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1  | INTRODUC TION

Artificial intelligence (AI) is a field of research in which computers are 
applied to mimic human intelligence.1 Machine learning is a subfield 
of AI in which mathematical and statistical approaches are applied to 
improve the performance of computers. Deep learning is a subfield 
of machine learning characterized by the operation of multilayered 
artificial neural networks (Figure 1). The term “deep learning” refers 
to a set of new techniques that together have shown marked im-
provements in performance compared with existing best-in-class 
machine learning algorithms in several disciplines. For instance, 
these methods have revolutionized image classification and speech 
recognition as a result of their flexibility and high accuracy.2 These 
breakthroughs have allowed deep learning to be adopted as an ap-
proach that can efficiently solve various problems in biomedicine. 
The application of deep learning to the diagnosis of diseases on the 
basis of the classification of radiological or pathological images has 
demonstrated a performance that equals or actually exceeds that of 

clinical experts.3,4 Deep learning has also proved highly accurate in 
the detection of retinopathy from fundus photographs.5 With high 
expectations for this technology, it is now being applied to the field 
of drug discovery.6

Biology and medicine are rapidly becoming data-intensive. 
Stephens et al (2015) claimed that the application of AI to genom-
ics alone will equal or exceed that to social media, online videos 
and other data-intensive disciplines with regard to data generation 
and analysis within the next 10 years.7 Automated algorithms that 
extract meaningful patterns can provide practical knowledge and 
change the way in which treatments are developed, patients are 
classified and diseases are studied. In contrast, AI may infringe on 
privacy because of potential access to personal information such as 
genomic sequences during data processing. Given that large data-
sets with appropriate data annotation are required for the applica-
tion of deep learning technology, it is essential that both medical 
professionals and biological scientists possess a basic knowledge of 
deep learning, including its applications and potential drawbacks, 
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Abstract
Artificial intelligence (AI) has contributed substantially to the resolution of a variety 
of biomedical problems, including cancer, over the past decade. Deep learning, a sub-
field of AI that is highly flexible and supports automatic feature extraction, is increas-
ingly being applied in various areas of both basic and clinical cancer research. In this 
review, we describe numerous recent examples of the application of AI in oncology, 
including cases in which deep learning has efficiently solved problems that were pre-
viously thought to be unsolvable, and we address obstacles that must be overcome 
before such application can become more widespread. We also highlight resources 
and datasets that can help harness the power of AI for cancer research. The develop-
ment of innovative approaches to and applications of AI will yield important insights 
in oncology in the coming decade.
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when collaborating with AI researchers and using deep learning in 
their projects.

Cancer is the most common cause of death in developed coun-
tries, and it is estimated that the number of cases will increase fur-
ther in aging populations.8,9 In Japan, almost 1 million individuals are 
diagnosed with cancer and nearly 400 000 die of the disease every 
year. Cancer research will, thus, continue to be a top priority for the 
saving of lives in the coming decade.

In this review, we focus on the application of deep learning to 
cancer. For more comprehensive information on deep learning, in-
cluding its mathematical aspects, we recommend several recent re-
views2,10-14 and a book.15

2  | DEEP LE ARNING ESSENTIAL S

The deep learning approach evolved from the study of artificial neu-
rons, being first proposed in 1943 as a model for the processing of 
information by neurons in the biological brain.16 In a neural network, 
the input is provided to an input layer, which transfers its computed 
value to one or more hidden layers that are linked to an output layer. 
A layer consists of a set of nodes, known as “units” or “features,” that 
are connected through edges to both the previous and the next lay-
ers. Each unit transforms the data in a nonlinear manner by applying 
an activation function (Figure 2A). A deep neural network possesses 
multiple (sometimes > 100) hidden layers (Figure 2B). The training 
process allows deeper layers in the network to combine high-level 
features coming from the previous layer and build more such fea-
tures. As a result, these algorithms can automatically design features 
that are appropriate for solving the task at hand.

There are many architectures of deep neural networks.15 A con-
volutional neural network (CNN) can be applied to data that have 
a grid topology, such as images, and uses multiple filters to detect 
patterns within the data (Figure 2C). A fully convolutional network 
(FCN) differs from a CNN in that fully connected layers of the CNN 
are replaced by upsampling and deconvolution layers, which are con-
sidered the inverse of pooling and convolution layers, respectively 
(Figure 2D). An FCN generates a score map for each class instead 
of one probability score.17 This map is the same precise size as the 
input image and classifies the image by pixels. These new layers 
have been used to develop deep learning algorithms in many appli-
cations. Finally, a recurrent neural network (RNN) is useful for the 

analysis of sequential data, such as language and genomic sequences 
(Figure 2E). These neural networks correspond to supervised learn-
ing methods, which require answers to train the network.

In contrast, no labels are necessary for unsupervised learning. An 
autoencoder is a representative example of such an unsupervised 
method that attempts to provide output signals that are identical 
to the original input (Figure 2F). A generative adversarial network 
(GAN) actually consists of two networks: a generator and a discrim-
inator. The generator neural network creates fake data to cheat the 
discriminator network, whereas the discriminator distinguishes the 
false data from true data. Training these networks alternately allows 
the generator to finally learn how to generate fake data indistin-
guishable from real data (Figure 2G).

Although we do not dive into detail here, various novel architec-
tures, such as graphical convolution18,19 and capsuleNet, are contin-
ually being proposed and applied in biomedicine. Given that each 
type of neural network is specialized in its specific data structure, 
the combination of multiple existing frameworks or the development 
of new architectures is expected to greatly improve the feasibility of 
using neural networks for interpretation of complex phenomena.

3  | ARTIFICIAL INTELLIGENCE FOR 
C ANCER IMAGES

3.1 | Application to image analysis

Early detection of cancer is key to saving the lives of affected in-
dividuals. Deep learning has revolutionized image analysis since its 
spectacular win in the image recognition contest ILSVRC (ImageNet 
Large Scale Visual Recognition Challenge) in 2012,2 with many re-
searchers and physicians having attempted to harness the power 
of AI (or, more precisely, CNN) for application to clinical radiology 
and pathology because it obviates the need to generate detailed 
features by craftsmanship. One example of high impact is the suc-
cessful classification of dermoscopy images.20,21 AI was, thus, found 
to be able to annotate skin lesions (including melanoma) as precisely 
as were expert dermatologists (with an area under the curve [AUC] 
of 0.94-0.96). Given that smartphones extend the reach of derma-
tologists outside of the clinic, this achievement has the potential to 
provide universal access to dermatologist-level diagnoses. AI has 
also achieved a level of accuracy similar to that of medical specialists 

F I G U R E  1   Artificial Intelligence (AI), 
machine learning and deep learning. AI 
refers to a broad range of computational 
methods that mimic human intelligence. 
Machine learning is a subfield of AI that 
relies on statistical methods to detect 
hidden patterns within a dataset. Deep 
learning is a subfield of machine learning 
that harnesses the power of multilayered 
networks
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in the interpretation of mammograms for breast cancer screening 
(AUC for AI of 0.840, compared with 0.814 for physicians).22 In 
addition, deep neural networks have been able to detect enlarged 
lymph nodes or colonic polyps in computed tomography images.23 
The multiple applications of deep learning in radiology are covered 
in more detail elsewhere.24,25

Whole-slide imaging is becoming routine in developed coun-
tries, which has resulted in the accumulation of digital pathology 
images and allowed the application of deep learning to pathological 
diagnosis.26 One proposed model extracts features with a CNN and 

supplies them to a support vector machine, another machine learn-
ing algorithm, to train for the detection of breast mitosis.27 A deep 
learning system has been used to detect areas of cancer in whole-
slide images of radical prostatectomy specimens and to automat-
ically assign the Gleason score with an accuracy of 0.70 (which is 
superior to that of general pathologists).28 A CNN has also been ap-
plied to pathological slides from The Cancer Genome Atlas (TCGA) 
for the automatic detection of tumor-infiltrating lymphocytes (TIL), 
and the features extracted in this model (TIL maps) were found to 
be prognostic factors for 13 different cancer types, including breast, 

F I G U R E  2   Common architectures of neural networks. A, The simplest neural network comprises three layers: an input layer, a hidden 
layer and an output layer. Each node has some value and transmits its signal to the next layer. It first sums all weighted inputs and then 
transmits the resulting value to an activation function (rectified linear unit, or ReLU, in this case). B, A typical deep neural network, also 
known as a dense neural network, has multiple hidden layers, the nodes of each of which calculate values in the same manner as shown in 
(A). C, A convolutional neural network (CNN) applies multiple convolution layers before feeding the data into a dense neural network. The 
convolution layers apply filters (or kernels) to grid-based data. D, A fully convolutional network (FCN) is a variant of a CNN in that it lacks 
densely connected layers. E, A recurrent neural network (RNN) is a special network designed for time-series data. Each hidden layer holds 
certain variables and transmits them to the next time step. F, An autoencoder resembles a dense neural network but is trained to output 
signals that are identical to the inputs. Such networks offer a means to encode and decode data, with encoded features being stored in the 
hidden layer. G, A generative adversarial network (GAN) consists of two independent neural networks: a generator and a discriminator. The 
generator attempts to create new data (false data) that resemble the true data. In contrast, the discriminator discriminates real data from 
artificial data created by the generator. Alternate training of these two networks helps to decipher the complex rules underlying the data
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lung and colorectal tumors.29 In addition, given that deep learning 
can also output a map of where potential cancer cells are present on 
a slide and determine with what likelihood the cells are cancerous, 
pathologists may need only to evaluate slides for which AI is not able 
to provide a clear answer.

Deep learning is also able to elucidate the molecular status of 
a tumor from pathological data. In addition to being able to assess 
and score the expression of tumor marker proteins such as HER2 in 
tissue slides,30 a CNN model (inception v3) successfully predicted 
which genes in tumor tissue harbor mutations (with AUC from 0.733 
to 0.856).31 Another CNN model, designated HE2RNA, can predict 
transcriptome profiles from pathological images, without expert an-
notation.32 Collectively, these achievements show that deep learn-
ing has already been used to perform versatile tasks, such as cancer 
diagnosis, at a level equal to or sometimes greater than that of ex-
pert physicians.33

One of the remaining obstacles in automatic histopathology 
analysis is the establishment of standard protocols. Differences in 
color tone on pathology slides may occur among institutions as a re-
sult of differences in staining reagents, protocols and section thick-
ness. It will, therefore, be necessary to standardize color tones in 
digital slides for the development of accurate AI algorithms.34 Some 
automated CNN-based tools, such as HistoQC and DeepFocus,35,36 
have been developed to standardize the quality of whole-slide im-
aging. GAN-based image generators were also recently proposed 
to tackle this obstacle. In this case, a neural network receives a 
grayscale image, instead of noise data, as input, and a normalized 
hematoxylin-eosin-stained image can be generated.37 GAN-based 
approaches have also been adopted beyond diagnosis. For example, 
they have already been used to correct feature segmentation38 and 
to score levels of the immune-checkpoint protein PD-L1 in needle 
biopsy specimens of non–small cell lung cancer.39 Hematoxylin-
eosin–stained specimens have also been successfully converted to 
immunohistologically stained images for cytokeratins 18/19.40

These various examples indicate that AI can be of great help in 
reducing the burden on medical staff involved in tumor assessment. 
In the near future, deep learning will become an important support 
tool for pathologists that will improve the accuracy and efficiency 
of histopathologic diagnosis and thereby inform treatment selec-
tion. For further reading, we recommend two recent reviews in this 
field.41,42

3.2 | Limitations and their potential solutions in 
medical image analysis

In almost all cases, the number of medical images available for train-
ing is <1 million, which is many orders of magnitude smaller than 
the natural image collection. Researchers have developed several 
strategies to overcome this limitation. Data augmentation, whereby 
images are randomly cropped, tilted, inverted or flipped to increase 
their number, is one effective strategy for dealing with the small size 
of training sets. An example of this approach is provided by a series 

of papers on the analysis of mammograms.22,43 A second strategy, 
known as transfer learning, involves reuse for the new purpose of 
medical imaging of features extracted by deep learning from natu-
ral image datasets such as ImageNet. The potential to diagnose dia-
betic retinopathy from fundus photographs has attracted many deep 
learning researchers since 2015, when a large, labeled dataset of im-
ages was released at a machine learning competition called Kaggle. 
For example, researchers reused a 48-layer CNN architecture 
known as inception v3 that was pretrained with natural images and 
succeeded in exceeding the specificity and sensitivity of the then 
state-of-the-art model.5 These approaches have also been exploited 
in training AI to detect melanoma, the most deadly skin cancer.20,21

Such findings motivate researchers to share image data and make 
it freely usable among communities. Some useful resources of tumor 
images are summarized in Table 1. The increasing rate of adoption 
of AI in oncology research will result in an increase in the number 
of medical images becoming available, thus allowing researchers to 
build more robust and sophisticated algorithms.

4  | ARTIFICIAL INTELLIGENCE FOR 
C ANCER GENOMIC S

With the cost of genome sequencing declining, the use of a supercom-
puter to analyze genomic data from cancer patients often results in 
the identification of between 1000 and 100 000 genomic mutations 
for each tumor sample.44 However, it is necessary to clarify the asso-
ciation of each of these mutations with clinical phenotypes, which is 
currently a bottleneck for genomic medicine.45 The clinical interpreta-
tion of genetic variants depends mainly on information in the scientific 
and medical literature. In other words, researchers need to find the 
relevant literature to link the identified genomic mutations to infor-
mation on disease states, effective drugs and prognosis. With more 
than 200 000 new cancer-related articles being published in 2019 
alone, human resources are not sufficient for manual curation. An ex-
ample of a database that summarizes the relation between genomic 
variation and disease is the COSMIC database provided by the Sanger 
Center.46 COSMIC version 90, released in September 2019, extracted 
9 733 455 mutations in gene coding regions from 26 829 papers.

The use of AI will, therefore, become increasingly indispensable. 
Before the application of AI to genomic data, the sequence is trans-
formed into a binary table (one-hot encoding) that shows the pres-
ence or absence of each of the four bases at each position. Several 
filters are then applied one-dimensionally for convolution of the 
table (Figure 3A). There are two main reasons why deep learning 
is useful in cancer genomics. First, in addition to single-task learn-
ing, it allows multitask learning, in which AI learns multiple different 
tasks simultaneously by sharing parts of a model (Figure 3B). User-
defined losses (differences in predicted and actual values for each 
task) are minimized during the training process by an appropriate 
optimizer algorithm. Second, it allows multimodal learning, a method 
for integration of different types of data (such as sequence and 
chromatin accessibility) and their entry as inputs. In this process, AI 
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automatically learns how to combine these different kinds of data. 
Given that cancer is a complex disease, it is preferable to integrate 
multilayered data. The application of AI to analysis of a large amount 
of “omics” (exome, transcriptome, and epigenome) data as well as 
data on the susceptibility of patients with acute myeloid leukemia to 
anticancer drugs resulted in the identification of drug-susceptibility 
genes.47 Watson for Genomics also analyzed 323 patients to identify 
genomic alterations with potential clinical effects that were not rec-
ognized by the conventional Molecular Tumors panel.48

Deep learning is also applied to the variant calling process. In 
addition to the standard variant detection framework, Google’s 
DeepVariant exploits the Inception TensorFlow framework, which 
was initially developed for image classification. This workflow 
converts variant calling into an image recognition task by chang-
ing the BAM file into an image similar to the genome browser 
snapshot and determining variants based on likelihood.49

Another algorithm, ExPecto, links genetic mutations with disease 
prediction.50 ExPecto predicts the level of gene expression in each 
tissue on the basis of wide regulatory regions consisting of 40-kb 
promoter-proximal sequences. This framework was built with the 
use of all publicly available genome-wide association studies and has 
been experimentally validated. Estimation of gene expression level 

by this approach might help to decipher the complex etiology of can-
cer on the basis of genome-wide sequence data.

More and more clinical cancer genomic data are gradually being 
accumulated. In 2017, the US FDA approved several genome se-
quence-based panels related to oncology, including the Oncomine 
Dx Target Test, the Praxis Extended RAS Panel, MSK-IMPACT and 
FoundationOne CDx. In Japan, the Ministry of Health, Labor, and 
Welfare set a goal in May 2019 to perform genome-wide sequencing of 
100 000 individuals over the next 3 years through the full-scale intro-
duction of genome-wide sequencing to the clinic. AI is, thus, set to play 
a more important role in the interpretation of cancer genomic findings.

Machine learning also has the potential to provide novel biologi-
cal insights. As one example, a regulatory role for Fbxw7 (one of the 
most frequently mutated E3 ubiquitin ligases in cancer) in the oxi-
dative metabolism of cancer cells was discovered with the use of a 
machine learning algorithm (kernelized Bayesian transfer learning).51 
In combination with our previous studies showing that Fbxw7 plays 
an essential role in the maintenance of quiescence and stemness in 
cancer stem cells,52-54 this finding may provide important clues to 
uncovering the metabolic characteristics of cancer stem cells. AI 
can also precisely predict RNA splicing. Precursor mRNA transcripts 
undergo splicing to generate multiple mature mRNA isoforms, and 

Dataset Cancer URL

AIDA-E Stomach https://isbi-aida.grand -chall enge.org/

BraTS Brain https://www.med.upenn.edu/sbia/brats 2018/data.html

BreakHis Breast https://web.inf.ufpr.br/vri/datab ases/breas t-cance 
r-histo patho logic al-datab ase-break his/

BACH Breast https://iciar 2018-chall enge.grand -chall enge.org/Datas 
et/

CAMELYON Lymph node https://camel yon17.grand -chall enge.org/Data/

CCSD Cervix https://www.kaggle.com/c/intel -mobil eodt-cervi cal-
cance r-scree ning/data

Histopathologic 
Cancer 
Detection

Lymph node https://www.kaggle.com/c/histo patho logic -cance 
r-detec tion/data

ISIC 2018 Skin https://chall enge.kitwa re.com/#chall enge/5aab4 6f156 
357d5 e82b0 0fe5

INbreast Breast http://medic alres earch.inesc porto.pt/breas trese arch/
index.php/Get_INbre ast_Database

KiTS Kidney https://kits19.grand -chall enge.org/data/

LIDC-IDRI Lung https://wiki.cance rimag ingar chive.net/displ ay/Publi c/
LIDC-IDRI#94002 7f1a8 a845d 0a61a 1b5b5 083567e

MED-NODE Skin http://www.cs.rug.nl/imagi ng/datab ases/melan 
oma_naevi /

mini-MIAS Breast http://peipa.essex.ac.uk/info/mias.html

mitos-atypia Breast https://mitos -atypi a-14.grand -chall enge.org/datas et/

PROMISE12 Prostate https://promi se12.grand -chall enge.org/Home/

PAIP Liver https://paip2 019.grand -chall enge.org/Datas et/

TCIA Miscellaneous https://www.cance rimag ingar chive.net/

18F-FDG Head and Neck https://www.kaggle.com/c/pet-radio mics-chall enges /
data

TA B L E  1   Examples of available image 
datasets related to cancer

https://isbi-aida.grand-challenge.org/
https://www.med.upenn.edu/sbia/brats2018/data.html
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://iciar2018-challenge.grand-challenge.org/Dataset/
https://iciar2018-challenge.grand-challenge.org/Dataset/
https://camelyon17.grand-challenge.org/Data/
https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening/data
https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening/data
https://www.kaggle.com/c/histopathologic-cancer-detection/data
https://www.kaggle.com/c/histopathologic-cancer-detection/data
https://challenge.kitware.com/#challenge/5aab46f156357d5e82b00fe5
https://challenge.kitware.com/#challenge/5aab46f156357d5e82b00fe5
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
https://kits19.grand-challenge.org/data/
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI#940027f1a8a845d0a61a1b5b5083567e
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI#940027f1a8a845d0a61a1b5b5083567e
http://www.cs.rug.nl/imaging/databases/melanoma_naevi/
http://www.cs.rug.nl/imaging/databases/melanoma_naevi/
http://peipa.essex.ac.uk/info/mias.html
https://mitos-atypia-14.grand-challenge.org/dataset/
https://promise12.grand-challenge.org/Home/
https://paip2019.grand-challenge.org/Dataset/
https://www.cancerimagingarchive.net/
https://www.kaggle.com/c/pet-radiomics-challenges/data
https://www.kaggle.com/c/pet-radiomics-challenges/data
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prediction of splicing sites has been a major goal over the past de-
cade. Early studies adopted a naive Bayesian model,55 but the ad-
vent of deep learning allowed the development of more complex 
models that have provided better predictive accuracy. SpliceAI, a 
32-layer deep CNN, predicts splicing from a given pre–mRNA se-
quence.56 Abnormal splicing has been frequently observed in can-
cer, and the splicing machinery is being targeted for therapeutic 
purposes.57 Further advances in this field might allow researchers 
to predict tissue-specific and exon-specific splicing patterns from 
genomic sequences.

5  | ARTIFICIAL INTELLIGENCE AND 
PERSONALIZED MEDICINE

A key challenge in medical science is the precise classification of dis-
eases and the development of optimal therapies, which would be 

expected to improve the outcome of many patients. Current “gold 
standard” approaches to disease classification in oncology include 
histological examination by expert pathologists and evaluation of 
the expression of molecular markers such as cell surface receptors 
at the protein or mRNA level. One example is the PAM50 classifica-
tion, in which breast cancer is classified into several subtypes on the 
basis of the expression of marker genes.58 There is still considerable 
heterogeneity within these subtypes, however.59 Given the increas-
ing amount of available molecular data, it may be possible to identify 
disease subtypes more comprehensively to predict future disease 
behavior and treatment response.

We recently developed a tool, termed the molecular Prognostic 
Score (mPS), that is able to predict the prognosis of breast cancer 
patients precisely (Figure 4A).60 We integrated almost 6000 breast 
cancer patients by meta-analysis, which is mainly applied in the field 
of epidemiology, and comprehensively identified 184 prognosis-re-
lated genes for breast cancer without any biological information. 

F I G U R E  3   Deep learning for cancer 
genomics. A, Sequence data are converted 
to a binary map (one-hot encoding) and 
several filters are applied (1D-CNN), 
resulting in the transformation of 
genomics data into numerical vectors. 
The remaining procedure is the same as 
for common tasks (updating of weights 
to minimize loss). B, A typical workflow 
receives one type of data and outputs 
prediction. In multitask learning, multiple 
types of prediction (such as clinical impact 
of a mutation and biological activity 
of a gene) are generated by the shared 
network and specified networks for each 
task. Conversely, in multimodal learning, 
the network integrates different types 
of information (such as sequence data 
and chromatin accessibility) and outputs 
prediction
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We built a random forest classifier combined with a neural network 
and trained the model to predict overall survival with half of the 
METABRIC cohort.61 This scoring system stratified prognosis more 
accurately than existing methods in several independent test data-
sets. Unlike previous tools,62,63 it can even be applied to estrogen 
receptor-negative breast cancer patients (Figure 4B). In addition, the 
score provides useful information for avoidance of overtreatment 
(Figure 4C).

Attempts have also been made to predict the risk of cancer re-
currence from pathological images. A digital pathology test thus pre-
dicts the risk of recurrence in breast cancer patients with the use of 
stored samples from a completed clinical trial, ECOG 2197.64 This 
AI-driven approach allows the stratification of patients with a hazard 
ratio of 2.41 (95% confidence interval, 1.21-4.79).

Artificial intelligence is a key driver of the transformation of 
health care to precision medicine. Numerous international com-
petitions are held each year to further revolutionize the role of 
AI in health care (Table 2) and have yielded novel algorithms to 
tackle complicated tasks. Together with crowdsourcing,65 such 
open and innovative challenges will broaden further applications 
of AI to cancer research. On the basis of recent advances, the FDA 
has finally begun the approval of clinical medical devices based on 
deep learning (Table 2). In 2018, the cloud-based Arterys imag-
ing platform was approved by the FDA as a tool to help physicians 
track tumors on the basis of MRI and computed tomography scans 
of lung and liver cancer patients. In 2019, the digital pathology 
solution PAIGE.AI was designated as a Breakthrough Device by 
the FDA. Startups such as PAIGE.AI, Proscia, and PathAI use deep 
learning-based AI algorithms to detect, diagnose and predict cer-
tain cancer types.

F I G U R E  4   Prediction of prognosis 
of breast cancer patients. A, All human 
protein-coding genes were evaluated 
using a series of methods (log-rank test, 
meta-analysis, machine learning with 
the random forest method and a neural 
network). The molecular Prognostic 
Score (mPS) based on 23 prognostic 
genes predicts the prognosis of breast 
cancer patients. B, mPS stratifies not 
only estrogen receptor (ER)-positive but 
also ER-negative patients, in contrast to 
existing methods such as MammaPrint 
and Oncotype. C, Chemotherapy may not 
be necessary for patients with a low mPS 
because their prognosis is fairly good

TA B L E  2   Summary of open competitions, companies with 
FDA-approved artificial intelligence devices, useful tools, and 
educational resources for beginners

Type Name URL

Open 
challenge

Dream 
Challenges

http://dream chall enges.org/

Open 
challenge

Grand 
Challenge

https://grand -chall enge.org/
chall enges /

Open 
challenge

PrecisionFDA 
Truth 
Challenge

https://preci sion.fda.gov/chall 
enges /truth

Open 
challenge

CAGI https://genom einte rpret ation.
org/

Company Arterys https://www.arter ys.com/

Company PAIGE.AI https://paige.ai/

Company Proscia https://prosc ia.com/

Company PathAI https://www.pathai.com/

Library Scikit-learn https://sciki t-learn.org/stabl e/

Library TensorFlow https://www.tenso rflow.org/

Library Keras https://keras.io/ja/

Library PyTorch https://pytor ch.org/

Library DragoNN https://kunda jelab.github.io/
drago nn/

Library Kipoi https://kipoi.org/

Education DeepOncology https://github.com/deepo ncolo 
gy/PyTor chMed icalAI

Education fast.ai https://www.fast.ai/

Education Medical-
ai-course-
materials

https://japan -medic al-ai.github.
io/medic al-ai-cours e-mater 
ials/

http://dreamchallenges.org/
https://grand-challenge.org/challenges/
https://grand-challenge.org/challenges/
https://precision.fda.gov/challenges/truth
https://precision.fda.gov/challenges/truth
https://genomeinterpretation.org/
https://genomeinterpretation.org/
https://www.arterys.com/
https://paige.ai/
https://proscia.com/
https://www.pathai.com/
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://keras.io/ja/
https://pytorch.org/
https://kundajelab.github.io/dragonn/
https://kundajelab.github.io/dragonn/
https://kipoi.org/
https://github.com/deeponcology/PyTorchMedicalAI
https://github.com/deeponcology/PyTorchMedicalAI
https://www.fast.ai/
https://japan-medical-ai.github.io/medical-ai-course-materials/
https://japan-medical-ai.github.io/medical-ai-course-materials/
https://japan-medical-ai.github.io/medical-ai-course-materials/
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6  | CONCLUSION

Digitization of health care is dramatically changing clinical workflow 
by providing both healthcare providers and patients with access to 
information based on big data. Experience-based medicine is being 
replaced with an evidence-based, patient-centric approach. Rapidly 
evolving AI technology will continue to have a large impact on the 
field of cancer in the near future. Both physicians and researchers 
need to be ready for this coming revolutionary era.66 Medical educa-
tion must, therefore, include not only life sciences and clinical medi-
cine, but also advanced statistical and computational skills. Indeed, 
some medical schools have already begun to include AI education 
courses in the curriculum. Implementation of AI technology is be-
coming easier as a result of the availability of various open-source 
tools and cloud computing. Some useful resources for beginners in 
this field are listed in Table 2.

Deep learning has gained much attention in recent years, but sev-
eral obstacles must be overcome before its application to health care 
and cancer research becomes more widespread. First, maximization 
of the power of deep learning will require the deposition of medical 
data with sufficient annotation in large-scale databases. International 
collaborative projects (such as The Cancer Imaging Archive [http://
www.cance rimag ingar chive.net] and Genomic Data Commons Data 
Portal [https://portal.gdc.cancer.gov]) that build large, labeled data-
sets should make a substantial contribution to meeting this challenge. 
A second obstacle is that deep learning is now a black box that does 
not explain the decision-making process clearly. The large number of 
parameters involved makes it difficult to understand the details of 
how deep learning analyzes data and makes decisions. The develop-
ment of a “white box” approach has become a major research topic 
in biomedical science.67 Such innovative approaches in this area are 
also likely to provide key insights in cancer research. Given how rap-
idly the field is evolving and the many potential applications of AI in 
cancer science, AI will revolutionize oncology in the coming decade.
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