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Abstract 

Background:  There are sudden deterioration phenomena during the progression of many complex diseases, includ-
ing most cancers; that is, the biological system may go through a critical transition from one stable state (the normal 
state) to another (the disease state). It is of great importance to predict this critical transition or the so-called pre-dis-
ease state so that patients can receive appropriate and timely medical care. In practice, however, this critical transition 
is usually difficult to identify due to the high nonlinearity and complexity of biological systems.

Methods:  In this study, we employed a model-free computational method, local network entropy (LNE), to identify 
the critical transition/pre-disease states of complex diseases. From a network perspective, this method effectively 
explores the key associations among biomolecules and captures their dynamic abnormalities.

Results:  Based on LNE, the pre-disease states of ten cancers were successfully detected. Two types of new prognos-
tic biomarkers, optimistic LNE (O-LNE) and pessimistic LNE (P-LNE) biomarkers, were identified, enabling identification 
of the pre-disease state and evaluation of prognosis. In addition, LNE helps to find “dark genes” with nondifferential 
gene expression but differential LNE values.

Conclusions:  The proposed method effectively identified the critical transition states of complex diseases at the 
single-sample level. Our study not only identified the critical transition states of ten cancers but also provides two 
types of new prognostic biomarkers, O-LNE and P-LNE biomarkers, for further practical application. The method in this 
study therefore has great potential in personalized disease diagnosis.

Keywords:  Critical state, Local network entropy (LNE), Pre-disease state, Critical transition, Dynamic network 
biomarker (DNB), Prognostic biomarker
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Background
The progression of many complex diseases, such as can-
cer and diabetes, is not always smooth and occasionally 
change abruptly; that is, there exists a critical transition 
point at which the state switches from a relatively healthy 
state to a disease state or deterioration [1, 2]. Regardless 

of the specific differences in biological processes and/or 
observed symptoms among diseases, disease progres-
sion can be generally divided into three stages or states 
[1, 2], i.e., a relatively normal (before-deterioration) state, 
a pre-disease (critical) state, and a disease (deteriorated) 
state (Fig.  1A). The pre-disease state, which is the limit 
of the normal state, is unstable and reversible to the nor-
mal state with appropriate intervention, while the disease 
state is a stable state with high resilience and is almost 
irreversible [3–6]. Therefore, it is of great importance to 
detect early warning signs of the critical transition during 
disease progression and identify the pre-disease state so 
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that timely medical care can be administered to prevent 
or at least postpone deterioration. However, it is not an 
easy task to identify such pre-disease states in biomedi-
cal practice due to both methodological and data limita-
tions. First, during disease progression, the dynamics of 
biological systems generally involve a large number of 
molecules. Second, clinical data include issues of high 
dimensionality and noise perturbation, and sometimes, 
only few samples or one sample is available. The recently 
proposed dynamical network biomarker (DNB) theory 
shows a possible way of detecting the criticality of com-
plex disease by regarding the progression of a disease as a 
high-dimensional nonlinear dynamic system and the crit-
ical transition as the state shift at the bifurcation point [1, 
7, 8]. The DNB method and its modified versions have 
been applied in a variety of biomedical fields to success-
fully detect the pre-disease state of metabolic syndromes 
[9, 10], identify immune checkpoint blockades [11] and 
assess cell fate commitment [12]. However, the DNB the-
ory is not suitable for the analysis of datasets with small 
sample sizes since it requires multiple samples at each 
time point to evaluate its three statistical conditions, 
which restricts its application for biological and clinical 
data. Therefore, there is still an urgent need for a suitable 
method that is capable of detecting the critical transition 
with only few samples or one sample.

In this study, a model-free computational method, local 
network entropy (LNE), was developed and employed to 
identify critical/pre-disease states and detect the early-
warning signs of critical transitions. Specifically, for one 
given individual sample, the LNE score was calculated for 
each local biomolecular network (such as a protein–pro-
tein interaction (PPI) network) and then used to meas-
ure the statistical perturbation of the individual sample 
against a group of reference samples collected from a 
number of healthy/relatively healthy samples. The LNE 
method can characterize the dynamic difference between 
the normal and pre-disease states and further identify 
the pre-disease state during the progression of complex 
diseases. The LNE approach was applied for the data-
sets of ten different tumors from TCGA: kidney renal 

clear cell carcinoma (KIRC), lung squamous cell carci-
noma (LUSC), stomach adenocarcinoma (STAD), liver 
hepatocellular carcinoma (LIHC), lung adenocarcinoma 
(LUAD), esophageal carcinoma (ESCA), colon adenocar-
cinoma (COAD), rectum adenocarcinoma (READ), thy-
roid carcinoma (THCA), and kidney renal papillary cell 
carcinoma (KIRP). For all ten tumor datasets, the critical 
states identified by LNE were present prior to severe dis-
ease deterioration; that is, a significant change in the LNE 
score was an early warning sign of the critical transition 
into disease deterioration. Specifically, the critical state 
for KIRC was identified in stage III disease before lymph 
node metastasis, that of LUSC was identified in stage IIB 
disease before lymph node metastasis, that of STAD was 
identified in stage IIIA disease before lymph node metas-
tasis, and that of LIHC was identified in stage II disease 
before lymph node metastasis, and the patterns of other 
cancers are shown in Fig. 2.

In addition, we proposed a novel method (Fig. S1; 
the page S1 of Additional file 1) to classify LNE-sensi-
tive genes into two types of biomarkers, i.e., optimistic 
LNE (O-LNE) and pessimistic LNE (P-LNE) biomark-
ers (Fig.  1C). Specifically, from the perspective of sta-
tistics, those samples identified as O-LNE biomarkers 
tended to have a relationship with good prognosis, 
while those identified as P-LNE biomarkers usually 
showed a trend towards correlation with poor progno-
sis. These biomarkers may also play important roles in 
disease deterioration. For instance, CLIP4 is involved in 
regulating the expression of several tumor-associated 
genes, and its expression is considered to stimulate 
tumor metastasis [13]; for KIRC, gene CLIP4 was iden-
tified as an O-LNE biomarker. For LUSC, gene FGF11 
was identified as an O-LNE biomarker, and FGF11 may 
be involved in the stabilization of capillary-like tube 
structures associated with angiogenesis and may act as 
a modulator of hypoxia-induced pathological processes 
such as tumorigenesis [14]. For STAD, gene ACE2 was 
identified as a P-LNE biomarker, and ACE2 could affect 
macrophage expression of tumor necrosis factor (TNF-
α) [15]. For LIHC, gene TTK was identified as a P-LNE 

(See figure on next page.)
Fig. 1  The overall design of this study. A Schematic diagram for disease progression of a complex disease in a subject. Regardless of specific 
differences in either biological processes or observed symptoms among diseases, the progression of illness can be generally divided into three 
stages or states, i.e., a relatively normal (before-deterioration) state, a pre-disease (critical) state, and a disease (deteriorated) state. A relatively normal 
state and pre-disease state are reversible state but a disease state is irreversible state. Thus, detection of the critical state is essential; B one-sample 
based local network entropy algorithm. Given a number of reference samples which can be derived from normal cohort, the LNE is calculated 
based on a single-sample from any individual. Specifically, both the reference samples and the to-be-determined single-sample are mapped to 
the existing PPI network or other reference network, which can be partitioned into local networks. For each local network centered on gene k, the 
local LNE score �E(t) is calculated; C for each cancer from the ten cancers and each individual from the cancer, calculating the LNE score of its each 
gene. After ranking the scores for all genes, the top 5% genes can be regarded as the LNE genes for the sample. LNE genes were further categorized 
to O-LNE and P-LNE biomarkers which enable significantly distinguish survival time between identified samples and unidentified samples
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Fig. 1  (See legend on previous page.)
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biomarker, and TTK alone or in combination with other 
therapeutics might be able to selectively kill tumor cells 
[16]. Furthermore, in the analysis of these cancer data-
sets, the proposed method identified some “dark genes”, 
which showed nondifferential gene expression but dif-
ferential LNE values.

Methods
Theoretical background
According to our recently proposed DNB theory [1, 2], 
disease progression can be generally divided into three 
stages or states, i.e., a relatively normal (before-deterio-
ration) state, a pre-disease (critical) state, and a disease 
(deteriorated) state. The normal state is a stable state 
with high resilience and robustness to perturbation. The 
pre-disease state, which is the limit of the normal state, 
is unstable and reversible to the normal state with appro-
priate intervention. The disease state, which is also a sta-
ble state with high resilience, is almost irreversible [3–6]. 
Moreover, when a complex system is near the critical 
point, among all observed variables, there exists a domi-
nant group defined as DNB biomolecules that satisfy the 
following three conditions based on the observed data 
[1]:

•	 The correlation (PCCin) between any pair of mem-
bers in the DNB group rapidly increases;

•	 The correlation (PCCout) between one member of the 
DNB group and any other non-DNB member rapidly 
decreases;

•	 The standard deviation (SDin) or coefficient of vari-
ation for any member in the DNB group drastically 
increases.

All three of the above conditions are necessary for 
phase transitions, and can also be approximately stated 
as follows: the appearance of a strongly fluctuating and 
highly correlated group of features/variables implies 
imminent transition into the disease state. Therefore, we 
use these three conditions to quantify the tipping point 
as early-warning signs of the disease, and then the iden-
tified dominant group of biomolecules consists of DNB 
members. These three conditions are the theoretical basis 
of DNB theory and have been applied to a number of 
analyses of disease progression and biological processes 
to predict critical states [2, 5].

Algorithm to identify the tipping point based on LNE
The LNE method uses reference samples (samples from 
normal cells that are regarded as the background and 

Fig. 2  Identification of critical states preceding tumor deterioration in ten cancers: A KIRC; B LUSC; C STAD; D LIHC; E LUAD; F ESCA; G COAD; H 
READ; I THCA; J KIRP. Comparison of survival curves for samples taken before and after the critical state for ten cancers: K KIRC; L LUSC; M STAD; N 
LIHC; O LUAD; P ESCA; Q COAD; R READ; S THCA; T KIRP
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represent healthy or relatively healthy cells) and only one 
disease sample to identify the tipping point with the fol-
lowing algorithm (Fig.  1B). Specifically, inspired by the 
previous study [17], the term "entropy" proposed here 
aims to characterize the statistical perturbation brought 
by each individual sample against a group of given refer-
ence samples.

[Step 1] The first step is to form a global network NG by 
mapping the genes to a protein–protein interaction (PPI) 
network downloaded from STRING (http://​string-​db.​
org) [18], which contains the interactions of the selected 
genes with a confidence level of 0.800. Isolated nodes 
without any links to other nodes are discarded. The PPI 
network is identical to a template network for each indi-
vidual sample.

[Step 2] The second step is to map TCGA data to the 
global network NG . Data for ten cancers from the TCGA 
database are downloaded, and then, the gene expression 
data are mapped to the global network NG generated in 
the prior step.

[Step 3] The third step is to calculate the local network 
entropy for each gene. For each gene gk , its local network 
Nk(k = 1, 2, …, L) is extracted from the global network 
NG(Fig. 1B), where 

{

gk1, . . . , g
k
M

}

 are the 1st-order neigh-
bors of gk . L denotes the number of the local network. 
Then, the local entropy En(k , t) is calculated based on n 
reference samples. The formula for calculating local 
entropy En(k , t) is

with

where the constant M denotes the number of neighbors 
in the local network Nk and PCCn

(

gki (t), g
k(t)

)

 denotes 
the Pearson correlation coefficient between the center 
gene gk and a neighbor gki  based on n reference samples at 
time point t.

[Step 4] The fourth step is to calculate the differential 
entropy �E(k , t) . En+1(k , t) is calculated based on n + 1 
samples, mixing a single sample from an individual with 
n reference samples at time point t, i.e.,

Then, the differential entropy �Ek(t) is calculated as

(1)En(k , t) = −
1

M

M
∑

i=1

pni (t) log p
n
i (t),

(2)pni (t) =

∣

∣

∣
PCCn

(

gki (t), g
k(t)

)∣

∣

∣

M
∑

j=1

∣

∣

∣
PCCn

(

gkj (t), g
k(t)

)∣

∣

∣

,

(3)En+1(k , t) = −
1

M

M
∑

i=1

pn+1
i (t) log pn+1

i (t)

and

where SDn(gk(t)) and SDn+1(gk(t)) denote the standard 
deviation of the gene expression for the center gene gk 
based on n reference samples and n + 1 mixed samples at 
time point t, respectively.

[Step 5] The fifth step is to calculate the global differen-
tial entropy �E(t) , i.e.,

where constant Q denotes the number of all genes.�E(t) 
is called the global LNE score or LNE score since it can 
reflect the overall effect of a single sample. According to 
DNB theory [1, 2], when the system is close to the tipping 
point, the LNE score can effectively represent the fluctua-
tions of the network and thus serve as an early warning 
sign of critical deterioration. Theoretical explanation of 
local network entropy (LNE) has been supplemented in 
the page S6 of Additional file 1.

Data processing and functional analysis
Ten unrelated, clinical tumor datasets (kidney renal 
clear cell carcinoma (KIRC), lung squamous cell carci-
noma (LUSC), stomach adenocarcinoma (STAD), liver 
hepatocellular carcinoma (LIHC), lung adenocarcinoma 
(LUAD), esophageal carcinoma (ESCA), colon adeno-
carcinoma (COAD), rectum adenocarcinoma (READ), 
thyroid carcinoma (THCA), and kidney renal papillary 
cell carcinoma (KIRP)) were downloaded from The Can-
cer Genome Atlas (TCGA) database (GDC) (cancer.gov 
https://​portal.​gdc.​cancer.​gov/). These datasets included 
RNA-seq data from tumor and tumor-adjacent samples 
and clinical information. The tumor samples were cat-
egorized into different stages according to the clinical 
(stage) information, samples lacking stage information 
were discarded, and the complete clinical staging infor-
mation were provided in the Additional file 2: Table S1.

The molecular global template network was built with 
the following steps. First, the protein–protein interac-
tion networks for Homo sapiens were downloaded from 
STRING (http://​string-​db.​org). Second, the genes from 
each microarray dataset were mapped to the integrated 
network to construct the molecular network for subse-
quent analysis. Finally, the subsequent analysis results 
were visualized with Cytoscape (www.​cytos​cape.​org).

(4)�Ek(t) =
∣
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The enrichment analysis was performed based on 
the KEGG Mapper tool (KEGG Mapper Color) and the 
DAVID Functional Annotation Tool (DAVID: Functional 
Annotation Tools (ncifcrf.gov). All statistical analyses 
were performed with R software v4.0.3 (R: The R Project 
for Statistical Computing (r-project.org)). The differen-
tial expression and Cox survival analyses were performed 
with the R DESeq2 package and R Survival package.

Results
Identifying the critical transition points of ten cancers 
with LNE
We used the LNE algorithm to identify the critical tran-
sition points of ten cancers in datasets that were down-
loaded from TCGA. The samples were categorized into 
different stages according to clinical information, and the 
tumor adjacent (TA) samples were used as reference sam-
ples for each tumor. For example, the KIRC samples were 
categorized into four stages, i.e., stages I, II, III, and IV. 
The LUSC samples were categorized into seven stages, 
i.e., stages IA, IB, IIA, IIB, IIIA, IIIB, and IV. The LNE 
score was then calculated for each single sample follow-
ing the proposed algorithm, and the average LNE score 
curves of each stage are shown in Fig.  2A–J. Based on 
LNE theory, the transition point in the LNE score curve 
is the critical state during disease progression (Fig. 1A). 
To validate the identified critical state, the prognoses 
of before-transition and after-transition samples were 
determined and compared through Kaplan–Meier (log-
rank) survival analysis (Fig. 2K–T). Regardless of specific 
biological and pathological differences, the stage II-III is 
a special state correlated with the lymph node metasta-
sis, while the stage III-IV stands for a period associated 
with distant metastasis [19]. Therefore, we consider that 
stage II and stage III represent the critical point before 
lymph node metastasis and the critical stage before dis-
tant metastasis, respectively.

For KIRC, there was a drastic increase in the LNE score 
before stage III (transition point; Fig. 2A), suggesting the 
upcoming abrupt critical transition into the disease state 
(stage IV); that is, the stage at which the tumor migrates 
to form distant metastasis at stage III [20]. Furthermore, 
survival analysis was applied to compare survival curves 
for samples before and after the transition point (stage 
III) by log-rank tests to validate the identified critical 
state. The survival curves showed a significant differ-
ence (p < 0.0001) between stage I ~ III and stage IV KIRC 
samples according to clinical information (Fig.  2K). In 
addition, the survival time of patients after stage III was 
significantly shorter than that before stage III.

For LUSC, the average LNE score abruptly increased 
at stage IIB (Fig.  2B), indicating an upcoming critical 
transition after stage IIB; that is, after stage IIB, lymph 

node metastasis and tumor invasion of the visceral peri-
cardial surface would occur [21]. Moreover, the survival 
curves of samples taken before and after the transition 
point (stage IIB) were significantly different (p = 0.0063; 
Fig.  2L). Furthermore, patients with diseases in stages 
after the identified critical transition had shorter sur-
vival times than those with diseases in stages before the 
transition.

For STAD, the average LNE score abruptly increased at 
stage IIIA (Fig. 2C), indicating an upcoming critical tran-
sition after stage IIIA; that is, the cancer would spread to 
the serosal layer of the stomach wall (stage IIIB) and ulti-
mately cause distant metastasis (stage IV) [22]. Moreover, 
the survival curves of samples taken before and after the 
transition point (Stage IIIA) were significantly different 
(p = 0.0036; Fig. 2M). Furthermore, patients with diseases 
in stages after the identified critical state had shorter sur-
vival times than those with diseases in stages before the 
transition.

For LIHC, the average LNE score abruptly increased at 
stage II (Fig. 2D), suggesting an upcoming critical transi-
tion after stage II. A literature search showed that direct 
invasion of adjacent organs occurs at stage III [23]. More-
over, the survival curves of samples taken before and after 
the transition point (Stage II) were significantly different 
(p < 0.0001; Fig. 2N). Furthermore, patients with diseases 
in stages after the identified critical state had shorter sur-
vival times than those with diseases in stages before the 
transition.

The results of the same above-mentioned method for 
the other six cancers are shown in Fig.  2. Moreover, a 
method (Additional file 1: Fig. S5) was applied to validate 
the identified critical state, and the results were provided 
in the page S12 of Additional file 1. As demonstrated in 
these graphs, LNE is an effective method for identifying 
the critical state of cancers.

The dynamic evolution of gene regulatory networks
Above, we use the numerical algorithm LNE to identify 
the critical state. Subsequently, we wanted to validate the 
identified critical states at the network level. For each 
sample, the top 5% of genes with the highest LNE score 
were chosen as the LNE genes. The common LNE genes 
of samples in the identified critical state were regarded as 
DNBs for consequent functional and biological analyses 
and may participate in key associations among biomol-
ecules related to tumor deterioration during disease pro-
gression. First, these common LNE genes were mapped 
to the PPI network to further study the dynamic evolu-
tion of the network and to identify changes in cancer-
related molecules.

For KIRC, the dynamic changes of gene’s LNE score in 
its PPI regulation network across all 4 stages are shown 
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in Fig. 3A. An obvious change in the network structure 
occurred at stage III, indicating an upcoming critical 
transition, in line with the experimental results above. 
Furthermore, previous studies fully support that the criti-
cal state was correctly identified.

For LUSC, the dynamic changes of gene’s LNE score in 
the PPI regulation network across all 7 stages are shown 
in Fig. 3B. A drastic change in the PPI network occurred 
in stage IIB, indicating an upcoming critical transition, in 
line with the experimental results above.

For STAD, the dynamic changes of gene’s LNE score in 
the PPI regulation network across all 7 stages are shown 
in Fig. 3C. A drastic change in the PPI network occurred 
in stage IIIA, indicating an upcoming critical transition, 
in line with the experimental results above.

For LIHC, the dynamic changes of gene’s LNE score in 
its PPI regulation network across all 4 stages are shown in 
Fig. 3D. A drastic change in the PPI network occurred in 
stage II, indicating an upcoming critical transition, in line 
with the experimental results above.

The results in Fig. 3 also reflects some additional infor-
mation in the network point of view. First, the evolution 
of the LNE gene group (i.e., the top 5% genes with the 
highest LNE values) can signal the critical transition at 
the network level, that is, for the subnetwork composed 
of the LNE genes, a significant change in its topological 
structure occurs when the system approaches the criti-
cal state. Second, the LNE genes composed a connected 
subgraph when they were mapped to the protein–pro-
tein interaction (PPI) network, which can’t be implied by 
neither the LNE definition nor its mean value. Third, the 
changes of the network structure across all stages provide 
a clue of the dynamical evolution of the gene network 
during the disease progression, which may help to under-
stand the underlying mechanisms of the associative rela-
tionships among the LNE genes.

Furthermore, results of the dynamic network changes 
for the other six cancers are presented in Additional 
file  1: Fig. S2, and also in line with the experimental 
results above.

Prognostic prediction of tumors using LNE
LNE genes can be divided into two types of biomark-
ers: optimistic LNE (O-LNE) biomarkers and pessi-
mistic LNE (P-LNE) biomarkers. Specifically, from a 
statistical perspective, those samples identified as O-LNE 

biomarkers tend to have an association with good prog-
nosis, while those identified as P-LNE biomarkers tend 
to have an association with poor prognosis. More details 
about the identification method are provided in Fig. S1 
and the page S1 of Additional file 1.

The predicted prognoses of samples with optimistic 
LNE biomarkers in their LNE genes were more favora-
ble than those of other samples; that is, the survival time 
of these samples was expected to be longer than that of 
other samples. In contrast, the predicted prognoses of 
samples with pessimistic LNE biomarkers in their LNE 
genes were less favorable than those of other samples; 
that is, the survival time of these samples was expected to 
be shorter than that of other samples.

For KIRC, the survival times of samples with the 
O-LNE biomarkers CLIP4 (p = 0.0002; Fig. 4A) and PGD 
(p = 0.00093; Fig. 4A) were significantly longer than those 
of samples without these O-LNE biomarkers according 
to survival curve analysis (Fig.  4). The survival times of 
samples with the P-LNE biomarkers CDCP1 (p = 0.0023; 
Fig.  4A) and EPB41 (p = 0.0081; Fig.  4A) were signifi-
cantly shorter than those of samples without these P-LNE 
biomarkers.

For LUSC, the prognoses of samples with the 
O-LNE biomarkers ACP1 (p = 0.019; Fig.  4B) and ERH 
(p = 0.00025; Fig.  4B) tended to be significantly better 
than those of other samples; i.e., the survival time was 
expected to be longer. The prognoses of samples with 
the P-LNE biomarkers AHNAK (p = 0.0083; Fig. 4B) and 
PLAU (p = 0.011; Fig. 4B) tended to be significantly worse 
than those of other samples; i.e., the survival time was 
expected to be longer.

For STAD, those samples with the O-LNE biomarkers 
CATSPERB (p = 0.026; Fig.  4C) and ZNF350 (p = 0.026; 
Fig.  4C) tended to have significantly better prognoses 
than other samples. Those samples with the P-LNE bio-
markers ACE2 (p = 0.039; Fig.  4C) and SRI (p = 0.012; 
Fig.  4C) tended to have significantly worse prognoses 
than other samples.

For LIHC, those samples with the O-LNE biomarkers 
ATP2B4 (p = 0.014; Fig. 4D) and IRF6 (p = 0.03; Fig. 4D) 
tended to have a significantly more optimistic progno-
sis than other samples. Those samples with the P-LNE 
biomarkers TSEN34 (p < 0.0001; Fig.  4D) and ENO1 
(p < 0.0001; Fig. 4D) tended to have a significantly worse 
prognosis than other samples.

(See figure on next page.)
Fig. 3  The dynamic network change of LNE genes in KIRC, LUSC, STAD and LIHC. A In KIRC, the LNE gene group/module evolved, and there was a 
significant change in the network structure at stage III. B Similarly, the network LNE score significantly changed at stage IIA in LUSC. C The network 
LNE score significantly changed at stage IIIA in STAD. D The network LNE score significantly changed at stage II in LIHC. The network structure was 
derived by mapping LNE genes to the STRING PPI network. We discarded all the isolated nodes without any links to other nodes. The color of each 
node denotes the value of the scaled local LNE score, while the color of each edge denotes the absolute value of the Pearson correlation coefficient 
|PCC|
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Furthermore, these novel biomarkers may play signifi-
cant roles in essential biological processes during criti-
cal deterioration. As shown in Table  1, in KIRC, CLIP4 
was identified as an O-LNE biomarker; CLIP4 is involved 
in regulating the expression of several tumor-associ-
ated genes, and its expression is considered to stimulate 
tumor metastasis [13]. In LUSC, FGF11 was identified 

as an O-LNE biomarker; and FGF11 may be involved in 
the stabilization of capillary-like tube structures associ-
ated with angiogenesis and may act as a modulator of 
hypoxia-induced pathological processes such as tumo-
rigenesis [14]. In STAD, ACE2 was identified as a P-LNE 
biomarker, and ACE2 can affect macrophage expression 
of tumor necrosis factor (TNF-α) [15]. In LIHC, TTK 
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Fig. 4  Comparison of survival curves between samples with and without O-LNE and P-LNE biomarkers for KIRC, LUSC, STAD, and LIHC. A The O-LNE 
biomarkers CLIP4 and PGD and the P-LNE biomarkers CDCP1 and EPB41 in KIRC; B the O-LNE biomarkers ACP1 and ERH and the P-LNE biomarkers 
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samples with biomarkers, while other samples were deemed samples without biomarkers
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was identified as a P-LNE biomarker, and TTK alone or 
in combination with other therapeutics may selectively 
kill tumor cells [16].

The O-LNE and P-LNE biomarkers of the ten cancers 
are provided in Additional file  3: Table  S2. The results 
imply that O-LNE and P-LNE biomarkers are effective in 
determining patient prognosis from a statistical perspec-
tive and may participate in essential biological processes. 
Moreover, these biomarkers are mainly non-differentially 
expressed genes and are therefore usually missed by tra-
ditional studies. For example, only KIF2C and MYBL2 
were differentially expressed genes in LIHC (Additional 
file  3: Table  S2), and GRB7 was differentially expressed 
in THCA (Additional file 3: Table S2). Hence, we present 
a method to identify novel biomarkers, drug targets and 
key regulators.

Functional analysis of LNE genes in different systems
For cancers affecting the same system of the human body, 
common LNE genes identified in the critical state may 
participate in the same biological processes during tumor 
deterioration. In this study, the cancers were catego-
rized into 3 groups based on the system affected, i.e., the 
respiratory system (LUSC and LUAD), urinary system 
(KIRP and KIRC), and digestive system (STAD, READ, 
LIHC, ESCA, and COAD).

For each of the 3 systems, there were not only many 
overlapping the signaling genes in different cancers but 
also tight functional relationships among them (Fig. 5A, 
5D, and 5G). For each system described above, KEGG 
pathway enrichment analysis of the common signaling 
genes among the different cancers was performed. For 
the 3 systems of the human body, as presented in Fig. 5B, 
5E, and 5H, the common signaling genes were signifi-
cantly enriched in pathways related to the process of can-
cer development. For the respiratory system (LUSC and 

LUAD), the common LNE genes were enriched in can-
cer-related pathways, including the PI3K-Akt signaling 
pathway, pathways in cancer, and the cell cycle pathway 
(Fig. 5B). Activation of the PI3K-Akt pathway and path-
ways in cancer has been reported to be involved in the 
development and progression of lung cancer [28]. In mel-
anocytes driven by lung cancer cell-derived exosomes, 
the cell cycle pathway may contribute to tumor progres-
sion more than any other pathway [29]. For the urinary 
system (KIRP and KIRC) (Fig.  5E), the common LNE 
genes were enriched in pathways associated with cancer, 
such as the PI3K-Akt signaling pathway, focal adhesion 
pathway, and MAPK signaling pathway. Suppressing the 
PI3K-Akt signaling pathway can inhibit cell proliferation 
and induce apoptosis [30]. Activating the MAPK signal-
ing pathway can promote the proliferation and invasion 
of renal cell carcinoma cells [31]. For the digestive system 
(STAD, READ, LIHC, ESCA, and COAD), the common 
LNE genes were enriched in cancer-related pathways, 
including the PI3K-Akt signaling pathway, microRNAs in 
cancer, and proteoglycans in cancer (Fig. 5H). The PI3K-
Akt signaling pathway has been shown to drive tumor 
progression and regulate metastasis in multiple cancer 
cells [32, 33]. MicroRNAs are critical factors in cancer 
biology [34]. Proteoglycans can perform multiple func-
tions in cancer and normal angiogenesis and are directly 
related to cancer [35, 36]. Although unique pathways 
were present among these 3 different systems, some com-
mon pathways were present as well, such as the PI3K-Akt 
signaling pathway. Moreover, we found that the regula-
tory patterns of the PI3K-Akt signaling pathway for these 
3 systems were quite similar. Specifically, upstream regu-
lators, such as factors in the extracellular matrix (ECM) 
(common signaling genes), activate the downstream fac-
tors ITGA​/ITGB (1st-order DEGs), which subsequently 
activate the key downstream molecules PI3KA and AKT 

Table 1  Optimistic LNE (O-LNE) biomarkers and pessimistic LNE (P-LNE) biomarkers in KIRC, LUSC, STAD and LIHC

Cancer Gene Type Family Relation with cancer progression

KIRC CLIP4 O-LNE Regulatory CLIP4 is involved in regulating the expression of several tumor-associated genes, and its expression 
is considered to stimulate tumor metastasis [13]

CDCP1 P-LNE Enzyme CDCP1 belongs to the tetraspanin web involved in tumor progression and metastasis [24]

LUSC FGF11 O-LNE Signaling growth factor FGF11 may be involved in the stabilization of capillary-like tube structures associated with angio-
genesis and may act as a modulator of hypoxia-induced pathological processes such as tumori-
genesis [14]

AHNAK P-LNE Regulatory AHNAK mediates negative regulation of cell growth and acts as novel tumor suppressor through 
potentiation of TGFB1 signaling [25]

STAD ZNF350 O-LNE Transcription factor ZNF350 has been reported to function as a tumor suppressor [26]

ACE2 P-LNE Enzyme ACE2 can affect macrophage expression of tumor necrosis factor (TNF-α) [15]

LIHC IRF6 O-LNE Transcription factor IRF6 suppresses tumorigenesis in stratified epithelia [27]

TTK P-LNE Enzyme TTK alone or in combination with other therapeutics may selectively kill tumor cells [16]



Page 11 of 13Liu et al. Journal of Translational Medicine          (2022) 20:254 	

together with other common signaling genes and 1st-
order neighboring DEGs; this cascade may trigger tumor 
development (Fig. 5C, F and I). In general, the synergy of 
common signaling genes and their 1st-order neighboring 
DEGs may have biological significance in tumor-related 
biological processes.

Discussion
In biological studies and clinical practice, small sample 
sizes are an overarching problem, especially in cancer, 
and often contribute to model errors and bias in analy-
ses. To avoid these problems when identifying transi-
tion points or critical states that appear just before the 
disease state, the local network entropy (LNE) method 
was applied in this study. Its effectiveness and robustness 
have been proven in various diseases.

We identified the tipping point of ten cancers from 
TCGA datasets by LNE. Survival analysis and analysis 
of dynamic changes in the mapped STRING network 

of LNE genes in the critical state confirm that the LNE 
method is viable, and LNE genes may participate in some 
key biological processes related to cancer. Through func-
tional analysis and literature review, the common LNE 
genes in the critical state were found to be enriched in 
pathways related to tumor progression, such as the ECM-
receptor interaction pathway, PI3K-Akt signaling path-
way, and HIF-1 signaling pathway (Fig. 5).

In further analysis, we found that the LNE genes 
could be categorized into two novel types of biomark-
ers [37], i.e., pessimistic LNE (P-LNE) and optimistic 
LNE (O-LNE) biomarkers. We identified P-LNE and 
O-LNE biomarkers of the ten cancers, and these bio-
markers could be used to evaluate patient prognosis. 
Accordingly, if a patient’s LNE genes included P-LNE 
biomarkers, the patient was likely to have shorter sur-
vival times; conversely, if a patient’s LNE genes included 
O-LNE biomarkers, the patient was likely to have longer 
survival times (Fig. 4). Furthermore, most of the O-LNE 
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and P-LNE biomarkers that were identified lacked dif-
ferential expression and would thus normally be missed 
by traditional analyses. For instance, for LIHC, CYP2A6 
and INSIG1, identified as O-LNE biomarkers, and CKS2, 
ENO1, G6PD, TKT, and TSEN34, identified as P-LNE 
biomarkers, all had nondifferential expression, and 
only KIF2C and MYBL2, identified as P-LNE biomark-
ers, showed differential expression. Through a literature 
search, these O-LNE and P-LNE biomarkers were found 
to be highly associated with biological processes related 
to cancer, such as promotion of tumor cell proliferation, 
migration, and formation. Thus, the P-LNE and O-LNE 
biomarkers identified here may be important targets for 
future research into the molecular mechanisms underly-
ing tumor onset and/or disease state deterioration and 
will be topics of our future research. These findings of 
biomarker genes can be applied in many distinct biologi-
cal questions of translation medicine, such as early detec-
tion of breast cancer [38], prediction of RNA-binding 
sites [39], network-based biomarker discovery [40], and 
detecting prognostic biomarkers of breast cancer [41].

There are several advantages of the LNE method. First, 
the proposed approach is model-free and does not need 
learning processes to identify biomarkers, which is dif-
ferent from traditional classification or machine learning 
methods, which require a large number of case/control 
samples for supervised or unsupervised learning. Sec-
ond, our method can effectively identify the critical state 
of a complex disease at the single-sample level, benefit-
ing the development of personalized medicine. Third, the 
LNE method provides practical biomarkers for prognos-
tic analysis, which is helpful for finding new biomarkers, 
drug targets and prognostic indicators.

Conclusions
The proposed computational method LNE effectively 
identified the critical transition state of complex diseases 
at the single-sample level, making it applicable for most 
real clinical data. Our method not only identified the 
critical state or transition point of ten cancers but also 
provides two types of new prognostic biomarkers, opti-
mistic LNE (O-LNE) and pessimistic LNE (P-LNE) bio-
markers, for further practical application. Hence, it has 
great potential in personalized diagnosis, the identifica-
tion of the molecular mechanisms of disease progression, 
and prevention medicine.
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