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Abstract
Previous studies have demonstrated a neuroprotective effect of extract of Ginkgo biloba against neuronal damage, but have mainly focused 
on antioxidation of extract of Ginkgo biloba. To date, limited studies have determined whether extrasct of Ginkgo biloba has a protective 
effect on neuronal damage. In the present study, acrylamide and 30, 60, and 120 mg/kg extract of Ginkgo biloba were administered for 4 
weeks by gavage to establish mouse models. Our results showed that 30, 60, and 120 mg/kg extract of Ginkgo biloba effectively alleviated 
the abnormal gait of poisoned mice, and up-regulated protein expression levels of doublecortin (DCX), brain-derived neurotrophic factor, 
and growth associated protein-43 (GAP-43) in the hippocampus. Simultaneously, DCX- and GAP-43-immunoreactive cells increased. 
These findings suggest that extract of Ginkgo biloba can mitigate neurotoxicity induced by acrylamide, and thereby promote neuronal re-
generation in the hippocampus of acrylamide-treated mice. 

Key Words: nerve regeneration; brain injury; extrat of Ginkgo biloba; acrylamide; doublecortin; brain-derived neurotrophic factor; growth 
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Graphical Abstract

Protective effect of extract of Ginkgo biloba (EGb) on toxic neurons

Introduction
Acrylamide (ACR) is a white crystal chemical that is a 
common raw material of polyacrylamide product. In many 
industries around the world, ACR is used for water purifi-
cation, the inner coating of pipelines, and pulp processing 
(Rosen et al., 2002; Dybing et al., 2003). Moreover, foods 

rich in starch can produce ACR after high temperature 
cooking (above 120°C) (Ma et al., 2011; Krishna et al., 2015; 
Sen et al., 2015). ACR produces defective neurological hall-
marks such as skeletal muscle weakness and ataxia. Quanti-
tative morphometric and electrophysiological analyses show 
that nerve terminals are the primary sites of ACR action 
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(LoPachin et al., 2005). However, current studies are not 
standardized to evaluate the neurotoxicity of ACR, mak-
ing it difficult to define a toxic level in the nervous system 
(Friedman et al., 1999; Santhanasabapathy et al., 2015). At 
present, most laboratories study neurotoxicity by analyzing 
morphometric, molecular, and biochemical changes. For 
behavior, different functional tests have been used to assess 
development of hindlimb skeletal muscle weakness and 
ataxia (LoPachin et al., 2002). Thus, we used gait score and 
the open-field test in the present study to investigate features 
of mouse behavior. Previous studies have revealed that ACR 
shows neurotoxicity, reproductive toxicity, and carcinogen-
ic properties (especially in neurotoxicity). Further, many 
studies have reached a consensus on the strong relationship 
between ACR neurotoxicity and doublecortin (DCX) ex-
pression (LoPachin et al., 2004; Ogawa et al., 2012). In addi-
tion, brain-derived neurotrophic factor (BDNF) and growth 
associated protein-43 (GAP-43) increase DCX expression 
(Song et al., 2013). Therefore, we investigated the effects of 
extract of Ginkgo biloba (EGb) on neuronal regeneration in 
the hippocampus of mice treated with ACR. Accordingly, 
we demonstrate that expression levels of DCX, BDNF, and 
GAP-43 are strongly interconnected.

In recent years, numerous herbal medicines have attracted 
the attention of many researchers for the treatment of neuro-
logical diseases. For example, Radix Puerariae and Rhizoma 
Acori Tatarinowii exert neuroprotective effects (Zhu et al., 
2016). EGb shows protective effects against senile dementia 
(Stackman et al., 2003; Tan et al., 2015) and cardiovascular 
disease (Schneider et al., 2010). Likewise, an effect of EGb 
has been demonstrated on anxiety-like behavior and loco-
motor activity (Ribeiro et al., 2016), modulation of inflam-
matory mediators and the cholinergic system (Kim et al., 
2016), and in dementia treatment (Hashiguchi et al., 2015). 
In particular, EGb enhances regeneration of injured pe-
ripheral nerves. Nonetheless, previous studies on the effect 
of EGb on brain damage have mainly focused on oxidative 
damage (Aydin et al., 2016; Sener et al., 2017) and neuronal 
damage (Massieu et al., 2004; Eckert et al., 2005), with neu-
ronal regeneration insufficiently researched. Newborn neu-
rons are labeled by DCX in the brain, and there is a strong 
relationship between neuronal regeneration and BDNF, 
GAP-43, and DCX (Song et al., 2013). Therefore, in this 
study, we investigated the protective effect of EGb on neu-
ronal regeneration in the hippocampus of mice treated with 
ACR. Our study may provide a scientific foundation for the 
use of EGb in preventing and treating ACR neurotoxicity.

Materials and Methods
Animal model preparation
Forty male Kunming mice weighing 22–26 g (at the start of 
the experiment) were purchased from the Animal Experi-
mental Center of Guangdong Province of China (certification 
No. SYXK (Yue) 2013-0002). All animals were housed in an 
animal room on 12-hour dark/light cycles, and allowed free 
access to food and water. EGb was purchased from Ruilin 
Biotechnology Co., Ltd., (Xi’an, China). Its content was: 24% 

flavone, 6% esters, and organic acids. 
The study protocol was approved by the Animal Eth-

ics Committee of Guangdong Pharmaceutical University 
of China (approval No. gdpu2016022). The experimental 
procedure followed the United States National Institutes of 
Health Guide for the Care and Use of Laboratory Animals 
(NIH Publication No. 85-23, revised 1986).

Mice were randomly divided into five groups, with eight 
mice per group. In the control group, mice did not undergo 
any procedure. In the ACR group, mice were administrated 
saline in the morning and 20 mg/kg/d ACR (Yongda, Inc., 
Tianjin, China) in the afternoon by gavage for 4 weeks. In 
the 30, 60, and 120 mg/kg EGb groups, mice were admin-
istrated 30, 60, and 120 mg/kg/d EGb, respectively, in the 
morning and 20 mg/kg/d ACR in the afternoon by gavage 
for 4 weeks. 

Assessment of locomotor function
Gait score
After gavage administration, gait score was evaluated three 
times over 3 days before euthanasia. Mice were placed on 
open ground and allowed to perform independent activities. 
Gait score was recorded in five minutes. 

Standards of grading were as follows (LoPachin et al., 
2002): score 1, normal gait; score 2, a slightly abnormal gait 
(slightly inharmonious and increased foot distance); score 
3, moderately abnormal gait (foot weakness, obvious move-
ment abnormalities characterized by abduction of legs); 
score 4, severely abnormal gait (hind limbs paralyzed and 
unable to support the body, and foot splays). 

Open field test
This test is used to evaluate general locomotor activity and 
anxiety-like behavior in rodents. The open-field test was per-
formed 3 days before euthanasia to determine the effect of 
ACR on motor activity and the therapeutic effect of EGb. A 
single mouse was placed in the center of a cube, which was 
72 cm width × 30 cm high, and divided into 64 small com-
partments. For testing, each mouse was placed in the central 
square, and its behavior (including numbers of grid crossing 
and frequency of rearing) were measured for 5 minutes. Af-
ter each trial, the device was wiped with ethanol to remove 
any traces of the previous animal (Neto et al., 2013).

Immunohistochemistry
After behavioral testing, four mice from each group were 
deeply anesthetized with 4% chloral hydrate by peritoneal 
injection and perfused with 0.9% saline followed by 4% 
paraformaldehyde in 0.01 M phosphate buffer solution (pH 
7.4). Brains were immediately removed, post-fixed over-
night in paraformaldehyde, washed with running tap water 
overnight, dehydrated, embedded in paraffin, and sliced 
into 4 µm-thick coronal sections with a microtome. Sec-
tions were mounted onto glass slides, hydrated in graded 
ethanol, immersed in 0.01 M citrate buffer (0.01 M; pH 6.0), 
and heated for 20 minutes in a microwave oven at 90°C for 
antigen retrieval. After cooling to room temperature, sec-
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tions were treated with 3% hydrogen peroxide at 37°C for 
15 minutes to inactivate endogenous peroxide enzyme. Sec-
tions were blocked with 1% bovine serum albumin (in 0.5% 
Triton-X-100) for 30 minutes at 37°C, and then incubated 
at 4°C overnight with primary antibodies: rabbit polyclonal 
anti-DCX (1:600; Abcam, Cambridge, MA, USA) and rabbit 
monoclonal anti-GAP43 (1:300; Abcam). On the second day, 
sections were rinsed three times in 0.01 M PBS and incubat-
ed for 40 minutes at 37°C with secondary antibodies: horse-
radish peroxidase AffiniPure goat anti-rabbit IgG (1:500; 
EARTHOX, San Francisco, CA, USA). The peroxidase 
reaction was performed using diaminobenzidine (Boster, 
Wuhan, China) for 2–8 minutes. Color change was observed 
under a microscope (BX-51; Olympus, Tokyo, Japan). Sec-
tions were dehydrated and mounted in neutral resin after 
counterstaining with hematoxylin. Hippocampal sections 
were examined under a microscope.

Imaging analysis
Brain sections were examined and photographed under a 
microscope. Brains from four mice were chosen from each 
group. The total number of cells from six coronal sections 
per hippocampus, spanning −1.8 to −3.2 mm posterior to 
bregma, were used as the sample volume for cell counting. 
Four high-power (400×) fields were taken of the hippocam-
pal dentate gyrus from each section. Image Pro-Plus 6.0 
software (Media Cybernetics, Rockville, MD, US) was used 
to count immunopositive cells and measure optical density.

Western blot assay 
Hippocampi of four mice from each group were homoge-
nized in phenylmethyl sulfonylfluoride radioimmune pre-
cipitation assay lysis buffer and centrifuged for 15 minutes at 
4°C. Supernatant protein was removed and the concentration 
determined using the bicinchoninic acid Protein Assay Kit 
(Beyotime, Shanghai, China). Protein samples were separat-
ed by 15% sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis under the same conditions, and transferred onto 
polyvinylidene fluoride membranes at 300 mA for 2 hours. 
Membranes were blocked with 5% nonfat milk for 1 hour at 
room temperature, and then incubated at 4°C overnight with 
primary antibodies: rabbit polyclonal anti-DCX (1:600; Ab-
cam), rabbit monoclonal anti-GAP-43 (1:300; Abcam), and 
rabbit monoclonal anti-BDNF (1:250; Abcam). On the sec-

ond day, membranes were rinsed four times with Tris-buff-
ered saline with Tween, and incubated for 1 hour at room 
temperature with secondary antibodies: horseradish peroxi-
dase AffiniPure goat-anti rabbit IgG (1:10,000; EARTHOX). 
Membranes were washed four times with Tris-buffered saline 
with Tween and detected by enhanced chemiluminescence 
(super ECL Assay Kit, EARTHOX). Blots were incubated 
with β-tubulin (1:1,000; Millipore, Billerica, MA, USA) as a 
loading control. All western blot analyses were made in trip-
licate. The optical density of each labeled band was measured 
using Quantity One software (Bio-Rad, CA, USA). 

Statistical analysis
All experimental data were presented as the mean ± SD and 
analyzed by SPSS 17.0 software (SPSS, Chicago, IL, USA). 
Differences between groups were compared by one-way 
analysis of variance followed by Dunnett’s post hoc test. P < 
0.05 was considered statistically significant.

Results
EGb effect on motor function in mice exposed to ACR 
The toxic effect of ACR was assessed in mice by hind limb 
splay distance. Pathological changes appeared in the hind 
limbs of mice treated with ACR. Hind limb splay distance 
significantly increased in the ACR group compared with 
the control group (P < 0.05; Table 1). Corroboratively, foot 
extension distance significantly decreased in the 30 mg/kg 
EGb group compared with the ACR group (P < 0.05; Table 1). 
Foot extension distance also decreased in the 60 mg/kg and 
120 mg/kg EGb groups. Moreover, significant differences 
were found in both groups compared with the ACR group (P 
< 0.01; Table 1). 

Gait score significantly increased in mice of the ACR 
group (3.75 ± 0.46) compared with the control group (P < 
0.01; Table 1). Altogether, these results suggest that mice in 
the ACR group exhibit a severe gait abnormality. However, 
in the EGb therapeutic groups, this abnormal gait showed a 
marked improvement, indicated by an visibly decreased gait 
score. Mice in the EGb groups showed considerably lower 
gait scores compared with the ACR group. Statistical analy-
sis showed that all EGb groups were significantly decreased 
compared with the ACR group (P < 0.01; Table 1).

The open-field test was used to examine the effect of EGb 
on locomotor ability in mice treated with ACR. For numbers 

Table 1 Effect of different EGb doses on abnormal gait in mice treated with ACR

Control group ACR group

EGb (mg/kg)

30 60 120

Hind limb foot splay (cm) 3.57±0.41 4.41±0.88* 3.38±0.85# 3.25±0.22*## 3.15±0.50*##

Gait score 1.00±0.00   3.75±0.46** 1.50±0.53**## 1.38±0.51*## 1.25±0.46##

Numbers of going through grid (number/5 minutes) 263.33±35.16 90.33±22.01** 151.33±31.01**# 173.33±44.38*# 124.33±25.54**

Numbers of standing (number/5 minutes) 30.33±6.36 3.33±1.53** 5.63±3.52** 17.23±6.60*# 5.67±1.15**

Data are expressed as mean ± SD (n = 8, one-way analysis of variance followed by Dunnett’s post hoc test). *P < 0.05, **P < 0.01, vs. control group; #P < 
0.05, ##P < 0.01, vs. ACR group. Control group: Did not undergo any procedure; ACR group: administrated saline in the morning and 20 mg/kg/d ACR 
by gavage; 30, 60, and 120 mg/kg EGb groups: administrated 30, 60, and 120 mg/kg/d EGb in the morning and 20 mg/kg/d ACR in the afternoon 
for four weeks by gavage. EGb: extract of Ginkgo biloba; ACR: acrylamide. 
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Figure 1 EGb effect on DCX and GAP-43 immunoreactivity in the hippocampus of mice treated with ACR. 
Light microscopic detection of hippocampal DCX (A and C, brown, × 400) and GAP-43 (B and D, brown, × 400) -immunoreactive cells by immu-
nohistochemistry in different groups.  (A1, B1) Control group; (A2, B2) ACR group; (A3, B3) 30 mg/kg EGb group; (A4, B4) 60 mg/kg EGb group; 
and (A5, B5) 120 mg/kg EGb group. Histograms in C and D show statistical analysis on numbers/mm2 of DCX- and GAP-43-immunoreactive cells 
in the hippocampus of the ACR and 30, 60, and 120 mg/kg EGb groups. Data are expressed as the mean ± SD (n = 8, one-way analysis of variance 
followed by Dunnett’s post hoc test). *P < 0.05, **P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. ACR group. Control group: Did not undergo 
any procedure; ACR group: administrated saline in the morning and 20 mg/kg/d ACR by gavage; 30, 60, and 120 mg/kg EGb groups: administrated 
30, 60, and 120 mg/kg/d EGb in the morning and 20 mg/kg/d ACR in the afternoon by gavage for 4 weeks. EGb: Extract of Ginkgo biloba; ACR: 
acrylamide; DCX: doublecortin; GAP-43: growth associated protein-43. 

Figure 2 EGb effect on protein expression of DCX, BDNF, and GAP-43 in mice treated with ACR. 
(A) Protein blots of DCX, BDNF, and GAP-43. Histograms were plotted based on comparison of relative optical density for expression of DCX 
(B), BDNF (C), and GAP-43 (D) proteins in the ACR and 30, 60, and 120 mg/kg EGb groups. Data are expressed as the mean ± SD (n = 8, one-
way analysis of variance followed by Dunnett’s post hoc test). *P < 0.05, **P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. ACR group. Control 
group: Did not undergo any procedure; ACR group: administrated saline in the morning and 20 mg/kg/d ACR by gavage; 30, 60, and 120 mg/kg 
EGb group: administrated 30, 60, and 120 mg/kg/d EGb in the morning and 20 mg/kg/d ACR in the afternoon by gavage for four weeks. EGb: Ex-
tract of Ginkgo biloba; ACR: acrylamide; DCX: doublecortin; BDNF: brain-derived neurotrophic factor; GAP-43: growth associated protein-43.

8

6

4

2

0

1.5

1.0

0.5

0

0.5

0.4

0.3

0.2

0.1

0

Control    ACR         30          60         120

Control    ACR         30          60         120

Control    ACR         30          60         120 Control    ACR         30          60         120

EGb (mg/kg)

DCX

BDNF

45 kDa

28 kDa

43 kDa

50 kDa

GAP-43

β-Tublin

EGb (mg/kg)

EGb (mg/kg) EGb (mg/kg)

R
el

at
iv

e 
pr

ot
ei

n 
ex

pr
es

si
on

 o
f D

C
X

R
el

at
iv

e 
pr

ot
ei

n 
ex

pr
es

si
on

 o
f B

D
N

F

R
el

at
iv

e 
pr

ot
ei

n 
ex

pr
es

si
on

 o
f G

A
P

-4
3

 A    B   

 C    D   

*

* **

#

#

#
#

##

## ##

8

6

4

2

0

5

4

3

2

1

0
Control    ACR         30          60         120 Control    ACR         30          60         120

EGb (mg/kg) EGb (mg/kg)

D
C

X
-im

m
un

or
ea

ct
iv

e 
ce

lls
 (n

/m
m

2 )

G
A

P
-4

3-
im

m
un

or
ea

ct
iv

e 
ce

lls
 (n

/m
m

2 )

 A1   

 C    D   

 A2    A3    A4    A5   

 B1    B2    B3    B4    B5   

*

**

#

#
#

#

##

##



1291

Huang et al. / Neural Regeneration Research. 2017;12(8):1287-1293.

of grid crossing, significant differences were observed (P < 
0.01; Table 1) between control and ACR groups. Specifically, 
the 30 mg/kg and 60 mg/kg EGb groups showed significant 
increases (P < 0.05; Table 1) compared with the ACR group. 
However, there was no difference between the 120 mg/kg 
EGb group and ACR group (P > 0.05; Table 1). For frequen-
cy of rearing, the number was significantly less in the ACR 
group (P < 0.01; Table 1) compared with the control group. 
Accordingly, there was a significant difference between the 
60 mg/kg EGb group and ACR group (P < 0.05; Table 1).

EGb effect on DCX and GAP-43 immunoreactivities
EGb administration increased DCX immunoreactivity in 
the hippocampus of mice. DCX-immunoreactive cells were 
mainly distributed in the subgranular layer of the dentate gy-
rus of the mouse hippocampus. DCX is a neuronal precursor 
marker, which can be used to study neuronal proliferation, 
migration, and differentiation (Sánchez-Farías et al., 2015). 
Hence, we determined if EGb has beneficial effects on DCX 
immunoreactivity. DCX immunoreactivity decreased in the 
ACR group. DCX-immunoreactive cells were round or oval. 
Synaptic morphological and structural changes were found 
in the mouse hippocampus. Terminal branches were swol-
len and the number of synapses decreased. However, after 4 
weeks of EGb administration, DCX immunoreactivity nearly 
returned to normal levels. Synapses maintained good mor-
phology, with promotion of neurite outgrowth and increased 
synapse number in DCX-immunoreactive cells (Figure 1A). 
Quantitative analysis showed a significantly decreased num-
ber of DCX-immunoreactive cells in the ACR group com-
pared with the control group (P < 0.05; Figure 1C). After 4 
weeks of EGb administration, ACR and EGb significantly 
increased DCX immunoreactivity (P < 0.05; Figure 1C). 
Therefore, EGb supplementation may be useful against neu-
ronal damage induced by ACR. 

EGb administration increased GAP-43 immunoreactiv-
ity in the hippocampus. GAP-43 is a specific phosphoric 
acid protein that is highly expressed in active brain regions. 
During neural development, GAP-43 plays an important 
role in synaptogenesis, as well as in synaptic connections 
between nerve cells (Li et al., 2002). As a crucial molecule 
for neuronal growth, GAP-43 has a significant effect on neu-
ronal development (Phatak et al., 2015). We found that ACR 
administration decreased GAP-43 immunoreactivity in the 
hippocampus in the ACR group compared with the control 
group. However, GAP-43 immunoreactivity increased at 
different concentrations of EGb administrated (Figure 1D). 
Quantitative analyses revealed significant differences in ACR 
mice compared with control mice (P < 0.01; Figure 1D). In 
addition, there were significant differences between the 30 
mg/kg and 60 mg/kg EGb groups, and ACR group (P < 0.05, 
Figure 1D). Additionally, there were significant differences 
between the 120 mg/kg EGb group and ACR group (P < 0.01; 
Figure 1D). 

Western blot assay for DCX, BDNF, and GAP-43 protein 
expression in the hippocampus
BDNF plays a crucial role in neuronal differentiation, 

growth, and development. Lack of central BDNF interferes 
with neuronal differentiation in the hippocampus of adult 
mice (Schmitz et al., 2014). Consistent with previous results, 
ACR treatment reduced protein expression of DCX, BDNF, 
and GAP-43 (Figure 2). However, in the 30, 60, and 120 
mg/kg EGb groups, protein expression increased to differing 
levels. Quantitative analyses showed that DCX, BDNF, and 
GAP-43 showed significant differences between the ACR 
group and control group (P < 0.05; Figure 2B–D). In con-
trast, DCX protein expression increased in the 120 mg/kg 
EGb group compared with the ACR group (P < 0.05; Figure 
2B). A more significant increase was observed in the 60 
mg/kg EGb group compared with the ACR group (P < 0.01; 
Figure 2B). Similarly, there was a significant difference 
in BDNF protein expression between the 30 mg/kg EGb 
group and ACR group (P < 0.05; Figure 2C), with more 
marked differences between the 60 and 120 mg/kg EGb 
groups and ACR group (both P < 0.01; Figure 2C). GAP-
43 protein expression was significantly higher in the 60 
and 120 mg/kg EGb groups compared with the ACR group 
(P < 0.05; Figure 2D).

Discussion
ACR is a highly hydrophilic chemical that shows medium 
toxicity to nerves, and which can damage the nervous sys-
tem via many routes. Previous studies have shown that ACR 
produces similar neurotoxicity at low and high doses, with 
low doses only requiring longer exposure (Erkekoglu et 
al., 2014). Furthermore, symptoms of peripheral and cen-
tral nervous system damage appear in ACR poisoned mice 
(Pennisi et al., 2013; Mehri et al., 2015). ACR can lead to 
pathological lesions and remodeling in nerve terminals with 
the presence of distal axonal swellings and degeneration 
(LoPachin et al., 2015). Symptoms of ACR-mouse neuro-
toxicity include severe gait abnormalities. In the present 
study, ACR-treated mice showed symptoms of paralyzed 
hind limbs, which could not support their body weight, and 
decreased movement capacity. We proposed that ACR might 
destroy the central nervous system through inhibition of sig-
nal transmission between synapses, or alternatively, changes 
in function of the efferent system. At present, there are no 
specific drugs to relieve ACR toxicity, therefore many studies 
have focused on the active ingredients in herbal plants. EGb 
is a traditional Chinese medicine that contains flavonoids 
and other active components with important medical prop-
erties. EGb shows a protective effect against cerebral isch-
emia injury, neuroplasticity, and neurodegenerative diseases 
(Müller et al., 2012; Zhang et al., 2012, 2017). Thus, we used 
EGb to relieve ACR poisoning.

To investigate the effect of ACR poisoning on movement 
disorders, and in turn the therapeutic effect of EGb, we per-
formed gait analysis and the open-field test. We found that 
ACR-treated mice presented with tremors during walking 
and weakness or paralysis in posterior limbs, consistent 
with a previous study (DeGrandchamp et al., 1990). We also 
observed that particular neurotoxicity symptoms were pro-
duced in a certain way when ACR enters the body, such as 
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behavioral changes and abnormal gait. Nevertheless, not 
all our experimental findings agree with this assumption. 
For example, in the open-field test, administration of 120 
mg/kg EGb had no effect on number of grid crossings, 
while 30 mg/kg and 120 mg/kg EGb had no effect on fre-
quency of rearing. These results suggest that the therapeutic 
effect of EGb has a strict concentration range. We will ad-
dress the most effective concentration of EGb for a therapeu-
tic effect in future experiments. 

DCX is associated with the normal brain development 
processes of neuronal cell birth and migration (Rao et al., 
2004; Reiner et al., 2013; Yoo et at., 2016). BDNF plays an 
important role in prevention of neurobiological changes and 
neuronal protection (Garraway et al., 2016; Gonzalez et al., 
2016; Shrivastava et al., 2016; Cheah et al., 2017). GAP-43 
is essential for promoting denervation-induced sprouting, 
maintaining normal climbing fiber structure, and remodel-
ing axon terminals (Wang et al., 2001; Erkekoglu et al., 2014; 
Hou and Kang, 2016). We investigated the mechanism of 
ACR neurotoxicity by analyzing structural changes in the 
hippocampus. We found decreased DCX, BDNF, and GAP-
43 expression in the hippocampus of ACR-treated mice. 
These results are consistent with other studies (Ogawa et al., 
2012; Song et al., 2013), and suggest that neuronal regen-
eration is blocked by ACR administration. Altogether, this 
indicates that the brain is particularly vulnerable to the neu-
rotoxic effects of ACR, which are associated with behavioral 
changes in mice. Encouragingly, we found increased DCX 
expression in the hippocampus in all three EGb-treated 
groups, as well as increased BDNF and GAP-43 expression 
levels. Thus, inhibition of neuronal regeneration is associ-
ated with decreased BDNF and GAP-43 levels in the mouse 
hippocampus, while EGb caused an increase in BDNF and 
GAP-43 expression, which promotes neural growth.

DCX is a microtubule-associated protein expressed by 
neuronal precursor cells, and is associated with neuronal 
regeneration (Ryu et al., 2016). Nerve injury and neurotox-
icity prevent DCX expression (Ko et al., 1999). However, 
nerve injury can cause increased DCX expression (Ma et 
al., 2015). Therefore, it is likely that different protection 
mechanisms deal with distinct types of damage. Some inju-
ries stimulate the brain’s repair system and others influence 
neurotrophic factors or neuronal survival. Hence, treatment 
measures should be selected according to different damage 
mechanisms. Our results show that DCX expression can be 
reduced by ACR administration. Simultaneously, BDNF and 
GAP-43 expression are decreased, which means that neu-
rogenesis is blocked in the mouse hippocampus. However, 
EGb administration reversed the damage induced by ACR. 
These observations confirm that EGb has a protective effect 
by promoting neuronal regeneration.

It is well known that EGb is particularly effective on pro-
moting brain blood circulation and antioxidants (Rojas et al., 
2012). Here, the mechanisms of how ACR injures the central 
nervous system, and how EGb influences DCX, BDNF, and 
GAP-43 expression are not clear. Thus, we still do not know 
how EGb influences ACR neurotoxicity, whether ACR is 

cleared in brain blood, or EGb only increases DCX, BDNF, 
and GAP-43 expression, or both. This needs further research 
to address these issues. Nonetheless, our findings demon-
strate that there is a strong relationship between increased 
DCX, BDNF, and GAP-43 expression and protection afford-
ed by EGb. 

In conclusion, EGb administration improves ACR-induced 
neuronal damage, mainly by promoting neuronal regener-
ation, which is shown by increased DCX, BDNF, and GAP-
43 expression. Thus, EGb has a therapeutic effect on ACR 
neurotoxicity. EGb may promote neuronal regeneration in 
the hippocampus of ACR-treated mice, and can be exploited 
to improve ACR damage, although its mechanism still needs 
further investigation. 
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