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The gastrointestinal tract (GIT) contains complex microbial communities and plays an essential 
role in the overall health of the host. Previous studies of beef cattle feed efficiency have primarily 
concentrated on the ruminal microbiota because it plays a key role in energy production and 
nutrient supply in the host. Although the small intestine is the important site of post-ruminal 
digestion and absorption of nutrients, only a few studies have explored the relationship between 
the microbial populations in the small intestine and feed efficiency. Moreover, variations in GIT 
metabolites contribute to differences in feed efficiency. The objective of this study was to 
investigate relationships among bacterial populations of duodenum, jejunum, ileum; microbial 
metabolites; and RFI phenotype of beef cattle. We carried out by using Illumina MiSeq 
sequencing of the 16S rRNA V3-V4 region and liquid chromatography-mass spectrometry 
(LC–MS). In the duodenum, the relative abundances of Firmicutes ( p < 0.01), Lachnospiraceae, 
Ruminococcaceae, Family_XIII, Christensenellaceae, Christensenellaceae_R-7_group 
( p < 0.05), and Lachnospiraceae_NK3A20_group ( p < 0.05) were higher in the low residual 
feed intake (LRFI) group compared with the high residual feed intake (HRFI) group, whereas 
the HRFI group had higher abundances of Proteobacteria and Acinetobacter ( p < 0.01). In 
the jejunum, the relative abundances of Lachnospiraceae and Lachnospiraceae_NK3A20_
group were higher in the LRFI group ( p < 0.05). In the ileum, the relative abundances of 
Ruminococcaceae ( p < 0.01), Christensenellaceae, Christensenellaceae_R-7_group, and 
Ruminococcus_2 were also higher in the LRFI group ( p < 0.05). Moreover, the genera 
Lachnospiraceae_NK3A20_group, Christensenellaceae_R-7_group, and Ruminococcus_2 
were negatively associated with RFI, while the genus Acinetobacter was positively associated 
with RFI. The metabolomics analysis revealed that the LRFI group significantly improved protein 
digestion and absorption, as well as glycerophospholipid metabolism in the duodenum, 
jejunum, ileum. The correlation between intestinal microorganisms and metabolites revealed 
that some microorganisms play an important role in amino acid metabolism, glycerophospholipid 
metabolism, nutrient digestion and absorption, and antioxidant enhancement. The present 
study provides a better understanding of the small intestinal microbiota and metabolites of 
beef cattle with different RFI phenotypes and the relationships among them, which are 
potentially important for the improvement of beef cattle feed efficiency.
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INTRODUCTION

In beef cattle production, the feed cost according for 60%–75% 
of the total cost (Herd et  al., 2003), requiring beef cattle 
producers to focus on the feed efficiency trait (Schnepf, 
2020). Residual feed intake (RFI) is a good measure of feed 
efficiency, which is defined as the difference between the 
actual dry matter intake (DMI) and the predicted DMI 
based on body size and growth (Herd et al., 2003; Nkrumah 
et  al., 2006). Additionally, RFI is a negative selection trait 
(Crowley et  al., 2010), low-RFI cattle typically consume less 
feed than high-RFI cattle, which leads to the conclusion 
that low-RFI cattle are more profitable than high-RFI cattle; 
therefore, the lower RFI, the higher feed efficiency (Herd 
et al., 2003). The gastrointestinal tract (GIT) contains complex 
microbial communities that play an essential role in metabolic, 
physiological, immunological processes, and the overall health 
of the host (Fujimura et al., 2010; Hanning and Diaz-Sanchez, 
2015). Therefore, studying the differences in the microbial 
community across the ruminant GIT might provide the 
relationship between the RFI phenotypes and the microbial 
of GIT. Because of rumen plays a key role in energy production 
to the ruminants, many studies of feed efficiency in beef 
cattle focused on the ruminal microbiota (Jewell et al., 2015; 
Myer et al., 2015a). The small intestine (SI) is the important 
site of post-ruminal digestion and absorption of nutrients 
in beef cattle; however, only a few studies have explored 
the link between the microbial populations within the lower 
GIT and the feed efficiency of beef cattle (Myer et  al., 
2015b, 2016a,b, 2017; Lopes et  al., 2019). Especially, a 
comparison of the segments of the SI (Perea et  al., 2017; 
Freetly et al., 2020). Additionally, microorganisms in different 
GIT locations might contribute separately to the RFI phenotype 
of beef cattle. The GIT metabolites are intermediates or 
products of metabolic processes, and variations in those 
metabolites contribute to differences in beef cattle feed 
efficiency (Saleem et  al., 2013; Clemmons et  al., 2020). It 
is well known that 16S rRNA sequencing technology is a 
mature method to analyze cattle GIT bacteria, which has 
been used to characterize bacterial phylogeny and taxonomy 
under various experimental parameters and environmental 
factors. Increasing numbers of studies have used 16S rRNA 
sequencing technology as a genetic marker to examine 
multiple factors associated with the cattle GIT bacteria, such 
as feed efficiency (Kim et  al., 2017a,b; McGovern et  al., 
2018). Besides, metabolomics analysis produces a snapshot 
of the GIT environment by profiling comprehensively the 
metabolite abundance in biological samples (Goldansaz et al., 
2017). Liquid chromatography-mass spectrometry (LC–MS) 
technology has been used widely to identify metabolites 
that differ in beef cattle with high or low feed efficiency 
(Clemmons et  al., 2017; Artegoitia et  al., 2019).

This study investigated relationships among bacterial 
populations of duodenum, jejunum, ileum; microbial metabolites; 
and the RFI phenotype of beef cattle. We  hypothesized that 
the changes in the composition of small intestinal bacteria 
and metabolites are associated with the RFI phenotype of beef 
cattle. Moreover, we  hope to provide a more comprehensive 
analysis of the biological determinants of SI environment and 
RFI phenotype in beef cattle through correlation analysis.

MATERIALS AND METHODS

Animals, Diets, Calculation of RFI, Heifer 
Selection, and Sampling
The animal care and experimental procedures in this study 
were carried out according to the guidelines of the Laboratory 
Animal Welfare and Animal Experiment Ethical Committee 
of China Agricultural University and with their approval 
(Protocol No. AW08059102-2). A total of 42 Angus heifers 
(410 ± 25 kg live weight, aged 15 months) were fed with a 
diet containing 50% concentrate and 50% forage 
(Supplementary Table  1) according to National Academies 
of Sciences Engineering and Medicine (2016), and the trial 
lasted for 144 days (21 days of adaptation, and 123 days of 
data collection). During this experiment, all conditions were 
consistent, heifers had ad libitum access to water and feed. 
Feeding tank automatic records feed intake of each heifer’s 
through electronic ear tag (Zhenghong Agriculture and 
Animal Husbandry Machinery and Equipment Co, Shanghai, 
China). Weigh at the beginning, the end, as well as 14-days 
intervals of the experiment. The average daily gain (ADG) 
was computed as the coefficient of the linear regression of 
body weight (BW; kg) on time (d) using the PROC REG 
component of the SAS package (SAS Inst., Inc., Cary, NC, 
United  States). The metabolic body weight (MBW) was 
computed as the midtest BW0.75 (Nkrumah et  al., 2004). 
The expected DMI of each heifer was modeled and predicted 
by the MBW, ADG, and actual DMI with PROC REG 
(Nkrumah et al., 2004). The RFI was defined as the difference 
between the actual and the expected DMI using the following 
model (Lancaster et  al., 2014):

 β β β ε= + + +0 1 2DMI MBW ADG

in which β0 is the y-intercept, β1 is the regression coefficient 
of MBW, β2 is the regression coefficient of ADG, and ε  is 
the RFI. RFI SDs above and below the mean were used to 
divide heifers into high (>0.5 SD) group and low RFI (<0.5 
SD) group (Nkrumah et  al., 2004).

Finally, for all heifers, the five maximum RFI values and 
the five minimum RFI values were selected to slaughter. The 
duodenum, jejunum, and ileum contents were collected in 
plastic sterile containers (Lopes et  al., 2019) at slaughter, and 
frozen immediately in liquid nitrogen, then stored at −80°C 
until subsequent microbial DNA extraction and metabolomic 
analysis. The RFI values and animal performance are shown 
in Table  1 and Supplementary Tables 2, 3.

Abbreviations: SI, Small intestine; HRFI, High residual feed intake; LRFI, Low 
residual feed intake; DMI, Dry matter intake; ADG, Average daily gain; MBW, 
Metabolic body weight.
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DNA Extraction, 16S rRNA Gene 
Amplification, and Sequencing
One ileum sample was damaged from the HRFI group and 
one ileum sample was damaged from the LRFI group. Therefore, 
16S rRNA and metabolomic analysis were only performed for 
the remaining 28 SI contents. Microbial DNA was extracted 
from the duodenum, jejunum, and ileum samples using an 
E.Z.N.A.® soil DNA Kit (Omega Bio-tek, Norcross, GA, 
United  States) following the manufacturer’s protocols. 
Subsequently, the amplification and sequencing process of the 
16S rRNA gene was described by Liu et  al. (2019).

Sequence Processing and Analysis
Raw sequences were quality-filtered using fastp version 0.20.0 
(Chen et  al., 2008) and merged by FLASH version 1. 2. 7 
(Magoč and Salzberg, 2011) with the following criteria: (1) 
The 300 bp reads were truncated at any site receiving an average 
quality score of <20 over a 50-bp sliding window, and truncated 
reads shorter than 50 bp, as well as reads containing ambiguous 
characters, were discarded; (2) only overlapping sequences 
longer than 10 bp were assembled according to their overlapped 
sequence (maximum error ratio = 0.2); and (3) sequences of 
each sample were separated according to barcodes (exactly 
matching) and primers (allowing two nucleotide mismatches). 
Operational taxonomic units (OTUs) at 97% similarity were 
clustered using UPARSE version 7.1, with a confidence threshold 
of 0.70, and the taxonomy of each OTU representative sequence 
was analyzed using the RDP Classifier version 2.2 against the 
Silva 132/16S_bacteria database (Wang et al., 2007; Quast et al., 
2013). Chimeric sequences were identified and removed using 
a novel “greedy” algorithm (Stackebrandt and Goebel, 1994; 
Edgar, 2013). The following analyses were performed on the 
Majorbio I Sanger Cloud Platform.1 Alpha diversity was assessed 
by MOTHUR version v.1.30.1 (Schloss et al., 2009). Bar graphs 
were constructed using the “vegan” package in R (Oksanen 
et  al., 2010). Beta-diversity was estimated by computing the 
Bray–Curtis distance, calculated as similarities (ANOSIM) (999 
permutations), and visualized through principal coordinate 
analysis (PCoA) by the “vegan” package in R (Oksanen et  al., 
2015). Significantly different bacteria at the phylum, family, 
and genus levels between the HRFI group and the LRFI group 

1 http://www.i-sanger.com/

were identified by Student’s t-test and false discovery rate (FDR) 
multiple check calibration using the “stats” package in R, as 
well as the “scipy” package in python (Jones et al., 2001; R Core 
Team, 2013; Parks et  al., 2014).

Metabolomic Processing
All SI samples were analyzed using the LC–MS platform 
(Thermo Ultimate 3000LC, Q Exactive; ThermoFisher Scientific, 
Waltham, MA, United  States). Briefly, 50 mg samples were 
weighed accurately, then 400 μl of methanol/water (4:1 v/v) 
was used to extract the metabolites. The mixture was allowed 
to settle at −20°C and treated by a high throughput tissue 
grinder (Wonbio-96, Shanghai Wanbo Biotechnology Co., Ltd., 
Shanghai, China) for 6 min at 50 Hz, followed by vortexing 
for 30 s and ultrasound disruption at 40 kHz for 30 min at 
5°C. The samples were placed at −20°C for 30 min. The 
samples were then centrifuged at 13,000 × g for 15 min at 
4°C, and the supernatant was used for LC–MS/MS analysis. 
Chromatographic separation of the metabolites was carried 
out using an ExionLC™AD system (AB Sciex, Framingham, 
MA, United  States) equipped with an ACQUITY UPLC HSS 
T3 column (100 × 2.1 mm i.d., 1.8 μm particle size; Waters, 
Milford, MA, United  States). Mobile phases consisted of A 
(0.1% formic acid in water) and B (acetonitrile 50% and 
isopropyl alcohol 50% with 0.1% formic acid). The gradient 
of the mobile phase (A:B) consisted of the following: 0–3 min, 
95%:5%–80%:20%; 3–9 min, 80%:20%–5%:95%; 9–13 min, 
5%:95%–5%:95%; 13.0–13.1 min, 5%:95%–95%:5%; and 13.1–
16.0 min, 95%:5%–95%:5% to equilibrate the system. The UPLC 
system was coupled to a quadrupole time-of-flight mass 
spectrometer (Triple TOFTM5600+, AB Sciex) equipped with 
an electrospray ionization (ESI) source. The optimal conditions 
were as follows: source temperature, 500°C; curtain gas (CUR), 
30 psi; both Ion Source GS1 and GS2, 50 psi; ion-spray voltage 
floating (ISVF), −4,000 V in negative mode and 5,000 V in 
positive mode, respectively; declustering potential, 80 V; collision 
energy (CE), 20–60 V rolling for MS/MS. To test the repeatability 
of the system, quality control (QC) samples prepared by 
mixing equal volumes of all ruminal liquid were injected at 
regular intervals.

Metabolomics Data Analysis
After UPLC-TOF/MS analyses, the raw data were first imported 
into Progenesis QI 2.3 (Nonlinear Dynamics, Waters) for baseline 
filtering, peak detection, and alignment. A data matrix of 
retention time, mass charge ratio, and peak intensity was 
generated by the preprocessing results. At least 50% of the 
metabolic features of samples were retained. After filtering, the 
vacancy values were filled (the minimum value in the original 
matrix), and each metabolic feature was normalized by sum. 
After the internal standard for data QC (reproducibility) was 
analyzed and data were discarded if the relative SD (RSD) of 
QC was >30%, the statistical analysis was performed on log10 
transformed data to identify significant differences in metabolite 
levels between the HRFI and LRFI groups. The mass spectra 
of these metabolic features were used to search biochemical 

TABLE 1 | Animal performance according to residual feed intake (RFI) groups.

Items1 HRFI LRFI SEM2 p3

No. animals 5 5 − −
Initial BW, kg 421.44 416.5 7.09 0.64
DMI, kg/d 9.53 8.06 0.42 0.04
ADG, kg/d 0.92 1.10 0.11 0.26
RFI, kg/d 1.00 −1.45 0.19 <0.01

1HRFI, High residual feed intake; LRFI, low residual feed intake; DMI: dry matter intake; 
and ADG, average daily gain.
2SEM, Standard error of the mean.
3Value of p are derived using a Student’s t-test to assess the diferences between the 
HRFI and LRFI groups.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
http://www.i-sanger.com/


Liu et al. Microbiome/Metabolome and RFI in Cattle

Frontiers in Microbiology | www.frontiersin.org 4 April 2022 | Volume 13 | Article 862151

databases such as the Human metabolome database (HMDB)2 
and the Metlin database.3 All data were visualized between the 
HRFI and LRFI groups using principal component analysis 
(PCA), followed by orthogonal partial least squares discriminant 
analysis OPLS-DA with Student’s t-test and the following screening 
criteria: variable importance in the projection (VIP) values >1.0, 
difference multiple fold change (FC) > 1.0 or FC < 1.0 and p < 0.05 

2 http://www.hmdb.ca/
3 https://metlin.scripps.edu/

to obtain significantly differentially abundant metabolites between 
the LRFI and HRFI groups. Moreover, significantly differentially 
abundant metabolites were analyzed for abundance pattern 
clustering using the “gplots” package in R (Warnes et al., 2016). 
The impact of the RFI phenotype on metabolic pathways and 
metabolite set enrichment was analyzed using the “stats” package 
in R and the “scipy” package in python, respectively (Jones 
et al., 2001; R Core Team, 2013); and the significantly enriched 
KEGG metabolic pathway was obtained by q value (false discovery 
rate; FDR) <0.05. The correlations among significantly 
differentially abundant metabolites, predominant SI bacteria, 
and RFI phenotype were assessed using Spearman’s correlation 
analysis in the “pheatmap” package in R (Kolde, 2012).

RESULTS

Animal Performance
As shown in Table  1, at the beginning of the experiment, the 
HRFI group and the LRFI group were not different in body 
weight (p = 0.64). However, the LRFI group had a lower DMI 
(p = 0.04) and a lower RFI value (p < 0.01) compared with the 
HRFI group.

Sequencing, Alpha Diversity, and Beta 
Diversity
In total, 448,612; 478,572; and 496,803 raw bacterial sequences 
were obtained from the duodenum, jejunum, and ileum samples, 
respectively. After quality control to an equal sequencing depth 
(286,770; 337,100; or 46,378 reads per sample of the duodenum, 
jejunum, ileum, respectively) and clustering, we obtained 3,542; 
1,589; and 1,030 OTUs at a 97% similarity level, which were 
assigned to 40, 28, and 22 phyla; 91, 57, and 38 classes; 245, 
120, and 83 orders; 415, 208, and 144 families; and 912, 463, 
and 308 genera in the duodenum, jejunum, and ileum samples, 
respectively. Good’s coverage after normalization for the 
duodenum, jejunum, and ileum samples were >99.52%, 99.68%, 
and 99.78% for the bacterial community, respectively, indicating 
good sequencing coverage for the samples. Chao1’s richness, 
Shannon’s diversity, and Simpson’s diversity of Alpha diversity 
demonstrated that the bacterial community of the duodenum, 
jejunum, and ileum samples did not vary between the RFI 
groups (p > 0.05), except for Shannon’s diversity of the ileum 
(p = 0.04; Supplementary Table 4). Furthermore, we performed 
a Bray–Curtis dissimilarity analysis of the microbiota for the 
HRFI and LRFI groups and visualized using PCoA plots as 
shown in Figure  1. We  found that the duodenum and ileum 
microbiota show clear separation, except for jejunum bacteria, 
indicating that the RFI phenotype influences the composition 
of the duodenum and ileum, respectively.

Bacteria Abundance
In the duodenum, the phyla with relative abundances >10% 
were Firmicutes (23.22%, 49.16%), Proteobacteria (41.95%, 
14.84%), Actinobacteria (16.60%, 14.28%), and Bacteroidetes 
(10.96%, 14.20%) for the HRFI group and LRFI group, respectively. 

FIGURE 1 | Principal coordinate analysis (PCoA) of the duodenum, jejunum, 
and ileum bacterial communities.
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At the family level, bacterial families with relative abundance 
>10% were Moraxellaceae (31.68%, 9.70%), Bifidobacteriaceae 
(14.32,10.26%), Lachnospiraceae (5.36%, 17.73%), and 
Ruminococcaceae (5.33,11.96%) in the HRFI group and LRFI 
group, respectively. The genera of bacteria with relative abundances 
>5% were Acinetobacter (31.64%, 9.68%), norank_f_F082 (5.06%, 
7.70%), unclassified_f_Bifidobacteriaceae (7.91%, 4.84%), 
Bididobacterium (6.27%, 5.19%), and Lachnospiraceae_NK3A20_
group (1.57%, 6.45%) in the HRFI group and LRFI group, 
respectively (Figure  2).

In the jejunum, the phyla with relative abundances >10% 
were Firmicutes (44.49%; 58.09%), Proteobacteria (42.27%; 
20.21%), and Actinobacteria (7.79%; 15.69%) for the HRFI 
group and LRFI group, respectively. At the family level, bacterial 
families with a relative abundance >10% were Pseudomonadacese 
(38.09%, 18.68%), Peptostreptococcaceae (19.60%, 13.40%), 
Lachnospiraceae (7.95%, 24.29%), and Bifidobacteriaceae (5.78%, 
10.56%) in the HRFI group and LRFI group, respectively. The 
genera of bacteria with relative abundances >5% were 
Pseudomonadacese (38.09%, 18.68%), Paeniclostridium (11.05%, 
8.42%), Bifidobacterium (5.15%, 10.46%), Lachnospiraceae_
NK3A20_group (2.29%, 11.27%), Romboutsia (8.54%, 4.98%), 
and Christensenellaceae_R-7_group (2.74%, 5.05%) in the HRFI 
group and LRFI group, respectively (Figure  3).

In the ileum, the phyla with relative abundances >10% were 
Firmicutes (91.41%; 90.31%), and Actinobacteria (3.93%, 4.06%) 
for the HRFI group and LRFI group, respectively. At the family 
level, bacterial families with a relative abundance >10% were 
Peptostreptococcaceae (60.71%, 44.91%), Lachnospiraceae (8.06%, 
13.82%), Clostridiaceae_1 (10.39%, 8.12%) in the HRFI group 
and LRFI group, respectively. The genera of bacteria with 
relative abundances >5% were Paeniclostridium (41.12%, 28.72%), 
Romboutsia (19.52%, 16.12%), Clostridium_sensu_stricto_1 
(10.33%, 8.09%), Turicibacter (4.78%, 6.48%), Lachnospiraceae_
NK3A20_group (2.27%, 5.43%) in the HRFI group and LRFI 
group, respectively (Figure  4).

Significantly Differentially Abundant SI 
Bacteria
As shown in Figure  5, in the duodenum, at the phylum 
level, the relative abundances of Firmicutes (23.22%, 49.16%) 
and Proteobacteria (41.95%, 14.84%) was higher in the LRFI 
group and HRFI group, respectively (p < 0.01). At the family 
level, the relative abundances of Lachnospiraceae (5.36%, 
17.73%), Ruminococcaceae (5.33%, 11.96%), Family_XIII 
(1.60%, 3.70%), and Christensenellaceae (1.39%, 3.80%) were 
higher in the LRFI group (p < 0.01). At the genus level, the 
relative abundances of Lachnospiraceae_NK3A20_group (1.57%, 
6.45%; p < 0.05), and Christensenellaceae_R-7_group (1.37%, 
3.77%; p < 0.01) were higher in the LRFI group, whereas the 
HRFI group had a higher abundance of Acinetobacter (32.12%, 
11.19%; p < 0.01). As shown in Figure  6, in the jejunum, 
the relative abundances of family Lachnospiraceae (7.95%, 
24.29%) and genus Lachnospiraceae_NK3A20_group (2.29%, 
11.27%) were higher in the LRFI group (p < 0.05). In the 
ileum, the relative abundances of families Ruminococcaceae 

(3.62%, 8.81%; p < 0.01) and Christensenellaceae (1.74%, 3.93%; 
p < 0.05) were higher in the LRFI group; the relative abundance 
of genus Christensenellaceae_R-7_group (1.73%, 3.91%) and 
Ruminococcus_2 (1.16%, 3.31%) were higher (p < 0.05) in the 
LRFI group (Figure  7).

FIGURE 2 | The average proportion of the most dominant duodenum 
bacteria phyla, families, and genera (relative abundance >1% for all samples).
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FIGURE 3 | The average proportion of the most dominant jejunum bacteria 
phyla, families, and genera (relative abundance >1% for all samples).

FIGURE 4 | The average proportion of the most dominant ileum 
bacteria phyla, families, and genera (relative abundance >1% for all 
samples).
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Metabolomic Profiling
Sample Quality Control
The overlap of the total ion chromatogram of the QC samples 
in the positive (A) and negative (B) ion modes is shown in 
Supplementary Figure  1, which confirmed the stability and 
reproducibility of the data. Figure 8 shows the OPLS-DA score 
plot of duodenum, jejunum, ileum between the HRFI group 
and LRFI group, all the samples were within the 95% Hotelling 
T2 ellipse, and the permutation test with a better range of 

R2-values from 0.920 to 0.973, indicating moderate effectiveness 
of the model.

Significantly Differentially Metabolite Analysis
The PCA provided a satisfactory separation of the data between 
the groups (Supplementary Figure  2). As shown in Table  2, 
there are 6, 10, and 16 differential metabolites between the 
LRFI group and HRFI group in the duodenum, jejunum, and 
ileum, respectively. Moreover, we  found that the LRFI group 

FIGURE 5 | Significantly differential abundant phyla, families, and genera (relative abundance >1%) with the duodenum bacteria. Positive and negative differences 
indicate a greater abundance in the HRFI group and LRFI group, respectively. *Represents 0.01 < p < 0.05; ** represents 0.001 < p < 0.01; and *** represents 
p < 0.001.
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significantly improved protein digestion and absorption, as well 
as glycerophospholipid metabolism in the duodenum, jejunum, 
and ileum.

Correlation Analysis Among the Predominant 
Genera Bacteria, Significantly Differentially 
Metabolites, and the RFI Phenotype
As shown in Figure 9, in the duodenum, the genus Acinetobacter 
was positively associated with RFI (r = 0.81, p < 0.01), while 
negatively associated with PC [18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)] 
(r = −0.70, p < 0.05), L-Glutamate (r = −0.77, p < 0.01), beta-Alanine 
(r = −0.73, p < 0.05), and L-Tyrosine (r = −0.70, p < 0.05). The 
genus Lachnospiraceae_NK3A20_group was negatively associated 
with RFI (r = −0.72, p < 0.05), while positively associated with 
phosphocholine (r = 0.73, p < 0.05), and beta-Alanine (r = 0.71, 
p < 0.05). The genus Christensenellaceae_R-7_group was negatively 
associated with RFI (r = −0.79, p < 0.01), while positively associated 
with phosphocholine (r = 0.82, p < 0.01), PC [18:2(9Z,12Z)/20:4

(5Z,8Z,11Z,14Z)] (r = 0.77, p < 0.01), L-Glutamate (r = 0.72, 
p < 0.05), beta-Alanine (r = 0.75, p < 0.05), and L-Tyrosine (r = 0.76, 
p < 0.05). The genus Ruminococcus_2 was negatively associated 
with RFI (r = −0.69, p < 0.05), while positively associated with 
phosphocholine (r = 0.71, p < 0.05), and beta-Alanine (r = 0.67, 
p < 0.05). In the jejunum, the genus Lachnospiraceae_NK3A20_
group was negatively associated with RFI (r = −0.92, p < 0.001), 
while positively associated with L-Serine (r = 0.88, p < 0.001), PS 
[18:0/20:4(8Z,11Z,14Z,17Z)] (r = 0.86, p < 0.01), L-Glutamate 
(r = 0.87, p < 0.01), and L-Aspartic Acid (r = 0.92, p < 0.001), PC 
[18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)] (r = 0.83, p < 0.05), 
L-Methionine (r = 0.75, p < 0.05), and L-Isoleucine (r = 0.76, 
p < 0.05). The genus Christensenellaceae_R-7_group was negatively 
associated with RFI (r = −0.66, p < 0.01). The genus Ruminococcus_2 
was positively associated with L-Serine (r = 0.72, p < 0.05), PS 
[18:0/20:4(8Z,11Z,14Z,17Z)] (r = 0.78, p < 0.01), L-Glutamate 
(r = 0.64, p < 0.05), and L-Aspartic Acid (r = 0.69, p < 0.05). In 
the ileum, the genus Paeniclostridium was negatively associated 
with LysoPC [20:2(11Z,14Z)] (r = −0.79, p < 0.05), PC [18:2(9Z,12

FIGURE 6 | Significantly differential abundant families, and genera (relative abundance >1%) with the jejunum bacteria. Positive and negative differences indicate a 
greater abundance in the HRFI group and LRFI group, respectively. *Represents 0.01 < p < 0.05.
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Z)/20:4(5Z,8Z,11Z,14Z)] (r = −0.79, p < 0.05), phosphocholine 
(r = −0.86, p < 0.01), beta-Alanine (r = −0.81, p < 0.05), L-Aspartic 
Acid (r = −0.74, p < 0.05), L-Glutamate (r = −0.86, p < 0.01), and 
L-Serine (r = −0.76, p < 0.05). The genus Lachnospiraceae_NK3A20_
group was positively associated with L-Glutamate (r = 0.76, 
p < 0.05). The genus Christensenellaceae_R-7_group was positively 
associated with LysoPC [18:1(11Z)] (r = 0.71, p < 0.05), LysoPC 
[20:4(8Z,11Z,14Z,17Z)] (r = 0.79, p < 0.05), LysoPC 
[20:4(5Z,8Z,11Z,14Z)] (r = 0.79, p < 0.05), LysoPC [18:1(9Z)] 
(r = 0.91, p < 0.01), LysoPC [20:2(11Z,14Z)] (r = 0.81, p < 0.05), 
PC [18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)] (r = 0.95, p < 0.001), 
phosphocholine (r = 0.91, p < 0.01), beta-Alanine (r = 0.91, p < 0.01), 
L-Aspartic Acid (r = 0.86, p < 0.01), L-Glutamate (r = 0.98, p < 0.001), 
and L-Serine (r = 0.98, p < 0.001). The genus Ruminococcus_2 
was negatively associated with RFI (r = −0.74, p < 0.05), while 
positively associated with choline (r = 0.79, p < 0.05), LysoPC 
[18:1(11Z)] (r = 0.76, p < 0.05), LysoPC (16:0) (r = 0.74, p < 0.05), 
LysoPC [20:4(8Z,11Z,14Z,17Z)] (r = 0.74, p < 0.05), LysoPC 

[20:4(5Z,8Z,11Z,14Z)] (r = 074, p < 0.05), LysoPC [18:1(9Z)] 
(r = 0.81, p < 0.05), and beta-Alanine (r = 0.91, p < 0.01).

DISCUSSION

Animal Performance
As expected, the LRFI heifers consumed less feed during this 
experiment, consistent with the result on steers (Welch et  al., 
2020). Improving feed efficiency by decreasing feed cost means 
the greatest profitability of the beef cattle production system 
(Lancaster et  al., 2009). Therefore, we  should select LRFI cattle 
to consume less feed without affecting ADG, resulting in maximized 
profitability for the beef cattle industry (Herd et  al., 2003).

Bacterial Diversity
The diverse microorganisms that colonize the digestive tract 
of beef cattle play a vital role in the host’s digestion and 

FIGURE 7 | Significantly differential abundant families, and genera (relative abundance >1%) with the ileum bacteria. Positive and negative differences indicate a 
greater abundance in the HRFI group and LRFI group, respectively. *Represents 0.01 < p < 0.05 and ** represents 0.001 < p < 0.01.
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absorption of nutrients, promotion of immunity, regulation of 
behavior, and maintenance of intestinal homeostasis. In the 
present study, we  found that the diversity of the bacterial 
communities in the ileum was significantly higher in the LRFI 
group than in the HRFI group. This might be  explained by 
previous observations that higher intestinal microbial diversity 
and richness result in a more stable and functionally complete 
intestinal ecosystem, which means that animals have better 
adaptability and higher productivity (Firkins and Yu, 2015; 
Huws et al., 2018). However, we found no differences in diversity 
and richness of duodenum and jejunum with different RFI 
phenotypes, previous studies were similar to our result (Li 
and Guan, 2017; Perea et  al., 2017; Paz et  al., 2018; Freetly 
et  al., 2020; Lopes et  al., 2021). This implies that efficiency 

status does not depend on a large-scale restructuring of the 
entire microbial community, but might be  dependent on 
differences in a few key taxa (Perea et  al., 2017). Additionally, 
some studies also observed no differences in rumen microbial 
diversity of cattle with different RFI phenotypes (Paz et  al., 
2018; Clemmons et  al., 2019; Lopes et  al., 2021). These results 
might indicate that the diversity of the microbial community 
is not necessarily related to the RFI phenotype of animals. 
Because of current conflicting results, in the future, more 
research is needed to confirm these results. Moreover, the 
structure of the GIT bacterial community has been proven to 
be  host-specific, which might lead to large differences in the 
diversity and richness of the GIT bacterial community 
(Huttenhower et  al., 2012; Donaldson et  al., 2016).

FIGURE 8 | Orthogonal partial least squares discriminant analysis (OPLS-DA) plot of the duodenum, jejunum, ileum bacterial metabolites.
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Significantly Differentially Bacteria
In this study, we  found that the SI bacterial community 
structures in duodenum, jejunum, and ileum of heiferes with 
different RFI phenotypes were significantly different. 
Additionally, the duodenum, jejunum, and ileum of heifers 
with different RFI phenotypes might have a similar “core” 
bacterial microbiota community structure, as well as some 
specific microbiota (Myer et  al., 2016a; Perea et  al., 2017; 
Freetly et  al., 2020). Differences were observed for some SI 
taxa, specifically, the Firmicutes and Proteobacteria phyla were 
consistent with a previous study of beef cattle (Freetly et  al., 
2020) and lamb (Perea et al., 2017), respectively. In the present 
study, Lachnospiraceae was found in greater abundance in 
the duodenum, and jejunum of the most efficient heifers; as 
well as Ruminococcaceae in the duodenum, and ileum. Coincident 
with our results, Shabat et  al. (2016) reported that dairy cows 
with an LRFI phenotype also had greater levels of 
Lachnospiraceae. Moreover, Gagen et  al. (2015) observed that 
acetogens could be found in both the families Lachnospiraceae 
and Ruminococcaceae, which might be explained by the presence 
of more families Lachnospiraceae and Ruminococcaceae in the 

LRFI group: it is likely that elevated levels of Lachnospiraceae 
and Ruminococcaceae indicate a more complete fermentation 
and increased absorbable nutrients available to LRFI animals 
(Freetly et al., 2020). Additionally, Christensenellaceae has been 
identified as an indicator of a “healthy digestive system” 
(Goodrich et  al., 2014), and is a known butyrate producer 
(Morotomi et  al., 2012), which verified our observation that 
higher relative abundance of the family Christensenellaceae in 
the duodenum and ileum of the LRFI group. Members of 
the Lachnospiraceae_NK3A20_group were abundant in the SI, 
being present in the rumen, cecum, and fecal samples (Lopes 
et  al., 2019), and Ruminococcus is found commonly within 
microbial communities across the GIT (Oliveira et  al., 2013; 
Myer et  al., 2016b); however, fewer studies about Family_XIII, 
Acinetobacter, Lachnospiraceae_NK3A20_group, and 
Ruminococcus_2, in the future, more studies need to 
be  investigated.

Significantly Differentially Metabolites
Our metabolome data revealed that the RFI significantly altered 
the concentrations of SI metabolites associated with protein 

TABLE 2 | Significantly differentially metabolites in small intestine by comparison of the LRFI and HRFI groups.1

Small intestine Processes Metabolites Formula VIP2 p3 FC4 Trend5

Duodenum Protein digestion and 
absorption

L-Glutamate C5H9NO4 1.26 p < 0.02 1.09 Up
L-Tyrosine C9H11NO3 1.37 p < 0.02 1.05 Up
Beta-alanine C3H7NO2 1.48 p < 0.03 1.20 Up

Glycerophospholipid 
metabolism

PC (18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)) C46H80NO8P 1.34 p < 0.03 1.11 Up
Phosphocholine C5H14NO4P 1.35 p < 0.03 1.14 Up
Choline C5H13NO 1.32 p < 0.04 1.06 Up

Jejunum Protein digestion and 
absorption

L-Glutamate C5H9NO2 1.50 p < 0.01 1.08 Up
L-Serine C5H10N2O3 1.36 p < 0.01 1.14 Up
L-Methionine C5H11NO2S 1.51 p < 0.01 1.05 Up
L-Histidine C6H9N3O2 1.21 p < 0.03 1.05 Up
L-Aspartic acid C4H7NO4 1.38 p < 0.01 1.13 Up
L-Isoleucine C6H13NO2 1.51 p < 0.01 1.04 Up
L-Tyrosine C9H11NO3 1.31 p < 0.01 1.03 Up

Glycerophospholipid 
metabolism

PC (18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)) C46H80NO8P 1.38 p < 0.02 1.46 Up
PS (18:0/20:4(8Z,11Z,14Z,17Z)) C44H78NO10P 1.15 p < 0.05 1.39 Up
Choline C5H13NO 1.48 p < 0.01 1.13 Up

lleum Protein digestion and 
absorption

L-Glutamate C5H9NO4 1.16 p < 0.04 1.06 Up
L-Serine C3H7NO3 1.25 p < 0.01 1.15 Up
Beta-alanine C3H7NO2 1.18 p < 0.01 1.07 Up
L-Aspartic acid C4H7NO4 1.21 p < 0.01 1.09 Up
L-Lysine C6H14N2O2 1.21 p < 0.01 1.43 Up

Glycerophospholipid 
metabolism

PC (18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)) C46H80NO8P 1.23 p < 0.03 1.08 Up
LysoPC (20:4(8Z,11Z,14Z,17Z)) C28H50NO7P 1.31 p < 0.01 1.34 Up
LysoPC (20:4(5Z,8Z,11Z,14Z)) C28H50NO7P 1.25 p < 0.01 1.07 Up
LysoPC (20:2(11Z,14Z)) C28H54NO7P 1.17 p < 0.04 1.16 Up
LysoPC (18:1(11Z)) C26H52NO7P 1.37 p < 0.01 1.10 Up
LysoPC (18:1(9Z)) C26H52NO7P 1.41 p < 0.01 1.13 Up
LysoPC (16:0) C24H50NO7P 1.23 p < 0.02 1.09 Up
LysoPC (18:0) C26H54NO7P 1.15 p < 0.04 1.11 Up
LysoPC (22:0) C30H62NO7P 1.41 p < 0.01 1.43 Up
Choline C5H13NO 1.39 p < 0.01 1.09 Up
Phosphocholine C5H14NO4P 1.40 p < 0.01 1.89 Up

1LRFI, Low residual feed intake and HRFI, high residual feed intake.
2VIP, Variable importance in the projection.
3Value of p (false discovery rate) are derived using a Student’s t-test to assess the diferences between the HRFI group and the LRFI group; significance was considered at p < 0.05.
4FC, Fold change.
5Up, upregulated and down, downregulated.
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digestion and absorption, glycerophospholipid metabolism. 
Additionally, correlation analysis showed that there was a certain 
correlation between SI microorganisms and SI differential 
metabolites, there is a relationship between the SI microorganisms 
and the SI differential metabolites. In the gut, amino acids 
are the degradation products of rumen-protected proteins and 
microbial proteins, which regulate certain metabolic pathways 
(Mariz et  al., 2018). Notably, we  observed increased levels of 

L-Methionine, L-Lysine, L-Isoleucine, L-Histidine, L-Glutamate, 
L-Aspartic Acid, Beta-Alanine, L-Serine, and L-Tyrosine in the 
LRFI group. Greenwood and Titgemeyer (2000) reported that 
for steers, corn-soybean meal or other feedstuff based diets, 
the first or second limiting amino acids are basically Lysine 
and Methionine. Moreover, Isoleucine (Swanepoel et al., 2010a,b) 
and Histidine (Vanhatalo et al., 1999; Greenwood and Titgemeyer, 
2000) might be  the third limiting amino acids, but the 
determination of the third limiting amino acids remains to 
be  further studied. Archibeque et  al. (2002) also confirmed 
methionine as a typically limiting amino acid (AA) for beef 
steers. Methionine plays important role in protein synthesis, 
DNA methylation, lipid metabolism, and antioxidant regulation 
(Löest et  al., 2002; Zhou et  al., 2016; Martinez et  al., 2017). 
As methyl donors, rumen protected choline has been reported 
to improve growth performance of cattle (Bindel et  al., 2000). 
Han et al. (2017) also observed the supplementation of methionine 
improved growing Holstein steers’ performance. Hussein and 
Berger (1995) also showed that feeding rumen-protected 
methionine and rumen-protected Lysine to Holstein steers 
improved average daily gain. Additionally, it has been reported 
that Lysine deficiency significantly increases anxiety in rats 
when stimulated by electric shock (Smriga et al., 2000). Histidine 
is a semi-essential amino acid in animals, and its supply has 
an obvious linear relationship with protein turnover of the 
body (Wantanee et  al., 2002). Studies have observed that long-
term intake of low histidine diets significantly reduces animal 
body weight and feed intake, reduced activity, lethargy, and 
even death (Cianciaruso et  al., 1981). Studies have shown that 
histidine could maintain the stability of cell pH, maintain cell 
homeostasis, reducing stress (Rao et  al., 2010) and protecting 
the heart (Obata et  al., 1999). Additionally, histidine has anti-
inflammatory and antioxidant effects (Feng et  al., 2013). Dong 
et al. (2005) reported that histidine can inhibit the inflammatory 
response caused by oxidative stress in human intestinal epithelial 
cells and improve intestinal health. Meanwhile, histidine contains 
imidazolidyl, which can combine with Metal ions such as Cu2+ 
and Zn2+ to promote intestinal absorption of Cu2+ and Zn2+. 
Metal ions can participate in the composition of various enzymes 
(SOD etc.) in vivo. Sun et  al. (2014) showed that histidine 
can significantly improve the antioxidant capacity of SOD in 
mice plasma, reduce MDA content and up-regulate the mRNA 
expression of CuZnSOD. L-isoleucine is a bioactive molecule 
involved in nutrient metabolism (Bampidis et  al., 2020). 
Glutamate is the main oxidizing energy supply substance in 
the intestinal tract (Burrin et  al., 2008), and it is important 
in intestinal antioxidant stress (Duan et  al., 2014; Yin et  al., 
2015). Studies have found that serine is located at key nodes 
of multiple biological metabolic processes in the body, and 
plays an indispensable role in promoting cell proliferation 
(Newman and Maddocks, 2017), antioxidant (He et  al., 2020) 
and immune function (Kitamoto et  al., 2020). It is important 
to maintain animal health and normal physiological functions 
(Kalhan and Hanson, 2012). Additionally, carnosine, which is 
composed of histidine and alanine, is an endogenous functional 
substance and plays an important role in the body’s antioxidant 
function (Guiotto et  al., 2005). Tyrosine is the precursor of 

A
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FIGURE 9 | Correlation analysis among the predominant genera duodenum 
(A), jejunum (B), ileum (C) microbiota bacteria, the significantly differential 
metabolites, and the RFI. Cells are colored based on Spearman’s correlation 
coefficient: blue represents a positive correlation; red represents a negative 
correlation. *Represents 0.01 < p ≤ 0.05; ** represents 0.001 < p ≤ 0.01; and 
*** represents p ≤ 0.001.
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melanin synthesis. Under the catalytic action of tyrosinase, 
tyrosine in animals can synthesize melanin through a series 
of complex biological processes. Melanin has the function of 
scavenging free radicals and anti-oxidation (Ye et  al., 2014). 
Wang et  al. (2018) reported that increasing the content of 
tyrosine in feed would lead to the increase of melanin content 
in the belly and back skin of tilapia. Therefore, the higher 
feed efficiency of LRFI group may be related to the antioxidant 
capacity and immune function of the upregulation of 
L-Methionine, L-Lysine, L-Histidine, L-Isoleucine, L-Glutamate, 
L-Aspartic Acid, Beta-Alanine, L-Serine, and L-Tyrosine.

It is noteworthy that we  also observed alterations in the 
concentrations of several metabolites associated with 
glycerophospholipid metabolism. Choline mainly exists as 
lysophosphatidylcholine (LysoPCs) and phosphocholine in the 
body, which is important in maintaining the integrity of the 
cell membrane, and methyl metabolism (Blusztajn, 1998). In 
ruminants, it has been suggested that rumen-protected choline 
inhibits fat synthesis in the liver of dairy cattle during the 
transition period by increasing fatty acid transport and reducing 
the synthesis of very-low-density lipoprotein (Goselink et  al., 
2013). Brautigan et al. (2017) found that LysoPCs affect nutrient 
absorption in the intestinal tract by regulating gene expression 
of small intestinal epithelial cells, thus having a positive impact 
on the production performance of livestock. Malanka et  al. 
(2012) also reported that LysoPCs play a regulator of 
immunological cell functions. Additionally, the function of 
phosphatidylserine in signal transduction and intercellular 
information transmission has been demonstrated (Nishizuka, 
1984). Therefore, the upregulation of choline, phosphocholine, 
LysoPCs, PC [18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)], and 
PS[18:0/20:4(8Z,11Z,14Z,17Z)] might suggest increased maintain 
integrity of cell membrane, fatty acid transport, nutrient 
absorption, immune function, and signal transduction in the 
LRFI group to improve feed efficiency.

Correlation Among the Predominant 
Bacteria, Significantly Differentially 
Metabolites, and the RFI Phenotype
Small intestine is the main place to nutrient digestion and 
absorption, the nutrients such as carbohydrate, protein, lipid 
after into the intestinal microbes and various enzymes under 
the effect of extracellular digestion, digestion products by the 
various transport carrier absorption of intestinal epithelial cells 
into the blood, and shipped to all parts of the body. Moreover, 
Arumugam et  al. (2011) reported that some microorganisms 
in the intestinal tract are rich in amylase, protease and other 
genes to decompose carbohydrates and proteins. Marie et  al. 
(2014) reported that the genus Acinetobacter plays role in 
opportunistic human infections, studies also have shown that 
glutamate, alanine, and tyrosine are play important roles in 
the body’s antioxidant function (Guiotto et  al., 2005; Duan 
et  al., 2014; Ye et  al., 2014; Yin et  al., 2015; Wang et  al., 
2018), which might explain why Acinetobacter was associated 
positively with RFI, and negatively associated with L-Glutamate, 
beta-Alanine, L-Tyrosine, and PC [18:2(9Z,12Z)/20:4(5Z,8Z,1

1Z,14Z)] in this study. In this study, the genus 
Christensenellaceae_R-7_group, Lachnospiraceae_NK3A20_group, 
and Ruminococcus_2 were all associated negatively with 
RFI. Moreover, the genus Christensenellaceae_R-7_group was 
positively associated with L-Glutamate, beta-Alanine, L-Tyrosine, 
L-Aspartic Acid, L-Serine, phosphocholine, LysoPC [18:1(9Z)], 
LysoPC [18:1(11Z)], LysoPC [20:4(8Z,11Z,14Z,17Z)], LysoPC 
[20:4(5Z,8Z,11Z,14Z)], LysoPC [20:2(11Z,14Z)], PC [18:2(9Z,12
Z)/20:4(5Z,8Z,11Z,14Z)]. The genus Lachnospiraceae_NK3A20_
group was positively associated with L-Glutamate, L-Methionine, 
L-Isoleucine, L-Serine, L-Aspartic Acid, PC [18:2(9Z,12Z)/20:
4(5Z,8Z,11Z,14Z)], PS [18:0/20:4(8Z,11Z,14Z,17Z)]. The genus 
Ruminococcus_2 was positively associated with L-Glutamate, 
L-Aspartic Acid, L-Serine, beta-Alanine, choline, phosphocholine, 
PS [18:0/20:4(8Z,11Z,14Z,17Z)], LysoPC [18:1(9Z)], LysoPC 
[18:1(11Z)], LysoPC (16:0), LysoPC [20:4(8Z,11Z,14Z,17Z)], 
and LysoPC [20:4(5Z,8Z,11Z,14Z)]. Additionally, Brautigan et al. 
(2017) and Malanka et  al. (2012) reported that LysoPCs affect 
nutrient absorption in the intestinal tract, and it also plays a 
regulator of immunological cell functions. Therefore, 
Christensenellaceae_R-7_group, Lachnospiraceae_NK3A20_group, 
and Ruminococcus_2 might have a role in the metabolisms of 
amino acids metabolism and glycerophospholipid metabolism; 
and these bacterias increased antioxidant capacity and promoted 
nutrient digestion and absorption, which likely provides evidence 
supporting the higher feed efficiency in the LRFI group.

CONCLUSION

In summary, the RFI phenotype significantly altered the relative 
abundances of certain intestinal bacteria communities, the 
genera Christensenellaceae_R-7_group, Lachnospiraceae_NK3A20_
group, and Ruminococcus_2 were negatively associated with 
RFI, while the genus Acinetobacter was positively associated 
with RFI. The RFI phenotype also significantly altered the 
concentrations of some intestinal metabolites, such as amino 
acids and glycerophospholipids. Additionally, the correlation 
between intestinal microorganisms and metabolites revealed 
that some microorganisms play an important role in amino 
acid metabolism, glycerophospholipid metabolism, nutrient 
digestion and absorption, and antioxidant enhancement, which 
likely provides evidence supporting the higher feed efficiency 
in the LRFI group. The predominant bacterial communities 
and the significantly differential metabolites in different SI 
segments were both common and unique, which suggested 
that microorganisms in different GIT locations might contribute 
separately to the RFI phenotype of beef cattle. Future, due to 
the individual variation of animals, samples from more animals 
should be  analyzed to confirm these findings. Integrative 
information about the interactions between the SI microbial 
composition and metabolites in beef cattle with different RFIs 
could provide a better understanding of the small intestinal 
microbial and metabolites functions, allowing the development 
of improved strategies to increase feed efficiency. In addition, 
the mechanisms of the interactions among SI bacteria, 
metabolisms, and the RFI deserve further investigation.
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