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Abstract

Modern optical imaging experiments not only measure single-cell and single-molecule

dynamics with high precision, but they can also perturb the cellular environment in myriad

controlled and novel settings. Techniques, such as single-molecule fluorescence in-situ

hybridization, microfluidics, and optogenetics, have opened the door to a large number of

potential experiments, which begs the question of how to choose the best possible experi-

ment. The Fisher information matrix (FIM) estimates how well potential experiments will

constrain model parameters and can be used to design optimal experiments. Here, we intro-

duce the finite state projection (FSP) based FIM, which uses the formalism of the chemical

master equation to derive and compute the FIM. The FSP-FIM makes no assumptions

about the distribution shapes of single-cell data, and it does not require precise measure-

ments of higher order moments of such distributions. We validate the FSP-FIM against well-

known Fisher information results for the simple case of constitutive gene expression. We

then use numerical simulations to demonstrate the use of the FSP-FIM to optimize the

timing of single-cell experiments with more complex, non-Gaussian fluctuations. We vali-

date optimal simulated experiments determined using the FSP-FIM with Monte-Carlo

approaches and contrast these to experiment designs chosen by traditional analyses that

assume Gaussian fluctuations or use the central limit theorem. By systematically designing

experiments to use all of the measurable fluctuations, our method enables a key step to

improve co-design of experiments and quantitative models.

Author summary

A main objective of quantitative modeling is to predict the behaviors of complex systems

under varying conditions. In a biological context, stochastic fluctuations in expression lev-

els among isogenic cell populations have required modeling efforts to incorporate and

even rely upon stochasticity. At the same time, new experimental variables such as chemi-

cal induction and optogenetic control have created vast opportunities to probe and
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understand gene expression, even at single-molecule and single-cell precision. With many

possible measurements or perturbations to choose from, researchers require sophisticated

approaches to choose which experiment to perform next. In this work, we provide a new

tool, the finite state projection based Fisher information matrix (FSP-FIM), which consid-

ers all cell-to-cell fluctuations measured in modern data sets, and can design optimal

experiments under these conditions. Unlike previous approaches, the FSP-FIM does not

make any assumptions about the shape of the distribution being measured. This new tool

will allow experimentalists to optimally perturb systems to learn as much as possible

about single-cell processes with a minimum of experimental cost or effort.

Introduction

Recent labeling and imaging technologies have greatly increased capabilities to measure bio-

logical phenomena at the single-cell and single-molecule levels. When conducted under differ-

ent conditions, single-cell experiments can probe processes for different spatial or temporal

resolutions, for different population sizes, under different stimuli, at different times during a

response, and for myriad other controllable or observable factors [1–7]. As these experiments

have become more capable to precisely perturb or measure different biological species, they

have also become more expensive, which imposes a limit on the number and type of experi-

ments that can be conducted in any given study. Clearly, not all experiment designs provide

the same information, and different experiments may be “optimal” to answer different ques-

tions about the system. However, the inherent diversity of modern experiments makes it diffi-

cult to intuit which experiments will be most informative and in which circumstances.

Computational tools for model-driven experiment design could help to select more informa-

tive experiments, provided that existing tools can be adapted to overcome the unique chal-

lenges presented by single-cell data.

One model-driven approach to optimal experiment design is to use the Fisher information
matrix (FIM), which describes the precision to which a model’s parameters can be estimated

for any particular experiment [8–13]. To improve estimates of model parameters, the FIM can

be used iteratively in a Bayesian framework by specifying maximally informative experimental

conditions, collecting data under these conditions, using new data to constrain parameters,

and using the newly constrained parameters to design the next round of experiments [9, 12–

15]. The formalism of the FIM for experiment design has been used to great effect in engineer-

ing disciplines, such as radar, astrophysics, and optics [16–18]. In principle, similar analyses

could introduce a natural feedback in the co-design of single-cell experiments and discrete sto-

chastic models, but for this to work, accurate analyses are needed to extract more meaning

from the data and to provide better predictions about how biological systems will behave

under new conditions.

Experimentally observed cell-to-cell variability has been well demonstrated to provide sub-

stantial quantitative insight to constrain and identify the mechanisms and parameters of gene

regulation models [1–6, 19–21]. Therefore, the FIM analysis for the optimal design of single-

cell experiments should explicitly consider such single-cell variability. Standard FIM analyses

assume continuous-valued observables with Gaussian-distributed measurement noise. How-

ever, in contrast to most classical engineering applications, the distributions of integer-valued

RNA or protein levels across an isogenic cell population can be highly complex and subject to

intrinsic and extrinsic variations, with nonlinear interactions that lead to multiple peaks and

long tails [2, 22–24]. Because the FIM is not computable for general discrete stochastic

The FSP-FIM approach to estimate information and optimize single-cell experiments
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processes with non-Gaussian distributions, computational biologists have applied various

approximations to estimate the FIM. A few recent biological studies use the Linear Noise

Approximation [25] to treat single-cell distributions as Gaussian, which allows for the use of

standard Fisher information analyses [8]. This approach, which we refer to as the LNA-FIM,

should be valid for large numbers of molecules, but it is unlikely to be accurate for systems

with high intrinsic noise corresponding to low gene, RNA, or protein counts. A different

approach to estimate the FIM uses the central limit theorem (CLT) to approximate the sample

mean and covariance to be jointly Gaussian and uses higher-order moments of the chemical

master equation to estimate the likelihood of these moments [9]. This approach, which we

refer to as the sample moments approach (SM-FIM), should be valid for large numbers of cells

as can be collected in high-throughput experimental approaches, such as flow cytometry.

However, when distributions have long asymmetric tails and sample sizes are limited, higher

moments become very difficult to estimate and can lead to surprising model estimation errors

[26]. Beyond these few Gaussian assumptions, there has been little work devoted to improve

the design of time-varying single-cell experiments for systems with arbitrary probability

distributions.

In this study, we introduce a formulation of the Fisher information for use with discrete sto-

chastic models and data sets containing intrinsic variability that is measurable with single-bio-

molecule resolution. Our approach utilizes the finite state projection (FSP) approach [27] to

solve the chemical master equation (CME) [25, 28], and compute the likelihood of single-cell

data given a discrete stochastic model [2, 21, 24]. The FSP solves for the probability distribu-

tion over discrete numbers of biomolecules to any arbitrary error tolerance. By utilizing the

full probability distributions, as opposed to finite order or approximate moments of these dis-

tributions, our approach makes no assumptions and works well for distributions with multiple

peaks or long tails.

In the next section, we introduce the FSP and derive the sensitivities of the FSP solution to

small perturbations in parameters. Next, we derive the likelihood function and its local sensi-

tivity for discrete stochastic models and discrete data. These allow us to formulate and com-

pute the FSP-FIM. Next, we use a combination of analytical results and numerical simulations

to verify the FSP-FIM for two common models of gene expression. Finally, we demonstrate

how the FSP-FIM can be applied to design nontrivial experiments for a simulated system with

nonlinear reaction rates.

Chemical master equation and finite state projection

Stochastic gene expression can be modeled as a discrete state, continuous time Markov pro-

cess, where different states xi ¼ ½Z1; Z2; . . . ; ZNs
�
T
i 2 X � ZNs

�0
represent the Ns species of inter-

est. In a biological context, the species η often correspond to gene configurations, RNA or

protein abundances. Transitions to state xi + ψν from xi occur with probabilities wν(xi, t)dt in

an infinitesimal time step of length dt, where wν and ψν are the propensity function and the

stoichiometric vector corresponding to reaction ν 2 {1, 2, . . ., Nr}. Using the propensity func-

tions and stoichiometry vectors, one can describe the evolution of probability mass for each xi

using the chemical master equation (CME, [25, 28]) given by:

d
dt

pðxi; tÞ ¼
XNr

n¼1

wnðxi � cn; tÞpðxi � cn; tÞ � wnðxi; tÞpðxi; tÞ½ �: ð1Þ

By enumerating all possible xi, one can define the probability mass vector as p = [p(x1;t),
p(x2;t), . . .]T and reformulate the CME in matrix form as d

dt pðtÞ ¼ ApðtÞ [27].

The FSP-FIM approach to estimate information and optimize single-cell experiments
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Many systems described by the CME are not closed, i.e. the vector p has infinite dimension.

In such cases, most states are extremely rare, and the sum of their corresponding probabilities

is negligible. Thus, a natural approximation for the CME is to separate it into two exhaustive

and disjoint sets, XJ and XJ0, with XJ being a finite set and XJ0 being a set of low probability

states. Defining pJ(t)� p(XJ; t), the CME can be reordered and written as:

d
dt

pJðtÞ

pJ0 ðtÞ

0

@

1

A ¼

AJJ AJJ0

AJ0J AJ0J0

0

@

1

A
pJðtÞ

pJ0 ðtÞ

0

@

1

A: ð2Þ

The finite state projection (FSP) approach [27], obtains an approximation of pJ(t) for finite

times by replacing the set of states XJ0(t) with an absorbing sink state whose probability mass is

g(t),

d
dt

pFSPðtÞ

gðtÞ

 !

¼

AJJ 0

� 1TAJJ 0

0

@

1

A
pFSPðtÞ

gðtÞ

 !

: ð3Þ

The FSP provides the exact total error of this approximation for all states in XJ and XJ0 as:

pJðtÞ

pJ0 ðtÞ

0

@

1

A �
pFSPðtÞ

0

 !�
�
�
�
�
�

�
�
�
�
�
�
1

¼ gðtÞ; ð4Þ

where the |.|1 denotes the absolute sum of the vector [24, 27]. The FSP solution is also guaran-

teed to be a lower bound on the true solution [24, 27],

pFSPðtÞ

0

 !

�

pJðtÞ

pJ0 ðtÞ

0

@

1

A for all t > 0: ð5Þ

For simplicity, we will hereafter refer to the approximated states pFSP(t) as p(t) and the corre-

sponding matrix AJJ as A. Next, we derive the likelihood function for FSP models and single-

cell data.

The FSP enables computation of the likelihood of single-cell data

A common task in single-cell analyses is to analyze snapshot measurements of independent

cell populations, such as those collected using single-molecule fluorescent in-situ hybridization

(smFISH) [22, 23]. For such measurements, cells are fixed in the process of quantifying their

RNA, and individual cells cannot be tracked over time. However, snapshots can be collected at

different points in time to quantify a population’s response to changing conditions [2, 29, 30].

For such experiments, we assume that measurements at all time points {tk} are independent.

The measured RNA counts for Ns different labeled species for each of Nc individual cells at

time t can be collected into the data matrix Dt � ½d1; d2; . . . ; dNc
�t 2 Z

Ns�Nc
�0

. We define L(D;θ)

as the likelihood that all measured data D ¼ fD1; . . . ;DNt
g come from a model parameterized

by θ = [θ1, θ2, . . ., θk].

The FSP-FIM approach to estimate information and optimize single-cell experiments
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For FSP models, the likelihood and its logarithm for Nc measured cells can be written

directly as:

LðD; θÞ ¼
YNt

k¼1

YNcðkÞ

i¼1

pðxi ¼ di; tk; θÞ; ð6Þ

log LðD; θÞ ¼
XNt

k¼1

XNcðkÞ

i¼1

logðpðxi ¼ di; tk; θÞÞ: ð7Þ

A common task in systems biology is to estimate parameters θ̂ that maximize the likelihood

that data could have come from a given model, and this form of the likelihood function has

been used multiple times to estimate parameters from single-cell data [2, 6, 21, 24, 31, 32]. In

addition to estimating parameters from data, the likelihood function can also be used to esti-

mate the sensitivity of parameter estimates to sampling errors in the experimental measure-

ments, which can in turn be used to design better experiments. In the following sections, we

will use this fact to derive the FIM for FSP models.

Derivation of the Fisher information for FSP Models

The FIM, which describes the amount of information that can be expected by performing a

particular experiment with Nc cells, is defined as

IðθÞ ¼ NcEfðrθ log pðX; θÞÞTðrθ log pðX; θÞÞg; ð8Þ

where the expectation is taken over p(X; θ), corresponding to the density from which future

(or hypothetical) data could be sampled. For FSP models, this density is the discrete distribu-

tion found by solving Eq 3. Eq 8 is positive semi-definite and is additive for collections of inde-

pendent observations [10]. The inverse of the FIM is known as the Cramèr-Rao bound (CRB),

which provides a useful lower bound on the variance for any unbiased estimator of model

parameters [11]. The notion of information stems from the fact that new experiments should

increase the FIM, corresponding to additional knowledge about θ and a tighter CRB. More

specifically, the well-known asymptotic normality of the maximum likelihood estimator

(MLE) states that as the number of measurements Nc increases, the MLE estimates will con-

verge in distribution to a multivariate normal probability density with a variance given by the

CRB,

ffiffiffiffiffi
Nc

p
ðθ̂ � θ�Þ

dist
�!N ð0; Iðθ�Þ� 1

Þ; ð9Þ

where θ̂ is the θ that maximizes Eq 6 and θ� are the “true” model parameters that produced the

observed data [10, 11]. Designing experiments to maximize a given metric of the FIM can be

expected to provide a more accurate estimate of θ, where different definitions of ‘accuracy’

(i.e., different vector norms for parameter errors) can be implemented through the choice of

different FIM metrics.
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To derive the FIM requires one must take the partial derivative of the log-likelihood (Eq 7)

with respect to the parameters θ,

rθlog pðX; θÞ ¼

1

p0

@p0

@y1

1

p0

@p0

@y2

� � �
1

p0

@p0

@yNp

1

p1

@p1

@y1

1

p1

@p1

@y2

� � �
1

p1

@p1

@yNp

..

. ..
.

� � � ..
.

1

pN

@pN

@y1

1

pN

@pN

@y2
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1

pN

@pN

@yNp

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: ð10Þ

The expressionrθ p(X; θ) is the sensitivity matrix, S, which has dimensions N × Nθ, where N
is the dimension of the CME or its FSP projection. As described in the Materials and Methods,

we derive an equation similar to that presented in [33] to define the time evolution of the sensi-

tivity for each state’s probability density, p(xl; θ), to each parameter θj. However, unlike previ-

ous analyses that rely on stochastic simulations and finite difference approaches, the FSP

enables direct approximation of the sensitivities. Using the sensitivity matrix, the entries of the

FIM can be computed as:

IðθÞij ¼ NcE
1

pðxl; θÞ

� �2

SliSlj

( )

: ð11Þ

Taking the expectation over all l on (1, N) yields the elements of the FIM:

IðθÞij ¼ Nc

XN

l¼1

1

pðxl; θÞ

� �2

SliSljpðxl; θÞ;

¼ Nc

XN

l¼1

1

pðxl; θÞ
SliSlj;

ð12Þ

which quantifies Fisher information for the model evaluated at a single time point. For

smFISH data, each time point is independent. If Nc(tk) cells are measured at each kth time

point, the FIM is summed, and the total information is computed as:

IðθÞij ¼
XNt

k¼1

NcðtkÞ
XN

l¼1

1

pðxl; tk; θÞ
SliðtkÞSljðtkÞ: ð13Þ

The Fisher information can be found using Eq 13 for any model for which the FSP (Eq 3)

can be solved. This formulation explicitly quantifies how the number of cells and number of

time points impact the information, and is easily extended to include other experiment design

aspects such as the interval of successive measurements or changes in applied inputs, as we will

demonstrate in the following sections. Because one is often interested in the relative sensitivity

of parameters rather than the absolute sensitivity, a logarithmic parameterization of the FIM

can easily be obtained from Eq 13 by multiplying by the corresponding entries of θ (see supple-

mental information for full details),

Iðlog θÞij ¼ yiyjIðθÞij: ð14Þ
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In the following sections, we will verify the FIM using several common models of gene

expression, and demonstrate experiment designs using these approaches.

Results

The FSP-FIM captures the exact information for constitutive gene

expression

To demonstrate and validate the FSP-FIM method, we begin with a simple birth and death

model for constitutive gene expression as shown in Fig 1. This model, which has been fit to

capture the variability for many housekeeping genes [1, 20], consists of two reactions, corre-

sponding to the constant transcription and first order decay of RNA,

R1 : gene!kr geneþ RNA

R2 : RNA!g ;:

The production and degradation parameters are defined as θ = [kr, γ].

Given an initial condition of zero RNA for this process, the population of RNA at any later

time is a random integer sampled from a Poisson distribution,

pðx; lÞ ¼
l

xe� l

x!
; ð15Þ

where λ is the time varying average population size,

lðt; kr; gÞ ¼
kr

g
½1 � expð� gtÞ�: ð16Þ

We have chosen the constitutive gene expression model to verify the FSP-FIM because the

exact solution for the Fisher information for Poisson fluctuations can be derived in terms of λ
as [10]:

IPoissonðlÞ ¼
1

l
: ð17Þ

For convenience, the derivation of Eq 17 is included in the supplementary text. Fig 1 shows the

exact value of Fisher information (orange) versus the mean expression level for the two param-

eters kr and γ. Fig 1 also shows that the FSP-FIM (blue) matches the exact solution for the

Fig 1. Fisher information for a model of birth and death. The Fisher information for the two model parameters kr (a) and γ (b)

for various values of the mean expression level, λ. The analytical form of the FIM for a Gaussian approximation and that computed

using Eq 37 (purple line) match to one another. The value computed using the FSP-FIM (blue) matches to the exact form of the

analytical Poisson distribution (orange dashed). As λ becomes large, all four approaches are consistent.

https://doi.org/10.1371/journal.pcbi.1006365.g001
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information on both parameters at all expression levels, which verifies the FSP-FIM for this

known analytical form.

Having demonstrated that the FSP-FIM matches to the exact solution, it is instructive to

compare how well the previous LNA-FIM and SM-FIM estimates match to the exact FIM

computation. For the Poisson distribution, the mean and variance are both equal to λ. Using

this fact, the FIM can be approximated using the LNA-FIM for normal distributions (see Eq

37 in the Materials and methods). This expression, which is derived in the supplementary text,

reduces to

IN ðl;lÞ ¼
1

l
þ

1

2l
2
; ð18Þ

when both the mean and variance are λ. As λ becomes large, the Poisson distribution becomes

well approximated by a normal distribution [11]. Eqs 17 and 18 show that for this limit of large

λ, the first term in Eq 18 dominates, and IN reduces to IPoisson, yielding nearly equivalent val-

ues for the expected information. However at low mean expression λ� 1, the strictly positive

Poisson and the symmetric Gaussian distributions are less similar, and the Gaussian approxi-

mation predicts more information than is actually possible given the exact Poisson distribu-

tion. These trends are shown in Fig 1, where the LNA-FIM approach only matches to the exact

solution at high expression levels (compare orange and purple lines). For this example, the

sample-moments based FIM (SM-FIM) is exact and matches to the analytical and FSP-FIM

solutions at all expression levels [9].

The FSP-FIM matches the simulated information for bursting gene

expression

Next, we consider a slightly more complicated model of bursting gene expression, in which a

single gene undergoes stochastic transitions between active and inactive states with rates kon

and koff. This switching model, which is depicted in Fig 2(a), has been studied in detail [20,

34–40], and it has been used to capture single-cell smFISH measurements in mammalian cells

[30, 37], yeast cells [2, 36], and bacterial cells [29]. When active, the gene transcribes RNA with

constant rate kr and these RNA degrade in a first order reaction with rate γ. The four reactions

of the system are:

R1 : goff
kon
�! gon ð19Þ

R2 : gon
koff
�! goff ð20Þ

R3 : gon!
kr gon þ RNA ð21Þ

R4 : RNA!
g
;: ð22Þ

For the examples below, we use the baseline parameters given by: kon = 0.05αmin−1, koff =

0.15αmin−1, kr = 5.0 min−1, and γ = 0.05 min−1. In particular, the mRNA degradation rate,

which sets the overall time-scale, was chosen to be representative of the average decay times

(approximately 20 minutes) for mRNA in yeast [41].

For the bursting gene expression model, rescaling the transition rates kon and koff by a com-

mon factor does not affect the mean expression level, because the fraction of time spent in the

The FSP-FIM approach to estimate information and optimize single-cell experiments
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active state remains unchanged. This fraction can be written

fon �
akon

akon þ akoff
¼

kon

kon þ koff
; ð23Þ

and is the same for any α> 0. For the parameters given above, the average expression at steady

state is given by kr fon/γ = 25. However, rescaling the transition rates does change the shape of

the distribution as shown in Fig 2(b)–2(d) [20]. When switching is slow, the gene stays in the

“on” and “off” states long enough to observe individual high and low peaks corresponding to

the “on” and “off” states, as in shown in Fig 2(b). However, for intermediate switching rates,

the gene does not spend enough time in the “off” state for bursts to decay or enough time in

the “on” state for large populations to accumulate (see Fig 2(c)). At fast switching rates the

“on” and “off” states come to a fast quasi-equilibrium, and the time-averaged system

approaches a Poisson process, where the effective production rate is kr fon. For the bursting

gene expression model, all moments of the distributions can be computed exactly from Eq 35

in the Materials and Methods section, even when the RNA distributions are highly non-Gauss-

ian [42].

Since the previous example has already verified the accuracy of the FSP-FIM when the

expression has a Poisson distribution, we now verify the FSP-FIM for the slow switching case

in which the distribution is bimodal (α = 0.1). To our knowledge an exact FIM solution is not

known for the bursting gene expression model, so we evaluate the different FIM approxima-

tions by finding the sampling distribution of the MLE, and we compare the covariance of this

distribution to the inverse of the FIM [11]. To do this, we sample from p(X; t, θ�) under refer-

ence parameter set θ� to generate 200 simulated data sets, each with independent RNA

Fig 2. Bursting gene expression. (a) Schematic of the standard bursting gene expression model. Parameters are

defined as given in the text to yield an “on” fraction of 0.25 and a mean expression of 25 mRNA per cell. (b) At slow

switching rates, unique “on” and “off” modes are apparent, and distributions of molecule numbers are bimodal. (c) For

intermediate switching rates, the distributions are geometric. (d) At high switching rates, the distributions are nearly

Poisson (d). For each switch rate scale (labeled I, II, or III), the distribution of RNA computed with the FSP (blue) is

compared to a Gaussian with the same mean and variance (purple).

https://doi.org/10.1371/journal.pcbi.1006365.g002
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measurements for 1,000 cells. We then allow koff and kr to be free parameters, and we find θ̂
for each of the 200 data sets. Fig 3 compares the 95% confidence intervals found by taking the

inverse of the FIM and through MLE estimation using simulated data for the FSP likelihood

(Eq 6) shown in Fig 3(a), the LNA-based likelihood (Eq 36 in the Methods section) shown in

Fig 3(b), and the SM-based likelihood (Eq 36 in the Methods section, Supplementary Eq. 10)

shown in Fig 3(c). Fig 3(a) shows that the CRB predicted by the FSP-FIM matches almost per-

fectly to the confidence intervals determined by MLE analysis of independent data sets. S3 Fig

(left column) shows that this estimate is consistently accurate over multiple different experi-

ment designs. In contrast, the LNA-FIM dramatically overestimates the information and pre-

dicts confidence intervals that are much smaller than are actually possible (Fig 3(b) and S3 Fig,

center column). The SM-FIM does a better job than the LNA in that it matches the MLE analy-

sis for some experimental conditions (Fig 3(c)) but much less well for other conditions (S3 Fig,

right column). We note that the three different FIM estimates yield different principle direc-

tions and different magnitudes for parameter uncertainty (Fig 3(d)), but in all cases the

FSP-MLE matches to the FSP-FIM and results in the tightest MLE estimation.

Having verified the FSP-FIM for the bursting gene expression model with multiple parame-

ter sets, we next explore how the information changes as a function of the system parameters.

Fig 4 shows the determinant of the FIM (also known as the D-optimality or information den-

sity) for the bursting gene expression model as a function of the switch rate scaling factor, α,

using the LNA-FIM (purple), SM-FIM (green) and FSP-FIM (blue) approximations. In the

limit of fast switching (i.e. α!1), the expected information converges to nearly the same

value for all approaches, as expected for a Poisson distribution with high effective population

Fig 3. Verification of the FSP-FIM for models with non-Gaussian distributions. The inverse of the FIM is a lower

bound on the variance of the MLE estimator. Here, we simulate 200 data sets with 1,000 cells in each data set. We then

find the MLE θ̂ (scatter plots) for each, and compare the covariance of these samples to the inverse of the FIM for the

(a) FSP-, (b) LNA-, and (c) SM-FIM approaches. Panel (d) shows the FIM matrices for all approximations on the same

axes. Simulated data were generated using the parameters given in the main text and at 10 time points evenly

distributed between 0 and 200 minutes.

https://doi.org/10.1371/journal.pcbi.1006365.g003
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size of λ = 25 RNA. However, in the non-Gaussian regimes with slow switch rates, the LNA-

FIM over-estimates and SM-FIM under-estimates the information compared to the verified

FSP-FIM approach. We note that these differences arise despite the fact that the bursting gene

expression model has linear propensity functions, which allows for closed and exact computa-

tion of the statistical moments.

The FSP-FIM can design more informative single-cell experiments

Next, having verified the FSP-FIM for its ability to accurately estimate the FIM for different

parameter sets, we explore the use of the FSP-FIM to design experiments that maximize infor-

mation. Specifically, we will use classical FIM-based experiment design approaches to choose

single-cell experiments first for the bursting gene expression model above, and then for a non-

linear toggle model for which moments can no longer be computed exactly. We consider two

different metrics of the FIM, which are frequently used in model-driven experiment design [9,

12]. The first of these is E-optimality (presented in the main figures), which corresponds to the

smallest eigenvalue of the FIM. By finding the experiment which maximizes this eigenvalue,

the information is increased in the principle direction of parameter space in which the least

information is known (i.e. the parameter uncertainty is highest). The second FIM criteria is D-

optimality (presented in supplemental figures), which corresponds to the determinant of the

FIM. By maximizing the determinant of the FIM over the experiment design space, one finds

an experiment which minimizes the volume of the uncertainty in parameter space. We note

that many other experimental design criteria are possible, and the choice of criteria depends

on what one desires to learn about the system.

Optimizing the sampling rate for bursting gene expression. Our first demonstration of

FSP-FIM based experiment design is to select the optimal single-cell sampling period with

which to identify the parameters of the bursting gene expression model. For this, we have cho-

sen to analyze E-optimality criteria, which seeks to maximize the smallest eigenvalue of the

Fig 4. FIM analysis of the bursting gene model. The determinant FIM for the LNA-FIM (purple), FSP-FIM (blue),

and SM-FIM (green) as a function of the gene switching rate scale, α. Labels I, II, III correspond to the switch rates for

which distributions are plotted in Fig 2(a)–2(c). Parameters are given in the main text and data are assumed to be

collected at 10 equally separated time points between 0 and 200 minutes.

https://doi.org/10.1371/journal.pcbi.1006365.g004
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FIM. We consider a potential experiment design space consisting of 60 logarithmically distrib-

uted sampling periods Δt from 2 × 10−2 minutes and 7×102 minutes. For each sampling period,

a total of five evenly spaced temporal measurements would be taken. Fig 5(a) compares the

information expected versus the sampling period using the different FIM approximations:

LNA-FIM (purple), SM-FIM (green) and FSP-FIM (blue). For each potential experiment, we

then simulate 200 data sets for 1,000 cells each by sampling p(X;t, θ�), use Eq 7 to find the

MLE parameter estimate for each data set, and then compute the covariance matrix from the

MLE parameter sets. This covariance matrix is inverted, and its minimum eigenvalues are

depicted as orange triangles in Fig 5(a). Fig 5(b) also shows a scatterplot to compare the rela-

tionship between the MLE-observed information and the predicted information for all FIM

approaches. Once again, the FSP-FIM consistently matches the observed E-optimality at all

experimental conditions. However, the LNA approach is much less consistent, sometimes

over-estimating and sometimes under-estimating the real information for the different experi-

mental conditions. The SM-FIM consistently underestimates the true information for this

example, although it is not clear if this trend would hold for all sets of parameters and experi-

mental conditions.

From Fig 5(a), it is clear that the amount of expected information depends strongly on the

sampling period. When the sampling period is much longer than the characteristic time to

reach the steady state distribution (Δt� 1/γ), the information does not change because all

snapshots are already close to steady state. When the sampling period is too short (Δt� 1/γ),

there is insufficient time for the distributions to change and the information tends to zero.

Despite conserving these trends, the three different FIM analyses result in substantially differ-

ent optimal experiments for the E-optimality design criteria. Using the FSP-FIM, the optimal

experiment is Δt = 6.1 minutes, which we verified using the MLE sampling approach (compare

orange triangles and blue line in Fig 5(a)). This optimal design is well-aligned with smFISH

experimental technique, which can capture cell populations with one minute resolution [2] to

one hour resolution [29]. However, the LNA-FIM selects a much faster sampling period of

Δt = 1.1 minutes, and the SM-FIM selects a much slower sampling period of Δt = 420 minutes.

Fig 5. Designing experiments with the FSP-FIM. (a) E-optimality (i.e., smallest eigenvalue of the FIM) for the standard bursting

gene expression model versus sampling period, Δt, using FSP-FIM (blue), LNA-FIM (purple), and SM-FIM (green). Maximizing E-

optimality corresponds to minimizing variance in the most variable direction of parameter space. The orange triangles show MLE-

based confirmation of the E-optimality, using 200 simulated data sets for each sampling period. The green shaded region represents

experiments that are feasible using smFISH, from minute resolution [2] to hour resolution [29] (b) Comparison of the FSP-FIM (x-

axis) versus the observed information (y-axis) for various sampling periods using the FSP-FIM (blue circles), LNA-FIM (purple

squares), and SM-FIM (green crosses). Kinetic parameters are given in the main text.

https://doi.org/10.1371/journal.pcbi.1006365.g005
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Thus, the FSP-FIM not only provides more information compared to moments-based

approaches, but it also provides a better estimate of the expected information. In turn, these

improved estimates can help to avoid potentially misleading experiments and select optimal

designs.

The FSP-FIM accurately estimates information for systems with nonlinearities and

bimodal responses. To demonstrate the utility of the FSP-FIM approach for models with

nonlinear reaction propensities and multiple species, we turn to the toggle model first intro-

duced by Gardner et al [43], with a stochastic formulation by Tian and Burrage [44]. Fig 6(a)

shows a schematic of the toggle model, which consists of two mutually repressing proteins,

x� LacI and y� λcI, where the production of each species depends non-linearly on the con-

centration of its competitor. The reactions in the toggle model can be written

R1 : ;!
w1 x; R2 : x!

w2
;; ð24Þ

R3 : ;!
w3 y; R4 : y!

w4
; ; ð25Þ

where

w1 ¼ bx þ
kx

1þ ayxyZyx
; w2 ¼ gxx; ð26Þ

w3 ¼ by þ
ky

1þ axyxZxy
; w4 ¼ gyðUVÞy: ð27Þ

In this formulation, we have assumed that the degradation of λcI is controlled by an ultraviolet

(UV) radiation through the light-induced circuit described by Kobayashi et al [45]. Similar to

[46], we assume that the UV level affects the degradation of λcI according to the function:

gyðUVÞ ¼ 3:8� 10� 4 þ
0:002UV2

1250þ UV3
; ð28Þ

where the minimum degradation rate has been chosen to match dilution due to the E. coli half

life of 30 min [46]. The remaining parameters used for this example are given by θ� in Table 1.

The system’s initial condition at t = 0 is assumed to be the equilibrium distribution when no

UV is applied. For this biological system and these parameters, different levels of UV radiation

will give rise to different dynamics. At low levels of radiation, switching to the high LacI state

is rare, and the distribution tends to have a single peak. At intermediate levels of radiation,

Fig 6. Validation of a toggle model. (a) Model schematic of the two genes, lacI and λcI, which are mutually repressing

[43]. Degradation of λcI is controlled by UV radiation. (b) Verification of the FSP-FIM (black ellipse) for 200 MLE

estimates of 1,000 cells each (black dots) for two free model parameters, αxy and by.

https://doi.org/10.1371/journal.pcbi.1006365.g006
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switching between low and high levels of LacI expression is possible, and LacI distributions

may be bimodal. Finally, at high levels of radiation, the system very quickly switches into the

high LacI state.

Because this model has complex nonlinear propensity functions, the statistical moments

cannot be calculated in closed form, and the LNA-FIM and SM-FIM estimates are no longer

expected to provide accurate estimates for information or optimal experiment designs. In con-

trast, the FSP analysis remains unchanged, and the FSP-FIM can be computed exactly as

above. As before, we verify the FSP-FIM for this nonlinear case using a set of 200 simulated

data sets measured at 1 hr, 4 hr, and 8 hr, each with 1,000 cells, and we found MLE parameter

estimates θ̂ for each simulated data set. Fig 7(a) shows this verification in a simple case with

two free parameters, by and αxy, and S4 Fig shows the verification where all parameters free

except for Hill coefficients ηxy and ηyx. In this and all subsequent analysis of the toggle model,

we have used the logarithmic parameterization of the FIM (Eq 14).

Next, we aim to design more complex experiments for the toggle model described above.

We consider an experiment design space where the measurement sampling period (Δt), pulse

duration (β), and pulse magnitude (UV) can all be changed, as illustrated in Fig 7(a). Each

pulse of UV starts at t = 1 hr. We then compute the FSP-FIM for each experiment {UV, β, Δt}.
To capture the more realistic situation where parameters are unknown prior to experimen-

tation, we next explore how parameter uncertainty affects the estimation of the FIM and the

design of optimal experiments. To begin, we assume that parameters have been partially esti-

mated from a simple initial experiment corresponding to measurements of the unperturbed

steady state at zero UV input to the system. In practice, similar preliminary parameter esti-

mates could be acquired from literature, from previous less-optimized experiments, or by

comparison to related pathways or organisms. For our analysis, the prior estimate for parame-

ters is described by a multivariate lognormal distribution with a geometric mean of θ̂0 given in

Table 1 and covariances given in S1 Table. Parameters sampled from this distribution are sub-

stantially different from the “true” parameter, θ�, which is also shown in Table 1. Fig 7(b)

shows the E-optimality criteria for parameter set θ̂0 as a function of the experiment design

parameters {UV, β, Δt}. Next, we sampled 100 random sets of parameters from the prior distri-

bution (S5 Fig), and we computed the E-optimality for each set. Fig 7(c) presents expected

information versus experiment design averaged over these 100 parameter sets. For compari-

son, Fig 7(d) shows the information versus experiment designs if one had exact knowledge of

the true parameters.

Table 1. Parameters for the toggle model. θ� is the “true” parameter set from which data is generated, and θ̂0 is the

MLE parameter set fit to a baseline data set generated assuming 0 UV (see S5 Fig for further discussion). Here, N is

used to denote the units of single-molecules.

θ� θ̂0
units

by 6.80 × 10−5 9.86 × 10−4 s−1

bx 2.20 × 10−3 3.19 × 10−3 s−1

ky 1.60 × 10−2 1.60 × 10−2 s−1

kx 1.70 × 10−2 2.50 × 10−2 s−1

αxy 6.10 × 10−3 8.28 × 10−3 N � Zxy

αyx 2.60 × 10−3 2.46 × 10−3 N � Zxy

ηxy 2.10 2.10 -

ηyx 3.00 3.00 -

γx 3.80 × 10−4 5.57 × 10−4 N−1s−1

https://doi.org/10.1371/journal.pcbi.1006365.t001
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From Fig 7(b)–7(d), we observe that relative estimates of the FIM remain consistent despite

substantial changes to the parameters from which the FIM is computed. To explore this obser-

vation more closely, we selected the experiment that maximizes the averaged E-optimality in

Fig 7(c). This experiment is denoted by a black circle in Fig 7(b)–7(d), and we compare it to

another similar experiment design, shown by the black triangle in Fig 7(b)–7(d). S6 Fig shows

the expected parameter uncertainty for these two designs and shows that the optimal experi-

ment reduces variance in some parameter directions by more than an order of magnitude

compared to the sub-optimal experiment. To explore how different parameters change the

ranking of these two experiments, we analyze the ranking of Experiment A and Experiment B

Fig 7. Experiment design for the nonlinear genetic toggle model. (a) Degradation rate of λcI is controlled by UV as shown in

Fig 6(a). The magnitude and duration (β) of UV exposure are free experiment design parameters, along with the time between

measurements Δt. (b) E-optimality (the smallest eigenvalue of the FIM) versus the 3-dimensional experiment design space, where the

FIM is computed using (b) the reference parameter set, (c) by averaging the E-optimality over 100 unique parameter sets and (d)

using the “true” parameter values. The black circle is the optimal design chosen according to (c). The black triangle denotes a nearby,

but less informative, experiment. (e) For the experiments corresponding to the black circle and triangle in (b-d), E-optimality values

are shown for each sampled parameter set.

https://doi.org/10.1371/journal.pcbi.1006365.g007
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not only based on their average E-optimality value as in Fig 7(c), but at each of 100 random

parameter combinations. Fig 7(e) shows that for 97 of the 100 parameter samples, the relative

ranking of the experiments is consistent, even though the absolute value of the E-optimality

criteria varies over several orders of magnitude.

The analysis shown in Fig 7 assumes a fixed initial distribution at t = 0, which was specified

by the steady state distribution under the true parameters in the absence of UV radiation.

Under this assumption, the initial sensitivity matrix S(0) in Eq 34 was set to zero. S7 Fig

extends the analysis to compute the initial sensitivity Sθi
ð0Þ ¼ @p=@yi at steady state, which

slightly increases the estimate of information for the early time points, but has relatively little

effect on the choice of optimal experiment design.

We next seek to understand how optimal experiments depend on one’s plans to perform

multiple experiments. The “single experiment” in Table 2 refers to designing a single experi-

ment, E1, to maximize the expected FIM design criteria, such as finding the maximal combina-

tion in Fig 7(c). The “dual greedy” approach also chooses the same E1 and then seeks to find

the most complementary additional experiment, E2, to maximize the overall FIM design crite-

ria. Finally, the “dual simultaneous” search finds the optimal combination of any two possible

experiments, Ê 1 and Ê 2 to maximize the design criteria. Since the optimal choice for Ê 1 and Ê 2

can admit the other choices, it must yield at least as high a design criteria as E1 and E2. By com-

paring the three design strategies for the current toggle model, we find indeed that the simulta-

neous approach discovers a substantially more informative experiment than does the greedy

approach. In other words, the overall expected value of an experiment, can depend not only on

the current parameter values, but also upon which other experiments one intends to conduct.

If one has plans to do multiple experiments, it may be better to consider the potential informa-

tion from all experiments as a whole rather than to design each experiment one at a time.

Discussion

Fluctuations in biological systems complicate modeling by introducing substantial variability

in gene expression among individual cells within a homogeneous population. This variability

contains valuable and quantifiable insights [20], but data with multiple peaks and long tails,

such as those collected using smFISH, are often poorly described by modeling approaches that

only make use of low-order moments of such distributions [26]. The FSP approach [27] has

previously been used to identify and predict gene expression dynamics for complex and rich

single-molecule, single-cell data [2, 29, 30]. In this work, we have developed the FSP-based

Fisher information matrix, which extends the FSP analysis to allow rigorous design of experi-

ments that are optimally informative about the model’s parameters.

The FSP-FIM uses a novel sensitivity analysis, which requires solving a system of ODEs that

is twice the size of the FSP dimension for each parameter, and therefore should be computa-

tionally tractable for any problem to which the FSP can be applied. The local sensitivity of each

parameter is independent of the other parameters, so the computation is easily parallelized

Table 2. Comparing sequential experiment design approaches.

Single experiment Dual greedy Dual simultaneous
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E-opt 14.9 32.0 36.8

https://doi.org/10.1371/journal.pcbi.1006365.t002
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among multiple processors. We verified that the FSP-FIM approach matches the information

for the constitutive gene expression model, whose response follows a Poisson distribution (Fig

1), and for which the FIM can be computed exactly. The FSP-FIM also matches to classical

FIM approaches that assume normally distributed data (LNA-FIM) or very large data sets

(SM-FIM) in the limiting case when the data distributions are close to being Gaussian (Figs 1–

4). For systems where data is not Gaussian and for which there is no exact FIM formula, we

showed that the FSP-FIM is more accurate than traditional approaches (Figs 4 and 5), which

we validated by generating many independent data sets and comparing the inverse of the

FSP-FIM to the variance in the MLE estimates (Figs 3 and 6).

We showed that the choice of FIM analysis can lead to different optimal experiment designs

(Fig 5). For example, Fig 5 and S3 Fig show that the LNA-FIM can substantially overestimate

the information of certain experiments compared to the full, correct information obtain using

the FSP-FIM, which could mislead researchers to choose experiment designs that are much

worse than they expect. In practice, overestimation of the Fisher information can have the fur-

ther deleterious effect of overconfidence in poor parameter estimates, which can result in

model bias and poor predictions as we observed recently in [26]. Furthermore, the LNA-FIM

is not self-consistent, and often overestimates the information even compared to the ellipse

found from sampling the MLE with the Gaussian likelihood function. On the other hand, we

found that the SM-FIM under-estimated the information for the bursting gene model, but the

amount of underestimation varied substantially with experimental conditions, which could

cause researchers to reject otherwise informative experiments. In contrast to these moment-

based approaches, the MLE sampling using the FSP approach always provided the best param-

eter estimates (Fig 3 and S3 Fig), and the FSP-FIM was always consistent with the confidence

intervals verified by sampling (Figs 1, 3 and 5, S1–S3 Figs), even for the case of nonlinear reac-

tion propensities for which exact moments cannot be found (Fig 6(a), and S4 Fig).

In our analysis of the non-linear toggle model, we allowed for the independent control of

three experimental variables (Fig 7a), and found experiments that optimize particular criteria

of the FIM. Furthermore, we showed that other experiments very near to the optimal experi-

ment in the design space can be significantly less informative than the optimal experiment (Fig

7(b)–7(e) and S6 Fig). Choosing between such similar experiment designs is non-trivial and

would be difficult or impossible using intuition alone. On the other hand, we explored the

effects of parameter uncertainty on FSP-FIM-based experiment design, and we found that

parameter rankings are relatively robust to parameter uncertainty, even when the absolute

value of the FSP-FIM is sensitive (Fig 7).

We found that that the choice of optimal experiments depends on the number of experi-

ments to be completed (Table 2). For example, the optimal set of two experiments may not

contain the optimal single experiment. Sometimes, the FIM for a given experiment may be sin-

gular or nearly singular, indicating that the model under investigation is unidentifiable for the

current parameterization and experiment design. In such a case, the FIM-eigenvectors corre-

sponding to the near-zero eigenvalues indicate specific linear combinations of parameters that

are poorly constrained (e.g., ‘sloppy’ directions [47]). If a second complementary experiment

can shift the orientation of these sloppy vectors, then those parameters may yet be uncovered

through combinations of multiple experiments. Alternatively, if a given combination of

parameters remains unidentifiable for all admissible experiments, then these irrevocably

sloppy directions may be used to reformulate the model into one that has a reduced set of fully

identifiable parameters. We note that as one conducts new experiments and collects new data,

parameter posteriors will need to be updated. As this occurs, optimal experiments may also

need to be adjusted (e.g., through application of a Bayesian experiment design framework
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[48]), and future developments are needed to incorporate FSP-FIM computations within such

iterative frameworks.

Our results show that the FSP-FIM performs better than previous approaches for gene reg-

ulation models with low molecule counts or nonlinear reaction rates. Previous studies have

demonstrated many realistic systems for which such FSP can be used to identify and predict

stochastic dynamics in numerous biological systems [2, 6, 19, 26, 29–32, 49]. Each of these

studies has used different experimental input signals, such as temporal salinity profiles [2, 26],

temperature [29], or chemical induction [19, 30]. Modern optogenetic experiments promise to

allow for even more robust and flexible control of input signals to control cellular behavior [7,

50, 51]. For such studies, the FSP-FIM could now be used to optimize these signals to achieve

maximally informative experiments.

Like any other tool, the FSP-FIM also has its associated challenges. Our initial investigations

focused on intrinsic stochastic fluctuations of small biochemical processes, and we used simu-

lated data to verify our new computational tools. For models with large molecular counts of

four or more species or with the addition of mechanisms to account for extrinsic variability,

existing methods to solve the FSP-FIM will remain intractable until more efficient probability

density based CME analyses can be developed to address such problems [52–56]. Until higher

dimension CME approaches are developed, approximate moment-based experiment design

methods, such as the SM-FIM and LNA-FIM, may remain the only available options to design

experiments for large biochemical pathways. We also note that real experiments come with

additional sources of noise, such as the errors or uncertainties associated with experimental

measurements. For example, in smFISH data analysis, image processing settings give rise to

variability in final RNA counts due to density dependent co-localization of RNA molecules.

This measurement uncertainty may have a non-negligible effect on parameter inference, and

future controlled experiments are needed to elucidate the degree to which such effects depend

on optical imaging settings. Fortunately, such variabilities are easily incorporated within the

framework of the FSP analysis. For example, previous work has used a simple linear transfor-

mation to adapt FSP analyses to include the effects of noisy GFP fluorescence emission and

background autofluorescence when comparing integer-valued biochemical models to flow

cytometry data in arbitrary continuous units of fluorescence [19]. Once adapted to take these

transformations into account, the FSP-FIM could be used to design experiments to minimize

the effects of measurement noise.

New experimental capabilities are creating an enormous potential to probe single-cell bio-

logical responses. These capabilities are making it ever more difficult to choose what species in

the system to measure, whether to measure joint distributions (i.e. measure the RNA counts

from multiple genes in the same cells) or marginal distributions (only measure RNA counts

from a single gene at a time), or in what condition. Furthermore, different experiments have

different costs, and the experimentalists must not only optimize their information about

model parameters, but also consider the trade-off between collecting more data and the cost of

a given experiment. By providing a new computational tool to iteratively improve models and

design experiments for an important class of biological problems, the FSP-FIM will help to

improve quantitative predictive modeling of gene expression.

Materials and methods

Derivation of sensitivities for FSP models

The change of probability p(xl) with respect to small changes in parameter θj describes the sen-

sitivity of the lth state in the Markov process to the jth parameter [33, 57]. These local sensitivi-

ties can be calculated by transforming the linear ODEs describing the time evolution of the
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probabilities of the state space d
dt pðtÞ ¼ f p tð Þ; θ; tð Þ into a set of ODEs describing the time evo-

lution of the sensitivities. Given an initial condition, the solution to the CME is:

pðt; θÞ ¼ pðt0Þ þ

Z t

t0

f ðpðs; θÞ; θ; sÞds ð29Þ

Taking partial derivatives with respect to θ,

rθpðt; θÞ ¼
Z t

t0

rθf ðpðs; θÞ; θ; sÞ þ rpf ðpðs; θÞ; θ; sÞrθpðs; θÞ
h i

ds: ð30Þ

We can now describe the sensitivities S�rθ p as they evolve with time, by taking the time

derivative of the equation above. For the FSP, the right-hand side f(p(t;θ), θ, t) = A(θ, t)p(t),
and

rθf ðt; pðt; θÞ; θÞ ¼ ðrθAðθÞÞpðtÞ ð31Þ

rpf ðt; pðt; θÞ; θÞ ¼ AðθÞ ð32Þ

In many cases, including all models formulated using mass-action kinetics, the generator A

can be written as a linear combination of the model parameters, i.e. A = ∑θi Bi, and the deriva-

tive with respect to the ith parameter can be found,

@

@yi
A ¼

@

@yi
ðyiBiÞ ¼ Bi: ð33Þ

Using this notation, Eq 30 is reduced to the set of linear ODEs for each parameter θi,

d
dt

pðtÞ

SiðtÞ

 !

¼
A 0

Bi A

 ! pðtÞ

SiðtÞ

 !

: ð34Þ

In practice, Eq 34 can be computed in parallel for each parameter, and the computation of sen-

sitivities for K parameters is equivalent to solving K sparse systems of ODEs, each twice the

size of the FSP computation.

Moment-based FIM approximations

Current state-of-the-art approaches for single-cell, single-molecule experiment design rely on

computing moments of the CME. Such statistical moments may be computed exactly for sys-

tems with affine-linear propensities [42]. The uncentered moments of the CME, Efxmg, where

m ¼ ½m1;m2; . . . ;mNs
� is a vector of integers corresponding to the mth

i power of the ith species

in x, and the entire moment xm is found according to the following formula:

Efxmg
dt

¼ E
XM

j¼1

wjðxÞ
YN

i¼1

ðZi þCijÞ �
YN

i¼1

Z
mi
i

" #( )

: ð35Þ

In the limit of large numbers of molecules reacting in a well-mixed solution, the linear

noise approximation (LNA) may be applied to CME [25]. In such cases, molecule numbers are

considered to be Gaussian, and the well-known Gaussian form of the FIM may be applied [8].

If the observed data is assumed to come from a multivariate Gaussian distribution with means

μðt; θÞ ¼ ½m1ðt; θÞ; m2ðt; θÞ; . . . mNs
ðt; θÞ�T and covariance matrix Σ(t;θ), such as those in Eq 35,
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the likelihood is given by:

LðD; μ;ΣÞ ¼
YtNt

t¼t1

YNc

i¼1

ð2pNo jΣðtÞjÞ�
1
2 � exp �

1

2
ðdiðtÞ � μðtÞÞTΣ� 1ðtÞðdiðtÞ � μðtÞÞ

� �

ð36Þ

and the FIM is well-known [10, 11]

FIMi;j ¼
@μ
@yi

T

Σ� 1 @μ
@yj
þ

1

2
trace Σ� 1 @Σ

@yi
Σ� 1 @Σ

@yj

 !

: ð37Þ

Another approach, developed in [9] is to use a likelihood function that takes the sample

mean and sample variance to be jointly Gaussian, and thus requires the computation of up to

the 4th moments in Eq 35. In the supplement, we reproduce the formulae from [9] relevant to

this study.
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