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Abstract: The ventral tegmental area (VTA) in the ventral midbrain is the origin of the dopaminergic
neurotransmission pathways. Although GABAA receptors and AKT-GSK3β signaling are involved
in the pathophysiology of mental disorders and are modulated by antipsychotics, an unmet task is
to reveal the pathological changes in these biomarkers and antipsychotic modulations in the VTA.
Using a juvenile polyriboinosinic-polyribocytidylic acid (Poly I:C) psychiatric rat model, this study
investigated the effects of adolescent risperidone treatment on GABAA receptors and AKT/GSK3β
in the VTA. Pregnant female Sprague–Dawley rats were administered Poly I:C (5mg/kg; i.p) or
saline at gestational day 15. Juvenile female offspring received risperidone (0.9 mg/kg, twice per
day) or a vehicle from postnatal day 35 for 25 days. Poly I:C offspring had significantly decreased
mRNA expression of GABAA receptor β3 subunits and glutamic acid decarboxylase (GAD2) in
the VTA, while risperidone partially reversed the decreased GAD2 expression. Prenatal Poly I:C
exposure led to increased expression of AKT2 and GSK3β. Risperidone decreased GABAA receptor
β2/3, but increased AKT2 mRNA expression in the VTA of healthy rats. This study suggests that
Poly I:C-elicited maternal immune activation and risperidone differentially modulate GABAergic
neurotransmission and AKT-GSK3β signaling in the VTA of adolescent rats.

Keywords: maternal immune activation; risperidone; ventral tegmental area; GSK3β; GABAA receptor

1. Introduction

Epidemiological and experimental evidence implicates gestational infections as one
important factor in the pathogenesis of neuropsychiatric disorders. Maternal immune
activation (MIA) during pregnancy increases the risk of the offspring developing neu-
ropsychiatric disorders, such as schizophrenia, autism spectrum disorders and bipolar
disorders, later in life [1–4]. Specific animal models of MIA, based upon the adminis-
tration of immunogenic substances to the pregnant female, have been developed. The
most commonly used approaches rely on mimicking maternal infection by treatment with
the bacterial endotoxin lipopolysaccharide (LPS) and the double-stranded RNA (dsRNA)
analog polyriboinosinic-polyribocytidylic acid (Poly I:C) [5–8]. Offspring with prenatal
Poly I:C exposure may develop a spectrum of schizophrenia-like symptoms, including
deficits in sensorimotor gating, working memory, latent inhibition and social interaction,
and sensitivity to amphetamine [5,8]. Although sex differences have been observed in the
rodent MIA models for schizophrenia [9,10], the majority of preclinical studies have been
conducted in male offspring only, largely to avoid possible influence by estrogens [11]. In
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addition, our recent study found that prenatal Poly I:C challenge caused behavioral deficits
in female adolescent offspring rats [12]. Therefore, this study focused on female adolescent
Poly I:C rats. A number of previous studies demonstrated that prenatal Poly I:C exposure
caused neurotransmission deficits in dopaminergic, serotoninergic (5-HT), γ-aminobutyric
acid (GABA), and glutamatergic N-methyl-D-aspartate (NMDA) receptors in the prefrontal
cortex, hippocampus, nucleus accumbens and caudate putamen [12–14]; however, little
attention has been paid to the ventral midbrain.

The ventral tegmental area (VTA), located in the ventral midbrain, is an origin nucleus
of mesolimbic dopamine neurotransmission that contains the cell bodies of dopamine
neurons that project their axons to the cortex and nucleus accumbens. Abnormal neuro-
transmissions in the mesolimbic dopamine pathway contribute to the pathophysiology of
schizophrenia, while the blockade of dopamine D2 receptor (D2R) activity in the mesolim-
bic pathway is the main mechanism of antipsychotic drug action [15–17]. Dopamine
neurons in the VTA are modulated by GABAergic interneurons [15,18]. Therefore, the
ventral midbrain may play a pivotal role in the antipsychotic treatment of schizophrenia;
however, it has not been well studied [19].

The protein kinase B (AKT)-glycogen synthase kinase 3 beta (GSK3β) signaling path-
way is a G-protein-independent pathway mediated by the D2R. Dopamine-associated
neuropsychiatric illnesses, such as schizophrenia and bipolar disorder, seem to be character-
ized by impairments in the AKT/GSK3β pathway [20–24], while AKT/GSK3β-dependent
signaling pathways are involved in the actions of antipsychotics [25–33].

Over the past decade, since approximately one fifth of children and adolescents have
been diagnosed with mental illness, antipsychotic prescriptions (mostly off-label) have
increased rapidly for juveniles, despite a lack of knowledge about the safety and efficacy of
antipsychotics in the developing brain [34–36]. Risperidone is the most widely used an-
tipsychotic drug (accounting for ~70% of total prescriptions) for treating various childhood
mental disorders, including depression, bipolar disorder, autism, and childhood-onset
schizophrenia [34,37–42]. Since children/adolescents are in a critical period of brain devel-
opment, and may be more sensitive to the antipsychotics than adults [37], it is vital to further
understand the pharmacological mechanisms of antipsychotics in children/adolescents.
Therefore, this study investigated the effect of risperidone on the expression of D2R,
GABAA receptor and AKT/GSK3β signaling in the VTA, using a female juvenile Poly I:C
rat model.

2. Materials and Methods
2.1. Animals and Treatment

The methods for establishing a Poly I:C rat model were conducted as previously
reported, which showed a phenotype with schizophrenia-like behavioral deficits in both
adolescent and adult offspring [12,14]. Briefly, time-mated pregnant Sprague–Dawley
rats (gestational day (GD) 8; Animal Resource Centre, Perth, Australia) were housed
individually in Techniplast GR1800 double-decker rat ventilated cages (IVCs) and allowed
to habituate to their surroundings for one week. At GD 15, dams were injected with either
Poly I:C (5 mg/kg dissolved in 0.2 mL 1% phosphate buffer saline, IP; n = 7; InvivoGen,
Toulouse, France) or an equivalent volume of saline (n = 7). After postnatal day (PD) 21,
female offspring rats were weaned and housed in Techniplast GR1800 double-decker rat
ventilated cages with a divider, under environmentally controlled conditions (22 ◦C; light
cycle from 07:00 to 19:00 and dark from 19:00 to 07:00) with ad libitum access to food and
water. Each cage housed 2 rats from the same treatment group, and the divider (with
perforated holes to allow the two rats to see, hear, and smell each other) separated the cage
into two chambers of equal size, each with its own enrichment devices, including a plastic
tunnel, a wood stick, and nesting materials with corncob bedding. Rats were administered
risperidone (0.9 mg/kg mixed with cookie dough, twice per day; n = 6/group, Janssen
Australia) or a vehicle (n = 6/group) orally from PD35 for 25 days, following the methods
routinely used in our laboratory [43,44]. The final treatment was delivered 2 h prior to
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euthanasia. The rats were then euthanized by isoflurane anesthesia and decapitated, and
the collected brains were frozen in liquid nitrogen and stored at −80 ◦C.

2.2. Brain Dissection

The discrete brain regions were collected using a brain microdissection puncture
technique in a cryostat (at −10.5 ◦C ± 1.5 ◦C) as previously reported [31,32,45]. According
to the brain atlas [46], the brain tissues through the VTA (Bregma −5.40 to −6.30 mm) were
dissected and kept at −80 ◦C for future use.

2.3. RNA Isolation and Gene Expression Analysis by Real-Time qPCR

Total RNA from the VTA brain tissue was prepared using the PureLink RNA Mini Kit
(#12183025; Invitrogen Life Technologies, Carlsbad, CA, USA). cDNA was synthesized from
purified RNA using the High-Capacity cDNA Reverse Transcription Kits (#4368814; Thermo
Fisher Scientific, Waltham, MA, USA). qRT-PCR was performed in duplicate on a Quant
Studio™ qRT-PCR system (ThermoFisher, Waltham, MA, USA) using TaqMan® Gene Expres-
sion Assays (Life Technologies, Sydney, NSW, Australia) for Drd2 (Rn00561126_m1), Gabrb1
(Rn00564146_m1), Gabrb2 (Rn00564149_m1), Gabrb3 (Rn00567029_m1), Gad1 (Rn00690300_m1),
Gad2 (Rn00561244_m1), β-actin (Hs01060665_g1) and Gapdh (Rn01775763_g1), or SYBR™
Green PCR Master Mix (Life Technologies, Sydney, NSW, Australia) for Akt1 (forward
primer: ggggaatatattaaaacctggc, reverse primer: gtcttcatcagctgacattg), Akt2 (forward
primer: gagtcctacagaataccagg, reverse primer: aatctctgcaccataaaagc), Akt3 (forward primer:
aaaggatccaaataaacgcc, reverse primer: aaggaggtacaagctttttg) and Gsk3b (forward primer:
cactcaagaactgtcaagtaac, reverse primer: tccagcattagtatctgagg). The cycling parameters were
95 ◦C for 10 min followed by 40 cycles (95 ◦C for 15 s, 60 ◦C for 1 min). Target gene relative
expression levels were normalized to two housekeeping genes, β-Actin and Gapdh. The
2−∆∆CT method was used to calculate the results.

2.4. Statistical Analysis

SPSS software (version 21.0, IBM, Armonk, NY, USA) was used to analyze all data.
The outliers were identified and removed using Boxplot. The Shapiro–Wilk test was
used to examine the data distribution. Data were analyzed by two-way ANOVA (Poly
I:C × risperidone). Post hoc Dunnett t-tests were followed for comparison between groups.
All data are expressed as mean ± SEM, and statistical significance will be accepted when
p < 0.05.

3. Results
3.1. Effects on the GABAergic Markers

The two-way ANOVA showed a significant main effect of risperidone (F1, 20 = 8.664,
p = 0.008), but no effect of Poly I:C on Gabrb2 mRNA levels (F1, 20 = 2.132, p = 0.160);
there were also no significant interactions between the two factors (F1, 20 = 0.319, p = 0.579).
Adolescent risperidone treatment significantly decreased Gabrb2 expression in offspring
rats with both prenatal Poly I:C and saline exposure (saline–risperidone vs. saline–vehicle,
p = 0.045; Poly I:C–risperidone vs. Poly I:C–vehicle, p = 0.024) (Figure 1B).

There was a significant main effect of Poly I:C factor (F1, 20 = 10.24, p = 0.005) and a
significant interaction between Poly I:C and risperidone factors (F1, 20 = 7.568, p = 0.012) on
Gabrb3 expression, but without a significant effect of the risperidone factor (F1, 20 = 3.601,
p = 0.072). Post hoc comparisons showed a more significant decrease in Gabrb3 mRNA
levels in Poly I:C–vehicle offspring than in saline–vehicle rats (p = 0.003; Figure 1C). The
saline–risperidone group also had lower Gabrb3 expression than the saline–vehicle group
(p = 0.015), while there was no significant difference between the Poly I:C–vehicle and
Poly I:C–risperidone groups (p > 0.05; Figure 1C). However, as shown in Figure 1A, both
prenatal Poly I:C exposure and adolescent risperidone treatment had no significant effects
on Gabrb1 mRNA expression (all p > 0.05).
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Figure 1. The effect of prenatal Poly I:C exposure and adolescent risperidone treatment on the mRNA
expression of (A) GABAA receptor β1(Gabrb1) subunit, (B) GABAA receptor β2 (Gabrb2) subunit,
(C) GABAA receptor β3 (Gabrb3) subunit, (D) glutamic acid decarboxylase GAD1, (E) glutamic acid
decarboxylase GAD2, and (F) dopamine D2 receptor in the VTA of female rats. Data were presented
as mean ± SEM (n = 6/group). * p < 0.05, # p < 0.01.

Although there were no significant main effects of prenatal Poly I:C exposure (F1, 20 = 0.063,
p = 0.804) or risperidone factor (F1, 20 = 0.015, p = 0.904) on Gad1 expression, there was a
significant interaction between the two factors (F1, 20 = 6.265, p = 0.021). Poly I:C–vehicle
rats had lower expression of Gad1 mRNA than the saline–vehicle group, but this difference
was not significant (p = 0.241), while risperidone treatment increased Gad1 mRNA levels in
Poly I:C offspring (Poly I:C–risperidonevs vs. Poly I:C–vehicle, p = 0.022; Figure 1D).

There was a main effect of prenatal Poly I:C exposure (F1, 20 = 4.237, p = 0.053) and a
significant interaction between Poly I:C and risperidone on Gad2 expression (F1, 20 = 10.520,
p = 0.004), although there was not a main effect of risperidone (F1, 20 = 0.341, p = 0.566).
Post hoc comparisons showed that prenatal Poly I:C exposure significantly decreased Gad2
mRNA levels (Poly I:C–vehicle vs. saline–vehicle, p = 0.004), while risperidone treatment
partially reversed this decrease in Poly I:C offspring (Poly I:C–risperidone vs. Poly I:C–
vehicle, p = 0.015; Figure 1E). Interestingly, risperidone significantly reduced Gad2 mRNA
levels in offspring with prenatal saline exposure (saline–risperidone vs. saline–vehicle,
p = 0.024) (Figure 1E).

There was no significant effect of Poly I:C (F1, 20 = 0.060, p = 0.809) or risperidone
(F1,20 = 0.005, p = 0.943) on D2R mRNA expression, and no significant interaction between
the two factors (F1, 20 = 0.276, p = 0.605; Figure 1F).

3.2. Effects on Akt-GSK3β Signaling Pathway

There was a significant main effect of Poly I:C on the expression of Akt2 (F1, 20 = 11.4,
p = 0.003); however, there were no significant main effects of risperidone (F1, 20 = 1.782,
p = 0.197), and also no significant interactions between the two factors (F1, 20 = 2.022,
p = 0.170). Post hoc tests showed that the Akt2 mRNA level was significantly increased
in Poly I:C offspring (Poly I:C–vehicle vs. saline–vehicle, p = 0.006; Poly I:C–risperidone
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vs. saline–vehicle, p = 0.003), while there was no significant difference between Poly I:C–
risperidone and Poly I:C–vehicle (p > 0.05). Risperidone significantly increased Akt2 mRNA
levels in the VTA of offspring rats with prenatal saline exposure (saline–risperidone vs.
saline–vehicle, p = 0.039) (Figure 2B). No significant differences in Akt1 and Akt3 mRNA
levels were observed in the VTA of Poly I:C- or risperidone-treated rats (Figure 2A,C).
There was an overall effect of prenatal Poly I:C exposure with increased Gsk3β expression
(F1, 20 = 4.355, p = 0.049); however, risperidone did not have any effects (F1, 20 = 0.004,
p = 0.950) (Figure 2D).
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4. Discussion

A number of studies have reported that maternal immune activation, such as prenatal
Poly I:C exposure, causes deficits in various neurotransmitters and related cellular signaling
pathways, particularly in the prefrontal cortex, hippocampus, nucleus accumbens and
caudate putamen in rodent models [12,13,47]. This is the first study, however, to examine
the effects of prenatal Poly I:C exposure and adolescent antipsychotic treatment on the
expression of both GABAergic neurotransmission markers and AKT/GSK3β signaling in
the VTA of adolescent Poly I:C rodent models.

Deficits in GABAergic neurotransmission have been implicated in the pathophysiology
of schizophrenia [15,48,49]. Previous studies have reported that prenatal Poly I:C exposure
caused abnormal expression of GABAA receptor subunits in the cortex and hippocampus
of rodent brains [13]. For example, prenatal Poly I:C exposure increased mRNA expression
of GABAA receptor α2/α4 subunits in the prefrontal cortex of juvenile offspring and α1/α2
subunits in the hippocampus of adult offspring, but decreased mRNA expression of the
GABAA receptor β3 (Gabrb3) subunit in the prefrontal cortex and β1 (Gabrb1) subunit in
the hippocampus [12,47,50]. This study extended these findings by observing that prenatal
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Poly I:C exposure decreased Gabrb3 mRNA expression in the VTA. There are two primary
GABA-synthesizing enzymes: glutamate acid decarboxylase 67 (GAD67, also called GAD1)
and glutamate acid decarboxylase 65 (GAD65, also called GAD2). GAD1 is the rate-limiting
enzyme responsible for approximately 90% of GABA synthesis, while GAD2 is localized
to the synaptic terminal and is largely involved in the regulation of postsynaptic GABAA
receptors [51]. Consistent with the changes in GABAA receptors, this study revealed
significantly decreased expression of GAD2 mRNA in the VTA of Poly I:C offspring rats.
Previous studies have reported that GAD1 mRNA expression was reduced in the dorsal
hippocampus of Poly I:C offspring mice, which could be revised by chronic lurasidone
treatment [52].

This study further showed that chronic treatment with risperidone could reverse
the decrease in GAD2 expression in the VTA of Poly I:C offspring. It is unexpected that
risperidone decreased mRNA expression of Gad2 and GABAA receptor Gabrb2/Gabrb3
subunits in the VTA of healthy rats. Since GAD2 is a GABA-synthesizing enzyme, this
finding is consistent with previous reports that acute risperidone treatment caused a
significant reduction in extracellular GABA levels in the globus pallidus of rats [53], and
that adolescent olanzapine treatment caused a long-term reduction in GABA levels in the
nucleus accumbens of adult rats [54]. However, it is different from the finding, in the
nucleus accumbens of healthy rats, that the expression of the GABAA receptor Gabrb1
subunit was elevated by 1-week treatment with aripiprazole and haloperidol, which is
modulated by the PKA signaling pathway [55].

The Akt-GSK3β signaling pathway has been implicated in the pathophysiology of
schizophrenia [29,56]. AKT has three isoforms, AKT1, AKT2, and AKT3, which play roles
in a variety of processes, such as brain development and metabolism [57]. It has been
repeatedly reported that there is decreased expression of AKT1 mRNA and protein levels
in the prefrontal cortex and hippocampus in patients with schizophrenia [29,56]. AKT1
down-stream targets, such as GSK3β, are also altered in schizophrenia, including a de-
creased level of GSK-3β protein phosphorylation and GSK-3β mRNA in the prefrontal
cortex [29,58]. A deficit in AKT1-GSK-3β signaling was also observed in the prefrontal
cortex of Poly I:C offspring mice [59,60]. However, to date, while the majority of stud-
ies related to schizophrenia have focused on AKT1, particularly in the prefrontal cortex
and hippocampus, this does not exclude the possible role of other AKT isoforms in the
pathophysiology of schizophrenia [29]. This is the first study to investigate alterations in
AKT-GSK3β signaling in the VTA of a schizophrenic animal model. We found that prena-
tal Poly I:C challenge led to increased mRNA expression of AKT2 and GSK3β; however,
further study is important to examine whether AKT2 protein levels and GSK3β protein
phosphorylation also have similar alterations in the VTA of Poly I:C rats. It is interesting
that prenatal Poly I:C exposure had different effects on the expression of AKT isoforms
in the midbrain nucleus (VTA) in this study and the prefrontal cortex/hippocampus in
previous reports [59,60], suggesting a possible brain region-specific effect with respect to
the influence of prenatal Poly I:C exposure on AKT signaling. Although the mechanisms
underlying the brain regional differences are not clear, one possible explanation is that the
various brain regions have differential neuroinflammation responses to maternal immune
activation elicited by Poly I:C that have been reported previously [12,13]. Alternatively, the
experimental differences should also be considered, such as age and species differences
(adolescent rats in this study vs. adult mice in previous reports), or Poly I:C exposure
time (GD15 in this study vs. GD9 in Willi et al. 2013 [60] or GD17 in Bitanihirwe et al.
2010 [61]), although the same Poly I:C dosage (5 mg/kg) was used in all of these studies.
This study also found that adolescent risperidone treatment increased expression of Akt2
mRNA in the VTA of healthy rats, which is consistent with previous reports that various
antipsychotics have been shown to increase the expression of Akt [25,28,32].
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5. Conclusions

In summary, this study revealed the effects of prenatal Poly I:C-elicited immune activa-
tion and adolescent risperidone treatment on GABAergic neurotransmission markers and
AKT/GSK3β signaling in the VTA of female rats. The results have shown that adolescent
risperidone treatment is able to partly restore Poly I:C-induced alterations in the expression
of GABAergic biomarkers. However, the mechanisms underlying these effects still have not
been clearly revealed. Since recent reports showed that both prenatal Poly I:C-induced im-
mune activation and antipsychotic treatment in rodents can induce long-lasting epigenetic
modifications at multiple gene promoters [62–64], it is important to investigate the potential
epigenetic mechanism underlying the GABAergic neurotransmission and AKT/GSK3β
signaling changes triggered by prenatal immune activation and/or antipsychotic treatment.
One limitation is that, due to the small sample of the VTA nucleus, only mRNA expression
was examined in this study. Further studies are necessary to examine the protein levels
with Western blot and GABAergic neurotransmission by electrophysiology recordings to
fully reveal the effects of prenatal Poly I:C exposure and risperidone treatment. The other
limitation is that only female juvenile rats have been examined in this study. Since sex
differences have been observed in rodent Poly I:C schizophrenic models [9,10], further
studies are necessary to investigate the effects of prenatal Poly I:C exposure and adolescent
risperidone in the VTA of male rats.
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