Data were recorded at four different 
time points (0 h, 24 h, 72 h and 120 h). We used a one-way ANOVA with GraphPad Prism software (Version 
8.4.0), followed by the Tukey’s honestly significant difference (HSD) post hoc test for mean comparison.

Results
Effect of different elicitors on SAN and CHE, ALL, PRO, dihydrosanguinarine (DHSAN) and 
dihydrochelerythrine (DHCHE) production. In M. cordata, PRO and ALL were transformed into 
6-hydroxyprotopine by P6H and into the spontaneous intramolecular rearrangement forms DHSAN and 
 DHCHE34,35, and these molecules were finally were oxidized to SAN and CHE by  DBOX36,37. The contents of 
SAN and CHE were significantly higher after the MJ treatment than after the other treatments (P < 0.05) at 
120 h (Fig. 2E,F). Compared with those in the untreated group, the contents of SAN and CHE were increased 
by 10- and 14-fold, respectively (Fig. 2E,F). In addition, treatment with SA and wounding resulted in less SAN 
and CHE accumulation compared with that in the MJ group (Fig. 2E,F). However, combined MJ and wound-
ing enhanced SAN, CHE, PRO, and ALL production (Fig. 2A,B,E,F). Additionally, we compared the changes in 
alkaloid content after treatment for 120 h. The results showed that the impact of MJ increased with time. The 
SAN and CHE production showed a maximum of 2.54 ± 0.42 mg/g at 120 h after initiation of MJ treatment, 
and the combined MJ and wounding treatment produced a maximum of 1.6 ± 0.25 mg/g at 72 h after treatment, 
which was lower than that after the treatment with MJ alone. Finally, we found that 3 treatments (MJ, SA, and 
wounding) had significant effects on the PRO and ALL contents (Fig. 2). In contrast, the PRO and ALL contents 
continuously declined over time and were lower than those in the untreated group at 120 h. In addition, treat-
ment with MJ significantly increased (P < 0.05) the DHCHE content at 72 h. However, the wounding treatment 
in combination with either of the two other treatments (MJ or SA) had greater effects than the control, MJ and 
SA groups on the DHSAN content (Fig. 2).

Effect of different elicitors on P6H, DBOX genes expression levels. The production of protopine 
and sanguinarine need to be catalysed by the enzymes encoded by the P6H and DBOX genes; therefore, the 
effect of the induction mode on the content can be further analysed by detecting the expression levels of these 
two genes. By analysing the mRNA expression levels of the P6H and DBOX genes (Fig. 3), which catalyse pro-
duction of protopine and sanguinarine, the effect of the elicitor can be further analysed. We found that the P6H 
gene expression was the highest in the SA group at 24 h, which then decreased with time. In contrast to that in 
the SA group, the expression level of the P6H gene was highest in the SA + wounding group at 72 h. Interest-
ingly, the expression pattern of the DBOX gene was the opposite of that of P6H. All the treatments increased the 
expression of the DBOX gene, which increased with time, except for that in the SA + wounding group at 120 h. 
The highest expression was induced by MJ treatment in all methods, followed by that induced by SA treatment.

Table 1.  Nucleotide sequences of primers.

Primer Name Oligonucleotide Sequences (5′–3′)

McP6H-QP-F CAT CAA GGA CGT TCG AGC CT

McP6H-QP-R CTC CTC ACC ACG CAC AAT CT

McDBOX-QP-F ACT GTT GCC ACG GTC GAT AG

McDBOX-QP-R TGG AGG AGC TTG TCA ACA CC

18S-QP-F CTT CGG GAT CGG AGT AAT GA

18S-QP-R GCG GAG TCC TAG AAG CAA CA
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Discussion
Elicitation is one of the most effective methods to enhance the accumulation of secondary metabolites in 
 plants38–42. Some biotic elicitors or physical stimulations are always used to improve the production of second-
ary metabolites in vitro 43. MJ and SA have been proven to be signalling molecules involved in the plant defence 
response and are now widely used as elicitors for secondary metabolite production in vitro44–46. Additionally, the 
concentration, type and time course of elicitors have a great impact on the accumulation of secondary metabolites 
47. In previous studies, the treatment of plant cultures with MJ has been shown to increase the accumulation of 
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triterpenoid  saponins48,  alkaloids27,28,49, and  ginsenoside50. Similarly, many studies have found that secondary 
metabolite products in SA-treated plant cells are also significantly  increased51–53. In addition, studies have found 
that mechanical damage increases and induces the production of various secondary metabolites, including 
 volatiles54–56. Wounding treatment also increased the accumulation of volatiles, including monoterpenes and 
 sesquiterpenes57. In A. mexicana suspensions, there have been some inconsistencies regarding the content of 
SAN after treatment with SA and  MJ27,49. However, in California poppy, both MJ and SA significantly increased 
(P < 0.05) the content of  SAN28,29. Consistent with these findings, we observed an enhancement of SAN con-
tent in the MJ treatment group in M. cordata. Interestingly, SAN content decreased in the MJ + wounding or 
SA + wounding groups, and the same phenomenon also appeared in Panax ginseng57, in which necrosis caused by 
mechanical wounding at damaged sites can be recovered by exogenously supplied MJ. The biosynthesis of many 
secondary metabolites is mainly regulated by gene expression levels. With the completion of the whole genome 
sequencing of M. cordata, some key genes involved in biosynthesis of sanguinarine have been  identified5, such as 
P6H and DBOX. P6H is responsible for catalyzing PRO and ALL to produce SAN and CHE, respectively. DBOX 
is the key gene that catalyzes the last step of SAN and CHE synthesis. Based on the gene expression data, elici-
tors have different effects on the P6H and DBOX genes. Specifically, MJ has a greater effect on the DBOX gene 
than on P6H. In contrast, SA has a greater effect on the P6H gene than on DBOX. In Argemone mexicana, yeast 
extract increases DBOX activity, but does not increase after MeJa  induction58. This shows that different species 
are affected differently by the elicitor. Based on these results, we believe that MJ is the best elicitor for increased 
SAN production, with hope for its application to the production of sanguinarine during harvesting in the future.

Received: 9 January 2020; Accepted: 14 December 2020
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