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Abstract
Background: A lot of high-throughput studies produce protein-protein interaction networks
(PPINs) with many errors and missing information. Even for genome-wide approaches, there is
often a low overlap between PPINs produced by different studies. Second-level neighbors
separated by two protein-protein interactions (PPIs) were previously used for predicting protein
function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs,
and complement these with structural domain-domain interactions (SDDIs) representing binding
evidence on proteins, forming PPI-SDDI-PPI triangles.

Results: We find low overlap between PPINs, SDDIs and known complexes, all well below 10%.
We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich
Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher
overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The
biological interpretation for triangles is that a SDDI causes two proteins to be observed with
common interaction partners in high-throughput experiments. The relatively few SDDIs
overlapping with PPINs are part of highly connected SDDI components, and are more likely to be
detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by
reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not
obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form
triangles, such as PubMed co-occurrences or threading information, results in a similar ability to
find protein complexes.

Conclusion: Given high-error PPINs with missing information, triangles of mixed datatypes are a
promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding
complexes. Structural SDDIs partially explain the high functional similarity of second-level
neighbors in PPINs. We estimate that relatively little structural information would be sufficient for
finding complexes involving most of the proteins and interactions in a typical PPIN.
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Background
Protein-protein interaction networks (PPINs) derived
from high-throughput studies are known to have many
errors [1,2]. Data from different studies usually exhibit
low overlap; for instance, two large-scale human interac-
tome screens [3,4] share only six interactions, while each
has several thousand interactions [5-7]. In some PPINs,
more than 50% of reported interactions are estimated to
be false positives (FPs) or wrong interactions [8,9]. More-
over, current PPINs are incomplete with an estimated false
negative (missing interactions) rate approaching 90%
[10-12]. False positives often result when the matrix
model, which fully connects the pray and bait proteins, is
used for interpreting results of affinity purification fol-
lowed by mass spectrometry experiments [13].

Not all interactions occur at the same place and time in all
cellular states. This implies that representing a PPIN as a
set of binary protein-protein interactions (PPIs) is often
incomplete [14]. Instead, one wants to restructure protein
complexes in PPINs, which are modular units of physical
interactions occurring at the same time and cellular com-
ponent [15,16]. For predicting complexes one wants to
include complementary data, such as structural domain-
domain interactions (SDDIs) representing binding evi-
dence on proteins [17-22]. At the same time, one wants to
leave out of predicted complexes the false positives [22-
26].

It was proposed that triangle network motifs represent the
basic building blocks of PPINs [27-32]. In this paper, we
complement PPIs with SDDIs to form PPI-SDDI-PPI trian-
gle network motifs. Triangle network motifs integrate high-
throughput PPINs with complementary knowledge, such
as structural data, to account for missing edges [25,33-38].
Our proposed paradigm of PPI-SDDI-PPI triangle network
motifs integrate:

• PPINs from high-throughput experimental studies,
which have considerable coverage but also errors, and

• SDDIs that are known to physically mediate PPIs
and may be missing in PPINs [39-49].

Figure 1

PPIs (black) and structural SDDIs (red)Figure 1
PPIs (black) and structural SDDIs (red). (a) Theme of 
three PPI-SDDI-PPI triangles sharing the same SDDI. The red 
SDDI edge is involved in all three triangles. Proteins D1 and 
D2 may interact physically with C in the cytoskeleton, or R in 
the ribosome, or N in the nucleus. The transitive module 
hypothesis suggests two proteins such as D1 and D2 that 
share many common interaction partners are more likely to 
interact than two proteins that share few common interac-
tion partners [9]. Some PPIs have no common Gene Ontol-
ogy annotation, hinting to false positives.(b),(c) Biological 
examples of myosin-actin involvement in multiple processes/
locations. Their representation as PPI-SDDI-PPI triangle net-
work motifs and themes, as found in integrations of PPINs 
with SDDIs. (b) Myosin in actin cytoskeleton organization 
and formation. Myosin mediates actin remodelling and vesic-
ular transport. (c) Actin and nuclear myosin I (NMI) are 
required for transcription by RNA polymerases (Pols) I, II, III 
in the eukaryotic cell nucleus. Actin is directly associated 
with Pol I, regardless of whether Pol I is engaged in transcrip-
tion, and NMI interacts with transcription initiation factor 
TIFIA. TIFIA is phosphorylated. Pol I is then recruited to the 
DNA promoter through interaction with the phosphorylated 
TIFIA, which brings actin and NMI into close proximity with 
each other. Actin, but not NMI, remains associated with Pol I 
during transcription elongation [121-124].
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A theme encompasses several PPI-SDDI-PPI triangle net-
work motifs with one SDDI edge as their common organ-
izational principle. Figure 1a shows a theme consisting of
three PPI-SDDI-PPI triangle network motifs that share
one common SDDI. To demonstrate the biological rele-
vance of triangle network motifs and themes, Figures 1b,c
show myosin-actin functions in different cellular loca-
tions: cytoskeleton organization and nuclear transcrip-
tion.

The purpose of PPI-SDDI-PPI triangles is to support
revealing biological insights, such as finding complexes of
physical interactions occurring at the same time and loca-
tion [50-55]. Besides complementing PPINs with SDDIs,
we additionally form triangle network motifs with other
complementary datatypes (CD), such as threading results,
and PubMed protein co-occurrence data, thus expanding
to other PPI-CD-PPI triangles [56-59]. The complex pre-
diction with other CD is comparable to SDDIs; this sup-
ports that the improved complex prediction results are
due to a physical relation between proteins and not just
coincidence [40,60,61].

A rationale for triangles and themes is the observation that
proteins with common interaction partners are likely to
have common functions [62-65]. Second-level neighbors
in PPINs are functionally similar, and are useful for func-
tional prediction [66-70]. By this "Guilt by Association of
Common Interaction Partners" approach, themes can be
tied to specific biological phenomena and processes [71-
73]. For instance, it was shown for the E. coli and C. elegans
transcriptional network that subgraphs matching two
types of transcriptional regulatory circuit triangle – feed-
forward and bi-fan – overlap with one another and form
large clusters [28,74-76]. Another rationale for triangles
and themes is that PPINs are "small-world" implying
neighborhood clustering, where neighbors of a given
node tend to interact with one another; this results in tri-
angle network motifs of three-node interconnection pat-
terns [77,78]. This led to the "transitive module"
hypothesis that is used for predicting missing interactions,
as shown in Figure 1a, where proteins with many com-
mon interaction partners are likely to interact with one
another forming triangles [9].

Extracting triangle network motifs and themes from high-
throughput interaction networks
Figure 2 shows the process of extracting triangle network
motifs and themes. Given a high-throughput PPIN, we
first extract second-level (indirect) neighbors connected
by a pair of interactions. Then, we complement them with
structural domain-domain interactions (SDDIs), to form
PPI-SDDI-PPI triangle network motifs. In the case where a
SDDI is involved in more than one triangle, we refer to it
as a theme. For evaluation, we examine if the triangles'

and themes' overlaps with known MIPS complexes is
higher than that of the second-level (indirect) neighbors.

This paper is organized as follows. Next, we present
related work on finding errors in PPINs via motifs of inter-
connection patterns. Then, we present the results on pre-
diction of true positive complexes using triangles. We
illustrate this with an example of myosin-actin related
activities. Next, we explain the biological basis for trian-
gles: a model for SDDIs that explains the functional simi-
larity of second-level neighbors in PPINs. Finally, we
conclude the paper with an outlook of using other data
sources to complement interactomes.

Related work
Several papers aim to find errors in PPINs by completing
them for missing edges or finding false positives [79-83].
Our approach differs from all of these approaches, since
we integrate structural information with PPINs derived
from high-throughput studies to find triangle network
motifs and themes, which can be used to predict com-
plexes. Moreover, we offer the biological basis for the abil-
ity of this structural-PPI hybrid method to predict
complexes.

A first category of work involves collecting ensembles of
data, such as structural or literature information. Alber et
al. (2007) [84] collect diverse high-quality data, and ana-
lyse the ensemble to produce a detailed architectural map
of the nuclear pore complex. This work translates the data
into spatial restraints, instead of using network motifs as
in our approach. Ramirez et al. (2007) [22] assessed the
quality and value of publicly available human protein
network data, by comparing predicted datasets, high-
throughput results from yeast two-hybrid screens, and lit-
erature-curated protein-protein interactions. This analysis
revealed major differences between datasets. Rhodes et al.
(2005) [85] demonstrate that a probabilistic analysis inte-
grating model organism protein interactome data, struc-
tural domain data, genome-wide gene expression data
and functional annotation data predicts nearly 40,000
interactions in humans. Bader et al. (2004) [19] perform
an integrated analysis of proteomics data with data from
genetics and gene expression. Combining temporal gene
expression clustering with proteomics network topology
provides an automated method for extracting biological
subnetworks. Huang et al. (2004) [86] present POINT, the
"prediction of interactome database". POINT integrates
several publicly accessible databases, with emphasis
placed on mouse, fruit fly, worm and yeast protein-pro-
tein interactions datasets from the Database of Interacting
Proteins (DIP), followed by converting them into a pre-
dicted human interactome. POINT also incorporates cor-
related mRNA expression clusters obtained from cell cycle
microarray databases and subcellular localization from
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The overall workflow of our processFigure 2
The overall workflow of our process. First, we extract the second-level neighbors from a PPIN. Combining these edges 
with a complementary data source allows finding triangles and theme motifs. Then, we compare them with known complexes 
such as MIPS.
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Gene Ontology to pinpoint the likelihood of biological
relevance of each predicted set of interacting proteins.
Patil et al. (2005) [87] find that a combination of
sequence, structure and annotation information is a good
predictor of true interactions in large and noisy interac-
tomes.

Another large body of work attempted to predict the miss-
ing interactions or assign confidences to large noisy inter-
actomes. Some of these use network topology and others
use information on SDDIs, while others use Bayesian net-
works or probabilistic measures. Yu et al. (2006) [68]
describe predicting missing PPIs, using only the PPIN
topology as observed by a high-throughput experiment.
The method searches the interactome for defective
cliques, nearly complete complexes of pairwise interacting
proteins, and predicts the interactions that complete
them. Chen et al. (2008) [88] propose using triplets of
observed PPIs to predict and validate interactions. Yeast is
the only data set large enough to warrant application of
this method. Singhal et al. (2007) [23] present
DomainGA, a computational approach that uses informa-
tion about SDDIs to predict PPIs. This method achieves
good prediction for the positive and negative PPIs in
yeast. Pitre et al. (2006) [89] present PIPE, a system for
predicting PPIs for any target pair of the yeast proteins
from their primary structure. Chen et al. (2005) [24]
introduce a novel measure called IRAP, "interaction relia-
bility by alternative path", for assessing the reliability of
PPIs based on the underlying PPIN topology. IRAP meas-
ure is effective for discovering reliable PPIs in large noisy
PPIN datasets. Ng et al. (2003) [90] propose an integrative
approach that applies SDDIs to predict and validate PPIs.
Chen et al. (2005) [24] introduce a SDDI-based random
forest of decision trees to infer PPIs. This method is capa-
ble of exploring all possible SDDIs and making predic-
tions based on all the protein domains. Wu et al. (2006)
[91] propose using the similarity between two Gene
Ontology (GO) terms for reconstructing and predicting a
yeast PPIN based solely on knowledge of functional asso-
ciations between the GO annotations.

We have also experimented with using GO similarities in
our approach. Chinnasamy et al. (2006) [92] present a
probabilistic-based naive Bayesian network to predict
PPIs using protein sequence information. This framework
provides a confidence level for every predicted PPI. Jansen
et al. (2003) [93] also developed an approach using Baye-
sian networks to predict PPIs in yeast. Han et al. (2004)
[94] propose PreSPI, a domain combination based PPI
prediction approach. PPIs are interpreted as the result of
groups of multiple SDDIs. This approach also provides an
interacting probability for PPIs. Recently, Vidal and col-
leagues [95] used reference sets to calculate the probabil-
ity that a newly identified PPI is a true biophysical

interaction, and assigned confidence scores to all PPIs in
interactome networks. Yu et al. (2009) [96] assign confi-
dence scores that reflect the reliability of each PPI, by
using multiple independent sets of training positives to
reduce the bias inherent in using a single training set.

Another body of work has performed large scale analysis
of networks, statistical network motif analysis or error
estimation, which is of interest for our work as well. Jin et
al. (2007) [32] use network motifs to solve the open ques-
tion about 'party hubs' and 'date hubs' which was raised
by previous studies. At the level of network motifs instead
of individual proteins, they found two types of hubs,
motif party hubs and motif date hubs, whose network
motifs display distinct characteristics on biological func-
tions. Zhang et al. (2005) [28] observed that different
types of networks exhibit different triangle profiles, pro-
viding a means for network classification. They extended
the network triangle concept to an integrated network of
many interaction types. Mathivanan et al. (2006) [97]
analyzed the major publically available databases that
contain literature curated PPI information for human pro-
teins, finding a large difference in their content. This
included BIND, DIP, HPRD, IntAct, MINT, MIPS, PDZ-
Base and Reactome databases [98]. Chiang et al. (2007)
[1] assess the error statistics in all published large-scale
datasets for S. cerevisiae. Vidal and colleagues [99,100]
used an empirically-based approach to assess the quality
and coverage of existing human interactomes. They found
that high-throughput human interactomes are more pre-
cise than literature-curated PPIs from publications.

Several papers used clustering or graph theoretic methods
to predict complexes in PPINs. Bader et al. (2003)
detected complexes as highly connected subgraphs [101].
Andreopoulos et al. (2007) detected complexes as groups
of proteins with similar interaction partners [62]. Cakmak
et al. (2007) [102] go beyond complexes to discover
unknown pathways in organisms, using Gene Ontology
(GO)-based functionalities of enzymes involved in meta-
bolic pathways.

Results and discussion
In our experiments, we employ three high-throughput
PPINs, derived by affinity purification followed by mass
spectrometry (AP/MS). Krogan06 is based on [103].
Gavin06MATRIX and Gavin06SPOKE are matrix and
spoke model interpretations, respectively, of [104]. The
matrix model of interpreting pull-down studies connects
all prey proteins that were pulled out with a bait, while the
spoke model connects only the preys with the bait. We
focus on yeast PPINs, since yeast is a well-annotated
organism with Gene Ontology terms. The Krogan06 and
Gavin06SPOKE yeast PPINs have low overlap. To evaluate
the success of our approach, we employ known complexes
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from the MIPS database [105,106]. We evaluate whether
known MIPS complexes could be predicted using triangles
and theme motifs, consisting of PPINs combined with
complementary data such as SDDIs. For illustratory pur-
poses, we use three manually curated networks of myosin-
actin involvement in different cellular processes [see Addi-
tional files 1, 2, 3, and 4]

Low overlaps of PPINs with complexes
The biological motivation for our work includes low over-
lap of high-throughput PPINs with known complexes. We
compared the overlaps of two high-throughput PPINs, the
Gavin06MATRIX and Krogan06 networks, with the MIPS

protein complexes dataset. Table 1 shows full results for
the overlaps of Gavin06MATRIX and Krogan06 networks
to the MIPS complexes. For protein pairs that appear in
both PPINs and complexes, we evaluated the number of
overlapping edges PPIN ∩ complexes. We found Gavin06 ∩
MIPS has 305 overlapping edges, Krogan06 ∩ MIPS has
359 overlapping edges.

Gavin06MATRIX and Krogan06 had thousands of edges
connecting these same proteins, which were not in MIPS.
Figure 3 illustrates the overlaps of Gavin06MATRIX and
Krogan06 to manually curated myosin-actin networks;
the high-throughput PPINs detected disconnected com-

Table 1: Overlap of high-throughput PPI networks (Gavin06MATRIX and Krogan06) with the MIPS network (without triangles).

Network Edge overlap with MIPSa Edges in network but not in MIPSb

Gavin06MATRIX 305 3989
Krogan06 359 2225

Symbols below denote E, edges; |·|, set cardinality; ∩, intersection; -, set difference.
a |Enetwork ∩ EMIPS|
b |Enetwork - EMIPS|
Only those edges were considered where both proteins were present in the PPI network and in MIPS.

Overlaps of our manually curated myosin-actin networks with high-throughput Gavin06MATRIX (top) and Krogan06 (bottom) PPINsFigure 3
Overlaps of our manually curated myosin-actin networks with high-throughput Gavin06MATRIX (top) and 
Krogan06 (bottom) PPINs. The overlap is low. Each row shows the myosin-actin involvement in: a. Cytoskeleton organisa-
tion, b. Nucleus transcription, and c. mRNA translocation. Red is both PPINs and myosin-actin; blue is just myosin-actin; green 
is just PPIN.
Page 6 of 20
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ponents and individual modules, but not the entire con-
nected myosin-actin processes.

PPI-SDDI-PPI triangles predict complexes
Given the many false negatives (missing interactions) and
false positives (wrong interactions) in protein-protein
interaction networks (PPINs) derived from high-through-
put experiments, we evaluated the success of triangle net-
work motifs and themes in finding known MIPS
complexes. With structural domain-domain interactions
(SDDIs) representing binding evidence on proteins, PPI-
SDDI-PPI triangle network motifs are likely to reflect true
complexes. To evaluate this, we examined the overlap of
triangles from Gavin06 and Krogan06 with MIPS com-

plexes. For the common proteins we evaluated the inter-
actions that are true positives (overlap) or false positives
(no overlap) with MIPS.

The first row of table 2 shows the low overlap between
PPIN second-level neighbors (without complementary
data) and MIPS complexes; where all three proteins in an
indirect relation occur in MIPS complexes (denominator),
rarely both PPIs occur (numerator). Despite the observed
functional similarity of second-level neighbors in PPINs
[62-70], second-level neighbors have overlap with MIPS
lower than 1%. The other rows show that integrating com-
plementary datatypes (CD) in a PPIN to form PPI-CD-PPI
triangle network motifs results in a higher overlap with

Table 2: Success of triangle network motifs and themes in predicting known MIPS complexes.

Complementary datatype Gavin06MATRIX Gavin06SPOKE Krogan06

None a 936/166241 = 0.6% 516/10791 = 4.8% 914/33124 = 2.8%
SDDI b 254/2832 = 9.0% 143/521 = 27.4% 254/1182 = 21.5%
Literature co-occurrence c 710/5592 = 12.7% 416/1340 = 31% 502/1876 = 26.8%
Domain co-occurrence d 2004/21876 = 9.2% 892/4268 = 20.9% 1250/4776 = 26.2%

Union of all above 2477/26468 = 9.4% 1446/6129 = 23.6% 1647/6489 = 25.4%

a Second-level indirect relations only
b Structural domain-domain interaction
c PubMed literature co-occurrence of protein mentions
d Pfam domain co-occurrence in IntAct PPIs
Fractions denote True Positive PPIs/All triangle PPIs for triangles or second-level neighbors where all three proteins occur in MIPS complexes. Triangle 
success in MIPS complex prediction is shown as the triangle edges that overlap with complexes. We consistently notice a lower success rate for 
Gavin06MATRIX than Gavin06SPOKE, which is explained by the higher number of errors in Gavin06MATRIX.

Table 3: PPIN triangle success in MIPS complex prediction.

CD = structural SDDI, protein-SCOP domain assignments > confidence threshold

Confid.thres. Gavin06MATRIX Gavin06SPOKE Krogan06

0 254/2832 143/521 254/1182
40 160/2053 91/367 168/939
50 70/1192 42/215 99/679
60 44/786 29/152 60/467
70 38/704 23/146 55/418
80 36/639 21/130 40/337
90 35/601 21/124 39/306

CD = threading, protein-SCOP domain assignments > confidence threshold

Confid.thres. Gavin06MATRIX Gavin06SPOKE Krogan06

medium 0/24 0/1 1/12
high 56/296 30/69 68/112
certain 205/4290 123/416 219/1099

Fractions denote True Positive PPIs /All triangle PPIs. In triangles where the complementary data (CD) are SDDI structural information or threading, 
SCOP domain families first need to be assigned to proteins based on confidence. The confidences for protein-SCOP domain assignments are 
derived, for structural SDDIs based on BLAST sequence alignment similarity, and for threading they are provided by the GTD threading database. 
Considering different confidence thresholds for protein-SCOP domain assignments affects the MIPS complex prediction success rate.
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Table 4: Individual ability of various datatypes to predict MIPS complexes.

Network Number of 
nodes a

Number of 
edges b

Node overlap 
with MIPS c

MIPS nodes not 
in network d

Network nodes 
not in MIPS e

Nodes in edge 
overlap f

Edges in edge 
overlap g

MIPS nodes not in 
edge overlap h

MIPS edges not 
in network i

Network edges 
not in MIPS j

Gavin06MATRIX 2551 93881 584 791 1967 554 305 821 247 3989

Gavin06SPOKE 2551 22452 584 791 1967 535 232 840 320 950

Krogan06 3670 14291 1031 344 2639 994 359 381 928 2225

SDDI k 1551 42222 515 860 1036 500 182 875 207 7375

Threading 4019 95935 1037 338 2982 1017 219 358 1129 11938

Literature co-
occurrence l

96379 170638 1056 319 95323 1235 491 140 1299 2129

Domain co-
occurrence m

3560 158704 1042 333 2518 1038 287 337 940 6064

All above 
combined

100443 504242 1351 24 99092 1358 979 17 1048 24156

Symbols below denote N, nodes; E, edges; |·|, set cardinality; ∩, intersection; -, set difference; ×, cross product
a |Nnetwork|
b |Enetwork|
c |NMIPS ∩ Nnetwork|
d |NMIPS - Nnetwork|
e |Nnetwork - NMIPS|
f |Nodes in EMIPS ∩ Enetwork|
g |EMIPS ∩ Enetwork|
h |NMIPS - Nodes in EMIPS ∩ Enetwork|
i |(EMIPS ∩ (Nnetwork × Nnetwork)) - Enetwork|
j |(Enetwork ∩ (NMIPS × NMIPS)) - EMIPS|
k Structural domain-domain interactions
l PubMed literature co-occurrences of protein mentions
m Pfam domain co-occurrences in IntAct PPIs
This table shows the MIPS overlaps with other network datasets (shown in the first column), indicating the ability of the various networks to predict MIPS. The MIPS network has number of protein nodes 
|NMIPS| = 1375 and number of edges |EMIPS| = 2099.
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Triangle network motifs and themes from Gavin06MATRIXFigure 4
Triangle network motifs and themes from Gavin06MATRIX. Red lines are SDDIs and black lines are PPIs; the SDDIs 
did not overlap with PPIs from Gavin06MATRIX. The blue boxes show the high number of interaction partners for various 
proteins in Gavin06MATRIX, supporting that integration with SDDIs can help to find protein complexes. The light gray lines 
show additional protein connections in the dataset, which resulted in triangles. Each subfigure shows a subnetwork of the orig-
inal dataset with a specific story. The subfigures represent: a. Myosin-actin interactions, mostly SDDIs, which occur in various 
processes and locations. The blue structure shown is the Sec7 domain (SCOP code a.118.3.1), which was assigned to GEA1. 
The red structure is the G protein domain (SCOP code c.37.1.8), which was assigned to RSR1 and ARF2. The PDB file that dis-
plays these domains as interacting, and from which the image was generated, has the code 1RE0. b. These SDDIs are extended 
with additional PPIs from Gavin06MATRIX, showing specific myosin-actin involvement in cytoskeleton organisation, c. nucleus 
transcription, and d. mRNA translocation.
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MIPS complexes. In Table 2 the second row shows the
PPI-SDDI-PPI triangle overlap with MIPS complexes as a
true positive rate as high as 31%; the other triangle inter-
actions are likely false positives. For Gavin06MATRIX the
triangle true positive rate is lower than for Krogan06, since
Gavin06MATRIX reflects the matrix model interpretation,
which resulted in 93, 881 edges including many false pos-
itives. Gavin06MATRIX has many errors when overlayed
with the MIPS complex dataset. The success rate is higher
for Gavin06SPOKE, since there are fewer false positives
than Gavin06MATRIX.

Table 3 shows that with varying confidence thresholds for
SDDIs, the true positive rate changes. This shows that it is
preferable to use the highest-confidence SDDIs. It also
shows the significance of using SDDIs for complex predic-
tion.

Triangles with other complementary data
We added to PPINs other complementary datatypes,
besides structural SDDIs, to form triangles: PubMed liter-
ature co-occurrences of protein mentions, and Interpro
Pfam domain co-occurrences in PPIs [107] (see methods
section). Table 2 rows 3–4 show the MIPS complex over-
laps with triangle network motifs using other comple-
mentary datatypes to form triangles. The triangles with
other complementary datatypes exhibit little difference in
their overlap with MIPS complexes. In the last row 5
where all datatypes are combined, the overlap with MIPS
increases. Triangles that include SDDIs or other comple-
mentary data to match second-level neighbors have
higher overlap with MIPS complexes than second-level
neighbors without any complementary data. These results
point to the direction of complementing the PPINs with
other datatypes as triangle network motifs, rather than
simple edges, for improved prediction of MIPS com-
plexes.

Table 4 shows the individual ability of various datatypes
to predict the MIPS complexes, showing the edge overlap
without forming triangles. As shown under the column
"Edges in edge overlap", all datatypes have moderate edge
overlap with MIPS. The individual datatypes have little
difference in their ability to predict MIPS.

Example: reconstructing distinct myosin-actin 
biopathways via themes of PPI-SDDI-PPI triangle network 
motifs
Type I myosin motor proteins (MYO3 or MYO5) have dis-
tinct but overlapping functions in multiple cellular proc-
esses and locations [108]. Figure 4 shows examples of
myosin involvements as PPI-SDDI-PPI triangle network
motifs and themes derived from Gavin06MATRIX [104].
Figure 4a shows several core myosin-actin SDDIs that are
common to different processes and locations. The SDDIs

were validated with the structural interaction network
given in [109]. For instance, Myosin type I (MYO3) has
SDDIs with the ARP2/3 complex, which plays a major role
in the regulation of the actin cytoskeleton, but also plays
a role in actin-filament formation during transcription in
the nucleus [108]. Figures 4b,c,d extend these core
myosin-actin SDDIs with PPIs that are specific to different
processes and locations: cytoskeletal actin organization,
nuclear transcription, and asymmetric mRNA localization
[110].

MYO3 is one of two type I myosins, which utilize the
cytoskeleton for movement, moving along microfila-
ments through interaction with actin. Deletion of MYO3
causes severe defects in growth and actin cytoskeleton
organization [111]. Besides myosin, SHE4 is also impor-
tant for the organization of the actin cytoskeleton. SHE4
is of special interest because it is involved in all of organ-
ization of the actin cytoskeleton, asymmetric mRNA local-
ization, and endocytosis [112]. SHE4 has similar Gene
Ontology annotations as myosin.

Next, we explore whether triangle network motifs and
themes in Gavin06MATRIX can help reconstruct distinct
myosin-actin pathways for cellular localization of bio-
molecules.

Cytoskeletal actin organization
Figure 4b illustrates the relevant triangle network motifs.
Yeast cells organize their actin cytoskeleton in a highly
polarized manner during vegetative growth. Myosin type
I is known to play an important role in moving mem-
branes against actin and membrane-actin interactions.
Organization of the actin cytoskeleton requires SHE4.
SHE4 is a protein containing a domain that binds to
myosin motor domains to regulate myosin function
[112].

RSR1, BNI1, GEA1 play a role in cytoskeletal actin locali-
zation [113,114]. The correct localization of RSR1 has
been shown to be critical for actin cytoskeleton organiza-
tion. Localization of the Ras-like GTPase RSR1 and its reg-
ulators are required for selection of a specific growth site
[115]. Regulators direct the correct localization of RSR1 in
various organisms. In Figure 4b, while RSR1 interacts with
both MYO3 and GEA1, it also interacts with parts of their
intersecting neighborhoods. Both GO term similarity and
the literature suggest MYO3/GEA1 control of RSR1. The
GEA1 RAS superfamily G proteins (small GTPase) has
observed SDDIs with both ARF2 and RSR1. GEA1 is a
Guanine nucleotide exchange factor for ADP ribosylation
factors (ARFs), involved in vesicular transport between the
Golgi and ER, Golgi organization, and actin cytoskeleton
organization; similar to but not functionally redundant
with GEA2. An active Sec7 region in GEA1, which is the
Page 10 of 20
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probable catalytic domain for GEF activity, is important
for actin cytoskeleton activity. The mechanism by which
GEA1 and GEA2 stimulate actin cable formation in a
BNI1-dependent manner remains to be determined
[116,117].

What is of special interest in this example is the intersec-
tion of the neighborhoods of RSR1, ARF2, BNI1 compris-
ing EF1A-RL3, which were previously observed to have a
functional significance for F-actin localization [118]. In
addition, BNI1 and GEA1 appear to be connected to the
ARF2 complex via PYR1 intermediary. Thus, RSR1, GEA1
and BNI1 appear to be linked to one another via EF1A-
RL3-PYR1, which are also common partners of ARF2. This
suggests a role of EF1A-RL3-PYR1 as the regulators for the
RSR1-GEA1-BNI1 complex localization in yeast cytoskele-
tal actin localization [119].

Overexpression of GEA1 or GEA2 was observed to bypass
the requirement for profilin in actin cable formation
[116]. Profilin is an actin-binding protein involved in
cytoskeleton dynamics. Profilin enhances actin growth as
follows: Profilin binds to monomeric actin on the plus
end of the filament inducing a shape change of the actin
subunit, allowing the G-actin to replace the ADP to which
it is bound by ATP and form F-actin. The F-actin then
forms a heterodimer which can bind to the plus end of an
actin filament. In the process of binding to the actin mon-
omers it also stereochemically inhibits addition to the
minus end [120]. On the other hand, in a separate study
it was observed that loss of the activity to bind EF1A-RL3
displayed an abnormal phenotype represented by dissoci-
ated localizations of F-actin, which were co-localized in
wild-type cells [118]. This observation links the two stud-
ies, suggesting that the significance of EF1A-RL3 for F-
actin localization may help explain why overexpression of
GEA1 or GEA2 bypassed the requirement for profilin in
actin cable formation.

Nuclear actin and myosin I required for RNA polymerase I, II, III 
transcription
Figure 4c illustrates the relevant triangle network motifs.
The presence of actin and nuclear myosin type I (NMI) in
the nucleus suggests a role for these motor proteins in
nuclear functions. Both actin and nuclear myosin I (NMI)
are associated with ribosomal RNA genes (rDNA) and are
required for RNA polymerase I, II, III (Pol I, II, III) tran-
scription [121-124]. Actin and NMI are present in nucleoli
as a complex physically associated with RNA polymerase
I. This association appears to have a functional relevance
in rDNA transcription. Altogether an actin-myosin com-
plex is present on actively transcribing ribosomal genes
and, therefore, suggests a direct involvement of actin-
myosin in regulating transcription [125].

TBA1/RAP1 play a role in nucleus transciption from RNA
polymerase II promoter. TBA1/RAP1 is a DNA-binding
protein involved in either activation or repression of tran-
scription, depending on binding site context; it also binds
telomere sequences and plays a role in telomeric position
effect (silencing) and telomere structure. In Figure 4c,
RAP1 is associated with MYO3/SHE4, which transport
RAP1 and actin in the nucleus and the cytoplasm. While
RAP1 has PPIs to RSR1, BNI1 and ARF2, literature con-
firms this is an indirect relationship and instead that
Myosin type I translocates RAP1 in both the nucleus and
cytoplasm (precisely the myosin type I GO annotation)
[126,127]. The indirect interaction of RAP1 with RSR1,
BNI1 and ARF2 points to the involvement of actin in tran-
sciption.

mRNA localization: The SHE protein complex is required for 
cytoplasmic transport of mRNAs in yeast
Figure 4d illustrates the relevant triangle network motifs.
A key feature of eukaryotic cells is their organization into
distinct compartments, each with a distinct set of proteins.
It has been shown that the sorting of many cytoplasmic
proteins involves mRNA localization. Cytoplasmic locali-
zation starts in the nucleus where a first set of RNA-bind-
ing factors recognize localized mRNAs [124,128]. RNA-
protein complexes that are exported to the cytoplasm
associate with additional factors, such as molecular motor
proteins. Such motors are required to transport their cargo
along cytoskeletal filaments to the target site where the
mRNA is unloaded and anchored. The SHE protein com-
plex facilitates cytoplasmic localization of ASH1 and
other localized mRNAs [129].

ARF2, EF1A, IMDH3 play a role in mRNA localization for
translation. ARF2 is an ADP-ribosylation factor involved
in regulation of coated formation vesicles in intracellular
trafficking within the Golgi [130]. In Figure 4d, ARF2 is
likely to interact with subsets of the main cluster; particu-
larly we notice an association of ARF2 with both EF1A and
IMDH3:

• EF1A: Translation elongation factors are responsible
for two main processes during protein synthesis on the
ribosome [131]. EF1A (or EF-Tu) is responsible for the
selection and binding of the cognate aminoacyl-tRNA
to the A-site (acceptor site) of the ribosome. EF2 (or
EF-G) is responsible for the translocation of the pepti-
dyl-tRNA from the A-site to the P-site (peptidyl-tRNA
site) of the ribosome, thereby freeing the A-site for the
next aminoacyl-tRNA to bind. Elongation factors are
responsible for achieving accuracy of translation and
both EF1A and EF2 are remarkably conserved
throughout evolution (InterPro annotation).
Page 11 of 20
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• IMDH3: Involved in the amino acid biosynthesis
pathway.

Biological interpretation of PPI-SDDI-PPI triangles: A 
structural basis for functional similarity of second-level 
neighbors in PPINs
In this section we propose an explanation for the observa-
tion that SDDIs can complement high-error PPINs to
improve the finding of complexes. A structural SDDI
between two proteins implies that they are likely to be
observed with common groups of interaction partners in
an experimental study. This especially holds in affinity
purification experiments followed by mass spectrometry
(AP/MS), since the bait-prey technologies used will cause
structurally connected proteins to be detected as prey for
similar bait protein(s). Of course this only holds for pro-
teins that are detectable as prey [132]. A SDDI is the likely
reason why two proteins are observed with common

friends in PPINs from high-throughput AP/MS studies.
Then, the SDDI's interaction partners are likely to be
observed in different cellular components; Figure 5 shows
that many of the SDDI-induced triangles have no com-
mon Gene Ontology annotation. Then SDDIs are a partial
explanation for the functional similarity of second-level
neighbors in PPINs. We propose this couple-with-common-
friends model as the biological basis for finding complexes
via PPI-SDDI-PPI triangle network motifs and themes;
subsequently, SDDI edges in triangles can be replaced by
other complementary datatypes.

Gene Ontology (GO) similarity in triangle PPI edges
Figure 6 shows an example of a theme from Krogan06, the
GO similarities involved, and the evaluated correlations
of GO similarities for the PPIs and SDDIs. Table 5 shows
that in Gavin06MATRIX and Krogan06 triangle network
motifs, SDDIs have significantly higher GO similarities

The x axis is the number of triangle network motifs in themes of Gavin06MATRIXFigure 5
The x axis is the number of triangle network motifs in themes of Gavin06MATRIX. The y axis is the percentage of 
those triangles that have non-zero Gene Ontology similarity in their PPI edges. In many triangle network motifs both PPI edges 
have Gene Ontology annotation similarity equal to zero for the proteins involved.
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than protein-protein interactions (PPIs). Evaluation of
GO similarities in the PPI-SDDI-PPI triangles in
Gavin06MATRIX and Krogan06 shows that the PPIs in a
triangle represent similar functions and process/location
involvements [133]. Table 5 shows a correlation analysis
confirming that the PPI-PPI GO similarities (function,
process, location) are higher correlated than the SDDI-PPI
GO similarities. The correlation of GO similarities of PPI

edges in a triangle implies that the SDDI brings together
two PPIs involved in similar functions and processes/loca-
tions. Figure 5 shows that some triangles' PPIs have GO
similarity of zero, hinting at errors. This may also show
some promise for finding errors based on GO similarity.

Why are few SDDIs detected in high-throughput PPINs experiments?
Table 6 shows that few SDDIs overlap with PPINs, even
when considering the highest-confidence SDDIs only. Fig-
ure 7 shows a visualization of the SDDIs overlapping with
PPINs. The visualization shows that most of these SDDIs
are part of highly connected components. To assess whether
the size of the connected SDDI components that overlap
with PPINs is significant, we compared the connected
SDDI components to randomly selected SDDIs from the
SCOPPI database [134]. We performed 1,000 trials of ran-
domly picking 100 SDDIs from SCOPPI, and we exam-
ined how many of these SDDIs were connected each time;
on average only 8 SDDIs were connected, a size much
smaller than the connected SDDI components that are
shown in Figure 7. These results highlight the significance
of complementing PPINs via PPI-SDDI-PPI triangles.

Conclusion
How many SDDIs are needed to predict all complexes for 
an entire PPIN?
Figure 8 is an attempt to predict how many structural
SDDIs would be needed for triangles to predict the true
positives involving all proteins in a typical PPIN, such as
Krogan06. We took all second-level indirect neighbors
found in the Krogan06 interactome and, where there was
no PPI, added a "hypothetical" SDDI to form PPI-SDDI-
PPI triangles. For each SDDI we calculated its theme size,
i.e., how many pairs of PPIs the SDDI connected into tri-
angles. Then, we took the theme sizes in decreasing order

Table 5: Gavin06MATRIX PPI-SDDI-PPI triangles and Krogan06 PPI-SDDI-PPI triangles: Gene Ontology (GO) similarities and 
correlations.

Correlation
Gavin06MATRIX

Correlation
Krogan06

GO Functional similarity

Average over protein pairs in SDDI edges 0.48 0.37
Average over protein pairs in PPI edges 0.18 and 0.18 0.35 and 0.36
PPI-PPI similarity correlation coefficient 0.88 0.76
SDDI-PPI similarity correlation coefficient 0.16 and 0.18 0.58 and 0.59

GO Process/Location similarity

Average over protein pairs in SDDI edges 0.71 0.67
Average over protein pairs in PPI edges 0.28 and 0.27 0.67 and 0.67
PPI-PPI similarity correlation coefficient 0.97 0.6
SDDI-PPI similarity correlation coefficient 0.08 and 0.09 0.46 and 0.45

Often, the two PPIs of a triangle have close GO functional/process/location similarity.

An example of a theme from Krogan06 and the Gene Ontol-ogy similarities involvedFigure 6
An example of a theme from Krogan06 and the Gene 
Ontology similarities involved. As shown, computing the 
correlation coefficients between PPI-PPI vs. DDI-PPI edges 
gives different correlation values.
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from 100 to 1, as shown by blue bars in Figure 8. For each
theme size, we indicate on the x-axis how many SDDIs
had that theme size, and the red bar shows how many
newly encountered proteins were included for that theme
size. As the x-axis shows, one could start by finding true
positives for the few SDDIs with the largest themes, pro-
gressively moving to the many SDDIs with the smallest
themes. Somewhere in the middle of the x-axis, one
would have predicted the true positives for about half of
the proteins in the PPIN. However, one would still need
to use many SDDIs with the smallest themes, to find all
true positives in the Krogan06 PPIN. Therefore, although
about half of the true positives could be found with no
more than 100 SDDIs, one would need significantly more
SDDIs to find all true positives involving all proteins.

SDDIs and the PubMed co-occurrences relate to two dif-
ferent aspects. SDDIs are based on experimental results
that are likely to imply a structural interaction. In the case
of SDDIs, we can use all information found by mapping
structural domains to proteins using BLAST sequence sim-
ilarity and still get good prediction accuracy. On the other
hand, for literature we have to apply a strict filtering, keep-

ing only the top 1% of protein co-occurrences appearing
in PubMed as complementary data. We observed that the
literature co-occurrences appear to give slightly better
results than using SDDIs as complementary data. The
main limitation of SDDIs at present is the sparsity of
known structural interactions. Since PubMed is expected
to grow faster than structural knowledge, using literature
co-occurrences might give even better prediction accuracy
in the future, as long as a strict cut-off is set.

Conclusion
With the amount of PPINs from high-throughput experi-
ments, structural data and literature-based interactions on
the rise, we studied their combined ability to predict
known complexes. We found a low overlap of PPINs
derived from high-throughput studies with known com-
plexes, as well as low overlap with structural domain-
domain interactions.

We proposed PPI-SDDI-PPI triangle network motifs as a
model for analysing PPINs and predicting complexes. PPI-
SDDI-PPI triangles have higher overlap with MIPS com-
plexes than random second-level neighbors, indicating

Table 6: Few SDDIs overlap with PPINs derived from high-throughput experiments and MIPS complexes.

SDDI Gavin06-MATRIX Gavin06- SPOKE Krogan06

SDDIs total with both proteins in MIPS and PPIN SCOPPI a 71 71 238
Threading b 3404 3404 9615

SDDIs supported by PPIs in both MIPS and PPIN SCOPPI 14 9 25
Threading 61 56 99

SDDIs supported by PPIs in MIPS but not PPIN SCOPPI 0 5 5
Threading 20 25 107

SDDIs supported by PPIs in PPIN but not MIPS SCOPPI 37 30 48
Threading 144 72 131

SDDIs supported by PPIs in neither PPIN nor MIPS SCOPPI 20 27 160
Threading 3179 3251 9278

a protein-SCOP > 90 conf.
b protein-SCOP CERTAIN conf.

SDDIs that were detected as PPIs in PPINs: (a) Krogan06, (b) Gavin06SPOKE, (c) Gavin06MATRIXFigure 7
SDDIs that were detected as PPIs in PPINs: (a) Krogan06, (b) Gavin06SPOKE, (c) Gavin06MATRIX. Only one 
more SDDI was detected in Gavin06MATRIX than in Gavin06SPOKE, pointing to the high number of FPs in the matrix model.
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that structural SDDIs are useful for complementing PPINs
in triangles to create a more complete picture of protein
cellular involvement. We complemented PPINs with sev-
eral other datatypes besides SDDIs to create triangle and
theme motifs, resulting in similar overlaps with com-
plexes. Themes of PPI-SDDI-PPI triangles helped us to
reconstruct complexes in myosin-actin processes that
were not detected by PPINs. Our approach is useful for
finding true positives in PPINs, as structural knowledge
on proteins increases in the future.

SDDIs partially explain the high functional similarity of
second-level neighbors in PPINs. A SDDI may cause a
structurally connected pair of proteins to be observed with
common interaction partners in high-throughput affinity
purification experiments followed by mass spectrometry
(AP/MS) that use bait-prey technologies. We examined
why some SDDIs are detected in PPINs, and we found that
SDDIs detected by PPINs are part of highly connected
components/complexes, therefore they are more likely to
be detected by experimental studies.

Methods
In this section we give an overview of the methods used in
this study. Figure 2 illustrates the overall workflow of the
process.

PPI-CD-PPI triangle network motifs
PPI-CD-PPI triangles contain three proteins connected by
two PPIs and an edge of a complementary datatype (CD),
such as a structural SDDI; in this case, we refer to PPI-
SDDI-PPI triangles, as Figure 1a shows. Our method can
be viewed as finding bicliques in a PPIN, and then con-
necting second level neighbors via complementary datatype
edges. For extracting second level neighbors in large net-
works we used the HIERDENC algorithm, described in
[62,135]. Figure 1b and 1c show that PPI-CD-PPI triangles
imply that an experiment detected PPIs A ↔ B and B ↔ C,
while a CD edge A ↔ C exists, such as a structural SDDI.
In a PPIN second level neighbors (a pair of PPIs) may be
involved across cellular space and time in different proc-
esses and locations. Connecting second level neighbors to
each other via CD edges gives confidence that the second
level neighbors interact at the same cellular space and

Starting from the few SDDIs (x-axis) with the largest theme sizes (blue), and progressively moving to the many SDDIs with the smallest theme sizesFigure 8
Starting from the few SDDIs (x-axis) with the largest theme sizes (blue), and progressively moving to the 
many SDDIs with the smallest theme sizes. This allows one to eventually find the complexes for all proteins in the PPIN 
(red).
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time [136-138]. Triangles likely represent a protein com-
plex [139,140].

Let σSDDI denote the number of PPI-SDDI-PPI triangles a
structural SDDI is involved in. A structural SDDI may be
involved in σ ≥ 1 triangles, which we refer to as a theme. A
theme is given by the σ common interaction partners
(intersecting neighborhoods) of a SDDI's protein pair,
and some PPIs in a theme may be False Positives.

Complementary datatypes
As structural information to complement PPINs, we used
the SCOPPI database, which contains SDDIs observed in
known protein complex structures [134]. To assign
domains, we BLASTed the sequences of all proteins in the
"Saccharomyces Genome Database" (which includes
yeast PPINs) against all domains sequences of SCOPPI.
We considered only BLAST hits with an E-value ≤ 0.01 and
a sequence identity percentage s ≥ 30%. In addition, we
required 75% of the domain to appear in the protein.

Other complementary datatypes (CD) edges we used
included The Genomic Threading Database (GTD) [141].
GTD contains yeast protein assignments to SCOP domain
structural annotations and interacting structures. An
assigned Confidence value gives an indication of the
strength of a hit, ranging from "certain" to "guess", which
is based on a P-value measure of significance.

The next CD dataset we used was PubMed literature co-
occurrences of protein mentions. To extract these, we used
the GoPubMed protein mention extraction algorithm to
assign proteins to all PubMed documents [142]. Then, we
used a version of the Blosum co-occurrence score to find
if two proteins p1 and p2 co-occur frequently in PubMed

documents: . A cutoff of 10 was

strict enough to filter out the majority of protein co-occur-
rences in PubMed, resulting in a network of 170,638
edges. The last CD dataset we used was Interpro Pfam
domain co-occurrences in PPIs. For this, we took all IntAct
yeast PPIs and assigned to the proteins Pfam domains
from InterPro [107]. Then, we used the Blosum co-occur-
rence score to find which Pfam domains co-occur fre-
quently in the IntAct yeast PPIs. Based on the most co-
occurring Pfam domains, we build a network over the
yeast PPIs.

High-throughput PPINs and known complexes
We use two yeast PPINs that we denote as Gavin06 [104]
and Krogan06 [103]. For Gavin06 we used both the
matrix and the spoke model to interpret it, which we refer
to as Gavin06MATRIX and Gavin06SPOKE throughout

the text. Gavin06MATRIX had 93,881 edges, while
Gavin06SPOKE had 22,452 edges. Krogan06 had 14,292
edges, consisting of the binary interactions as provided by
the publication. For validation, we used MIPS complexes
[105,106]. For MIPS we used the SPOKE model for the
interpretation of complexes, since otherwise the result
would be biased to give a high overlap with the PPINs [see
Additional files 5, 6]. The MIPS complexes had 2,099
edges.

Moreover, for our illustrations we manually curated three
network examples from the literature, representing
myosin-actin involvement in cytoskeleton organisation,
nucleus transcription, and mRNA translocation. Develop-
ing these networks involved reading papers from the bio-
medical literature and recording any interaction(s)
described in the articles.

Gene Ontology similarity
It is likely that a PPI is not physical, but a false positive,
which may be detected by a GO similarity of zero. PPIs
with a GO similarity of zero hint at false positives. For cal-
culating the similarity based on Gene Ontology terms, we
searched for GO terms in the current abstract and com-
pared them to the set of GO terms assigned to each gene
candidate. For each potential tuple taken from the two
sets (text and gene annotation), we calculated a distance
of the terms in the ontology tree. These distances yielded
a similarity measure for two terms, even if they did not
belong to the same sub-branch or were immediate par-
ents/children of each other. The distance took into
account the shortest path via the lowest common ances-
tors, as well as the depth of this lowest common ancestor
in the overall hierarchy (comparable to Schlicker et al.,
2006 [133]). The distances for the closest terms from each
set then defined a similarity between the gene and the text
[142].

Correlation
We computed the correlation coefficient between A and B,
where A and B are matrices or vectors of the same size. A
matrix entry contains a measure of Gene Ontology simi-
larity (0 – 1) for a protein pair involved in a PPI or SDDI.
We used the matlab corr2 correlation coefficient:

HIERDENC supplementary material
We implemented the HIERDENC online database, which
contains all of the datasets we used. HIERDENC helps a
user to visualize and find true positives in PPINs via trian-
gles of high-throughput PPINs and complementary data.
http://www.hierdenc.com/ or http://projects.biotec.tu-
dresden.de/HIERDENC/
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