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ABSTRACT: A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of
arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-
consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the
calculation can be performed “in the dark”, without any prior knowledge on preferred chain conformations or cross-link
positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations,
including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions,
cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity
theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into
cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.

■ INTRODUCTION

Polymer networks are materials comprising macromolecules
connected together by entanglements or cross-links. Depending
on the chemistry involved, the polymers can be flexible or
semiflexible, and the number of chains attached to each cross-
link can be fixed or variable.
Polymeric networks have a wide range of applications in

synthetic and natural settings. For example, when swollen by
solvent into a gel, they are used as medical implants, artificial
tissues, or flexible materials.1 Many structural biological
materials, such as the intracellular cytoskeleton and the
extracellular matrix, are meshworks of linked protein polymers;
the unique mechanical functionalities of the fibers as well as the
links between them often serve as inspiration for new material
paradigms. Biological motifs have propelled the development of
synthetic polymer networks as the basis for a variety of exciting
new materials that self-heal when damaged,2,3 respond to
stimuli,4 undergo microscopic adaptation when macroscopically
deformed,5,6 or flow and reconfigure in situ upon temperature
change.7

Since the macroscopic behavior of polymer networks is
almost always dominated by the entropy associated with the
huge number of conformations each polymer chain can have,

predicting their thermodynamic and mechanical properties
requires a reliable sampling of the ensemble of microscopic
states in the system. Thus, modeling approaches are deeply
rooted in statistical mechanical models of the behavior of the
individual polymers (see ref 8 for a comprehensive review).
The two most common simulational approaches at the
molecular scale are molecular dynamics (MD) and Monte
Carlo (MC). They can be used to explore the evolution of
microscopic structure in the network at equilibrium and upon
deformation.9,10

Molecular dynamics, in particular, is naturally suited to the
nature of the questions one would like to ask to elucidate the
relations between microscopic organization, polymer (in)-
flexibility, geometry, connectivity, and dynamical mechanical
response for typical polymer networks, but unfortunately the
typical combination of large molecular weight, high densities,
and large stiffness is prohibitive: Well-resolved MD simulations
struggle to capture length scales beyond a couple of tens of
mesh sizes.
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Monte Carlo approaches have been able to capture larger
scale response but lack realistic dynamicsa deficiency that
hybrid MC−Langevin approaches11 have been able to address
only in part. These and other shortcomings have led to the
development of simplified models,12,13 often on lattices.14−17

What most of these approaches (other than full MD) share
in common is an explicit separation of cross-links and polymers,
treating the sections of polymer between cross-links as
springlike components and minimizing their summed (free)
energy over the positions of the cross-links connecting them.
This works well when the cross-links themselves are fixed in
space, but in reality these flucutuate as much as if not more
than other components of the network.
To circumvent the codependency of polymer distributions

and those of the cross-linkers, one common approach has been
to assume that the cross-links in the polymer network deform
affinely with the material; this leads to simple predictions for
the free energy of the material as it is deformedthe “classical
rubber elasticity theory”.18 However, the positional entropy of
the cross-links themselves plays a crucial role in the behavior of
the material,19 particularly for marginal and submarginal
networks where cross-link fluctuations can grow much larger
than the network mesh size.20 These fluctuations lead to, at
times, nonintuitive trends. For example, a surface-grafted
polymer network can exhibit a smaller shear modulus than an
equivalent polymer brush.21 Cross-link fluctuations can be
approximated using the “phantom network model”, an
improvement to the classical elasticity model.18 However, the
model does not account for finite extensibility of the polymers,
nor interactions with a spatially varying monomer density field.
In this work, we develop a lattice-based approach to cross-

linked polymer networks that permits quick and reliable
sampling of the full configurational space, including the
positional fluctuations and nonaffine displacements of cross-
links. Lattice self-consistent field theory (SCFT) for polymers22

is invoked to approximate the equilibrium spatial distributions
of the polymers and cross-links given the input network
topology. The polymers themselves are phantom chains
interacting with a spatially varying mean monomer density
field, and the network topology is enforced via additional
spatially resolved self-consistent mean fields representing the
cross-link distributions. The model takes as input the number
of segments in the polymer strands connecting the cross-links
and the network topology itself. Importantly, knowledge of the
spatial arrangement of the cross-links is not needed a prioriin
fact, these distributions are a central result of the model.
Schmid23 has previously written self-consistent mean-field

equations for approximating the equilibrium distribution of a
permanently cross-linked polymer network. We invoke a similar
approach here, developing the equations into explicit forms
within the context of Scheutjens−Fleer lattice SCFT.22 This
allows for a number of advances in practical application of the
theory. Our approach converges on the equilibrium spatial
distributions of cross-links (nodes) and polymer conformations
without any prior knowledge of what these distributions are.
The model also naturally incorporates finite extensibility of the
polymer strands as the network is strongly deformed and can
be easily extended to examine networks of semiflexible
polymers.24

A recent study developed an SCFT approach for examining
the thermodynamics of micelle-like “nodes” in self-assembled
networks of telechelic polymers.25 However, an approximation
in their approach is that the spatial arrangement of the nodes is

preimposed. This restricts the allowed configurations of the
system, leading to an underestimation of the entropy, which
can only be corrected by allowing the nodes to fluctuate as we
do in the present work.
Our approach is applicable to “user-defined” network

structures and can also incorporate boundary conditions (i.e.,
network nodes that are fixed in space as tether points). A
spatially varying mean monomer density field is explicitly
included in our mathematical derivation of the model, though
in the examples we study here we restrict our attention to
networks of noninteracting polymers. We illustrate derivation
of the model in two dimensions; extension to three dimensions
is trivial. The model presently lacks the ability to account for
chain noncrossing and entanglements; suggestions for how to
include this feature are given in the Conclusions section.

■ MODEL
Consider a two-dimensional polymer network having J nodes
connected by polymer strands or “bridges”. Each bridge b is
composed of Nb segments. The topology of the network is
defined by specifying which nodes j are connected to other
nodes k and the length Nb of the bridge making each of these
connections. Some of the nodes are fixed in space, serving as
“anchor points”, while the remaining nodes are allowed to
fluctuate freely. The polymer network is represented on a two-
dimensional lattice; in this study, we choose a hexagonal lattice
with six nearest neighbors per site, but any lattice can be used as
long as the number of neighbors at each site is known. The
lattice constant is taken to be unity, equal to the diameter of a
polymer segment (either a Kuhn segment or a single
monomer).
Polymer conformations for the bridges are generated on the

lattice by the method of propagators in self-consistent mean
fields,26,27 similar to the method of Scheutjens and Fleer.22 A
propagator generates the conformational probability distribu-
tion of a lattice polymer, given a probability distribution p1(i)
that the first segment is located at lattice site i. The Boltzmann
weight for initiating the propagator at i is given by

=W i p i w i( ) ( ) ( )1 1 (1)

where w(i) is the weight for placing a monomer at i. This
weight may depend on any external field and is typically used to
represent the effect of mean-field monomer−monomer
interactions by taking w(i) = exp[−βϵρ(i)]. Here, ϵ is the
monomer−monomer interaction energy, β = 1/kBT, and ρ(i) is
the ensemble-average monomer density in site i (to be obtained
self-consistently). In this work, we will only examine cases
where ϵ = 0 such that the lattice polymers are noninteracting;
however, we include this term to show how it is incorporated
into the model mathematically.
For subsequent segments m = 2, ..., N, where N is the

number of segments comprising the polymer, the weight for
pathways of m steps that terminate at site i is calculated by

∑= −W i w i W i( ) ( ) ( )m
i

m
{ }

1 adj

adj (2)

Here, {iadj} is the set of nearest neighbors to i on the lattice, and
iadj is one such neighbor. (Note that eq 2 represents a first-order
Markov chain. Semiflexibility of the polymers can be
incorporated by evolving the polymer configurations via a
second-order Markov chain along with appropriate statistical
weights for chain bending.24)
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Equation 2 is computed recursively for steps m = 2 to N of
the propagator. At the edges of the lattice, reflecting boundary
conditions are utilized22 (though other boundary conditions,
e.g., periodic or absorbing, may also be used). The quantity
WN(i) thus represents the weight for propagator pathways that
terminate at i in N steps, given the distribution of propagator
starting positions p1(i).
Equations 1 and 2 can also be calculated in reverse, starting

from the m = N side of the polymer given a distribution pN(i)
of locations for monomer N of the polymer. Using the
composition law of propagators,27 the weight for finding
segment m of the polymer at (i), given both the starting and
ending point distributions p1(i) and pN(i), is

=
′ − +Q i

W i W i
w i

( )
( ) ( )

( )m
m N m 1

(3)

Here, W and W′ are the propagators starting from the m = 1
and m = N sides of the chain, respectively. (The factor of w(i)
in the denominator of eq 3 is to prevent double-counting the
weight for placing a monomer at i, contained in both W and
W′.)
Each polymer in the system is a bridge b having Nb segments,

connecting two nodes j and k. Suppose the first node j has a
probability “cloud” (spatial distribution) given by Pj(i). The
first segment of bridge b is therefore located at i with
probability p1(i) = Pj(i). The statistical weight for terminating
bridge b at site i′ is thus WNb

(i′).
The bridge b ultimately connects to node k. However,WNb

(i)
is not the cloud for node k; it must be calculated as the
intersection of all bridges b1, b2, ..., bl, ..., bn that connect to k,
where n is the number of neighbors to node k. The end
segment distribution WNb,l(i) is calculated for each of these
bridges bl via eq 2, given the unique clouds Pj(i) for each of the
origin nodes. The cloud for node k is then obtained by

=
∏

∑ ∏ ′ ′−
=

′ =
−P i

w i

W i

W i w i
( )

1
( )

( )

( ( )/ ( ) )k n
l
n

N

i l
n

N
n1

1

1
1

b l

b l

,

, (4)

where the products are over all bridges bl that connect to node
k, and the sum is over all lattice sites i′ in the system. Dividing
by w(i)n−1 ensures that the weight for site i is only counted
once, as all bridges n converge to only one segment (node)
located at that position. The quantity Pk(i) is therefore the
(normalized) spatial probability distribution for node k in the
system.
Equation 4 represents a Bragg−Williams approximation to

the real spatial probability distribution of node k. This is
because in each microstate of the network the position of node
k depends on the position of its neighbors, which in turn
depend on the positions of their neighbors, and so on. For
node k (with n neighbors indexed by l) the ensemble
probability of observing a particular set of spatial coordinates
il of these neighbors is a composite quantity P(i1, i2, ..., il, ..., In).
We would then compute the spatial distribution of node k via

∑ ∑ ∏= −
=

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥⎥P i

w i
P i i i i K i i( )

const
( )

... ( , , ..., , ..., ) ( , )k n
i i

l n
l

n

N l1 1 2
1n

b l

1

,

(5)

where the nested sums are over all positions of all neighboring
nodes to k, and KNb,l(il,i) is the sum of propagator weights for
going from site il to site i in Nb,l segments. In principle, this can

be computed; however, to make the method numerically
tractable, we approximate

≈P i i i i P i P i P i P i( , , ..., , ..., ) ( ) ( )... ( )... ( )l n l l n n1 2 1 1 2 2 (6)

that is, we treat the distributions of the nodes as independent
quantities. This approximation allows us to write the cloud for
node k as a product of independent bridge distributions
originating from their respective origin node clouds:

∏ ∑

∏

≈

=

−
=

−
=

P i
w i
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w i
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l

n

N
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1

1
1

l

b l

b l

,

,
(7)

which is eq 4. We derive this form in more detail in the
Supporting Information (section SI).
To compute the ensemble-averaged monomer density in the

system, we compute the normalized spatial probability
distribution ρb,m(i) of each bridge monomer m. Suppose that
monomer m is in bridge b, connecting nodes j and k. (Note that
monomer m is the mth segment in the bridge of Nb segments.)
The un-normalized form of the spatial probability distribution
for monomer m in the bridge is derived in the Supporting
Information (section SII); it reads

∑

∑

ρ′ =
∑

×
∑

− +
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k
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,

, (8)

where Km(ij,i) is the sum of propagator weights for going from
site ij to i in m steps, and KNb,l−m+1(ij,i) is that for going from site
ik to i in Nb,l − m + 1 steps. This distribution must normalize to
unity, so that we have

ρ
ρ

ρ
=

′
∑ ′ ′′

i
i

i
( )

( )

( )b m
b m

i b m
,

,

, (9)

The quantity ρb,m(i) is the normalized spatial probability
distribution for monomer m.
To obtain the total monomer density field, for all bridges b

we sum over the distributions for each segment in the bridge,
except the two terminal segments as these are monomers
potentially shared by multiple bridges. We then add in the J
node segments separately to prevent overcounting. Mathemati-
cally, this reads

∑ ∑ ∑ρ ρ= +
=

−

=

i i P i( ) ( ) ( )
b m

N

b m
j

J

j
2

1

,
1

b

(10)

The clouds Pj(i) for each of the J nodes in the system are not
known a priori, nor is the ensemble-average number of
monomers ρ(i) in each site i. We therefore obtain these
quantities by self-consistent iteration, starting with initial
guesses.
Remarkably, for the networks examined here, we converged

on ρ(i) and each Pj(i) starting from completely naive (uniform)
distributions; that is, prior information about the spatial forms of
ρ(i) and the Pj(i) is not required.
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We initialize Pj
init(i) = 1/Nsites for all nodes j, and ρinit(i) =

∑bNb/Nsites, where Nsites is the number of lattice sites in the
system, and the sum in the second equation is over all bridges
b. Given initial guesses for ρ(i) and all Pj(i), we then iterate to
find self-consistent solutions. To improve stability, we use an
adjustable blending parameter λ that in each iteration,
interpolates between “old” and “calculated” values to find the
“new” values, through

λ λ= + −P i P i P i( ) ( ) (1 ) ( )j j j
new calc old

(11)

for all nodes j

ρ λρ λ ρ= + −i i i( ) ( ) (1 ) ( )new calc old
(12)

The “calculated” distributions ρ(i)calc and Pj
calc(i) are those that

directly result from eqs 4 and 10 using ρ(i)old and Pj
old(i) (or,

on the first iteration, Pj
init(i) and ρinit(i)) as input. The “new”

distributions then become the “old” ones on the next iteration
cycle.
The iteration is continued until the new distributions are

equal to the input (old) distributions, within a small margin of
error. Here, we iterate until the total variance between the “old”
and “new” monomer density fields ρ(i) first drops below 10−10.
The blending coefficient λ is tuned to control the numerical
rate and accuracy of convergence; however, it does not affect
the self-consistent solutions for Pj(i) and ρ(i).
To assess the computational scaling of our model, we

perform a series of calculations on networks with different
numbers of bridges and different lattice sizes. Compute time
results are shown in Figures S2 and S3. Calculations are
performed on one core of a standard central processing unit
(CPU). As expected, the compute time per iteration scales
linearly with the number of bridges as well as the number of
sites in the lattice. We have also developed a parallelized
version of our model in the Nvidia CUDA framework, which
runs on Nvidia graphics cards (GPUs). Preliminary benchmarks
in Figures S2 and S3 show that the GPU code is significantly
faster than the CPU implementation on a modern medium-
range card (Nvidia GTX 1070). The speed-up grows larger for
systems with more bridges and even more for systems in larger
lattices. For example, note the small slope of the linear fit of the
GPU results in Figure S2 (lower right) compared to that of the
CPU results in the lower left panel.
To summarize, our model has the following input: the

number of nodes, J; the network topology (i.e., the connectivity
between the nodes); the number of segments Nb comprising
each connection (bridge); and the monomer interaction
parameter, ϵ. The latter can be zero, leading the polymer
bridges to behave as ideal chains. The lattice model self-
consistently builds up the equilibrium ensemble of polymer
chain conformations and node positions that satisfy the
imposed network topology and monomer interaction param-
eter ϵ. The result is the equilibrium spatial probability
distributions, or “clouds”, for each of the free nodes in the
network, as well as the equilibrium monomer density field.

■ RESULTS

In this section, we demonstrate an application of our SCFT
model to a polymer network at rest and when sheared. The
model yields the spatial probability distribution (“cloud”) for
each network node, which are compared to molecular dynamics
simulations for validation. The entropy of each node is

extracted, revealing how each uniquely varies as the network
is sheared.
To study the role of node entropy in the deformation free

energy of a network, we present results on a sequence of three
additional networks, differing in the average number of
connections per node. By comparing the free energy of each
network as it is deformed, we identify to what extent node
positional entropy affects the deformation pathway and how the
pathway deviates from the classical rubber elasticity theory
prediction.
We start our discussion of results with an application to the

network topology shown in Figure 1. Calculations are carried

out on the network in its native state as well as a sequence of
sheared configurations. In all cases, the monomer interaction
parameter ϵ = 0, so that the bridges are noninteracting finite-
length lattice polymers. When ϵ = 0, only the node clouds Pj(i)
need to be self-consistently calculated, while the monomer
density field is free as the propagators do not interact with it.
As illustrated in Figure 1, the four corner nodes of the

network are fixed, while the remaining nodes are free to
fluctuate. The number of segments in each bridge is set to Nb =
floor(s × lb

2), where lb is the length of the given bridge b in
Figure 1 given that the width and height of the illustration are
both unity. A single monomer in the lattice is defined to have a
diameter of unity, which is equal to the lattice constant. The
parameter s thus uniformly inflates or deflates the available
contour length in each polymer bridge in the network. For
example, at a given system size and fixed corner node positions,
smaller s leads to fewer monomers per chain, and thus a
network that is under greater internal tension.
To perform shear, the two upper fixed nodes of the network

are displaced by some amount Δxshear while keeping the two
lower fixed nodes in their original positions. The resulting
strain is γ = Δxshear/h, where h is the height of the network.
To assess the accuracy of the SCFT approach, results are

compared to molecular dynamics (MD) simulations of a two-
dimensional polymer network with the same topology and
bridge lengths. The bridges are modeled as noninteracting
bead−rod polymers, with monomers of diameter σ = 1, mass
unity, and fixed bond lengths of unity (all in simulation units).
Nodes are identical to monomers in the bridges, though they
can have more than two bonds. Fixed nodes are defined to be
monomers having fixed coordinates in the simulation box. The

Figure 1. Connectivity diagram for a test network. Solid points are
(free) nodes, open points are fixed nodes, and lines are bridges.
Number of segments Nb in each bridge is proportional to the squared
length of the bridge in this diagram (see text for more details).
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system is integrated using Langevin dynamics with kBT = 1, a
friction coefficient of unity for all particles, and a time step size
of dt = 0.001 (in simulation time units). The simulation box is
periodic in both dimensions; however, the box size is set to be
large enough so that the system statistics do not include the
images of the network across the boundaries. Systems are
initially equilibrated for 105 time steps, and then statistics are
taken and averaged over 108 time steps. The HOOMD-Blue
package was used to perform the calculations.28,29

We now examine the performance of our SCFT model on
the native (unsheared) network. The network is chosen to have
a width and height of 50 lattice units (i.e., monomer diameters).
Like in the MD simulation, the total lattice size is chosen to be
much larger than this to prevent the system statistics from
including images of the network across the reflecting boundary
conditions. The number of segments in each bridge is set to Nb
= floor(s × lb

2). For the results reported here in the main text,
the scaling parameter s = 50. Comparison between the model
and simulation for another choice, s = 100, is given in the
Supporting Information and described shortly.
Figure 2 presents results from the SCFT model for the

clouds of selected nodes A, D, F, and I (see Figure 1). Overlaid

on the model output are results from the corresponding MD
simulation. We find that the clouds obtained from the lattice
model are in good quantitative agreement with those obtained
from simulation. We again emphasize here: the lattice model
results were obtained without any prior knowledge of the
equilibrium distribution of the nodes in the system. Results for
all nodes in the network, in unsheared (γ = 0) and sheared (γ =
1) states, are given for s = 50 and s = 100 in Figure S4.
To more closely assess the accuracy of our model upon

shear, we plot the ensemble-average x and y coordinate of
nodes A, D, F, and I as a function of strain γ in Figure 3.
Dashed lines in that figure indicate the predicted positions of
the nodes if they were to deform affinely with the shear. Results
for the remaining nodes in the network are given in Figure S5.
Deviation of the node positions from the affine prediction,
particularly in the y direction (i.e., perpendicular to the shear

axis), arises due to the finite lengths of the polymers in this
simple case. This becomes an important contribution to the
ensemble of network microstates at large strain, to be revisited
shortly.
The results from the lattice model (solid curves) fall close to

what is observed in simulation (points connected by dotted
lines) even up to the substantial shear strain of γ = 1.
Importantly, the deviation of the lattice model results from
simulation is in large part constant with strain. Thus, nonaffine
displacement of nodes in the MD simulations is also captured
to a reasonable extent by the lattice model, particularly the
nontrivial shift in y coordinates (i.e., perpendicular to the shear
axis x) in Figure 3 (middle).
The entropy of a node depends on the spatial extent of its

cloud Pj(i), which in turn depends on how strongly it is
enslaved to the network as a whole. For a given network
topology, the SCFT model yields the full equilibrium ensemble
of chain conformations and node positions. The entropy of a
node j can be easily extracted by the Gibbs expression:

∑= −
S

k
P i P i( ) ln ( )j

i
j j

B (13)

Figure 3, right panel, plots the entropy of nodes A, D, F, and I
in the test network as a function of shear. Nodes have both
positive and negative changes in entropy upon shear, and the
magnitude of the change also varies across nodes depending on
their location in the network. For example, node F initially gains
entropy, as the distance between the upper left and lower right
corner of the network grows smaller as it is sheared toward γ =
1.
In Figures S4, S6, and S7, the scaling factor s is doubled to

100. Doing so causes each bridge in the network to be
composed of double the number of segments. In Figure S4, the
longer chains allow each node to explore more space, resulting
in larger node clouds and overall larger entropies per node in
Figures S6 and S7. However, the longer strands cause the
network to deform more affinely due to their larger finite
lengths (i.e., they behave like ideal Gaussian chains up to larger
end-to-end extensions). The network also exhibits a smaller
variation in node entropy as the network is sheared. Like in the
s = 50 case, we find good agreement between our model, and
the molecular dynamics simulations.
The nontrivial changes in node entropy and spatial

distribution upon deformation are an important prediction of
our model. This is because the model explicitly enforces the
connectivity of the network according to the input topology.
The key approximation in making the model computationally
tractable is to solve for the node spatial distributions
independently via eq 6; however, this approximation clearly
retains the essential behavior of the nodes upon deformation.
We now examine to what extent node entropy affects the

overall free energy change of a network as it is deformed,
depending on the connectivity of the network. In the SCFT
model, the free energy of the network can be approximated as
the sum of the free energies of all the bridges (noting that this
overcounts the contribution from the nodes, i.e., the bridge end
points). The free energy of a bridge of Nb segments connecting
nodes j and k is

∑= −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟F k T P i W i/ ln ( ) ( )b

i
k NB b

(14)

Figure 2. Spatial probability distributions for selected free nodes A, D,
F, and I indicated in Figure 1, in the unsheared network with s = 50.
Blue shading is prediction from our lattice model normalized to the
largest value on the lattice; shading intensity is continuous from values
0 (white) to 1 (blue). Red contours are interpolated results obtained
from molecular dynamics simulation; contours are drawn at values of
1/4, 1/2, and 3/4. Four fixed nodes in the network are plotted as
purple points, located at lattice coordinates indicated by ordered pairs.
These are connected for visual convenience by purple dashed lines.
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where the term in parentheses is the partition function for chain
conformations that begin within the cloud of node j and end in
that of node k. Note that the termination points for the bridge
in the cloud for node k are properly weighted by Pk(i).
Moreover, via eqs 1 and 2, WNb

(i) contains the proper weights
Pj(i) for starting chain conformations at various points in the
node j cloud. The free energy of the network is then

∑=F F
b

b
bridges (15)

To assess the contribution of node positional entropy to the
network free energy, we compare to the hypothetical case in
which nodes are fixed to their most probable positions ij*. The
free energy Fb* for a bridge in this case is

* = − * * * *F k T P i W i i/ ln( ( ) ( ; ))b k k N k jB b (16)

Here, the modified propagator weight WNb* (ik*;ij*) is initialized
in eq 1 with

= = *

=

p i P i i i( ) ( ) if

0 otherwise

j j1

(17)

The total network free energy when nodes are fixed to their
most probable positions is therefore

∑* = *F F
b

b
bridges (18)

Figure 4 examines the free energy change of three different two-
dimensional networks when they are isotropically expanded
from their corners. Connectivity diagrams of the networks are
shown as insets in Figure 4, illustrating fixed nodes, free nodes,
and bridges. Isotropic expansion of the network is carried out

Figure 3. Mean x (left panel) and y (middle panel) coordinates of nodes A, D, F, and I as a function of strain γ when s = 50. Solid lines are results
from our lattice model, dashed lines are displacements expected in the affine limit, and points connected by dotted lines are MD simulation results.
Right panel shows node entropy from our lattice model, as a function of strain γ; points are lattice model results, and lines are guides for the eye.

Figure 4. Network free energy (eq 15, black points) and free energy when nodes are fixed to their most probable positions (eq 18, blue points) as a
function of network size L (width = height, in lattice units). Results are given for three different networks, with connectivities given by the inset in
each plot. Dashed black lines are predictions from the classical rubber elasticity theory. Curves are shifted so that all free energies are zero for L = 20
lattice units. Black and blue points are connected by fit lines as guides for the eye. (insets) Connectivity diagram for each network, showing fixed
nodes (open points), free nodes (solid points), and bridges (lines). Line color represents the number of monomers composing the given bridge: red
is 50; green is 33, and purple is 66.
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by changing the distance L between the fixed nodes on the
lattice, such that the width and height of the network are always
equal. The “true” (SCFT model) free energy of the network
(eq 15) is compared to that when nodes are fixed to their most
probable positions for a given L (eq 18). Predictions from the
classical rubber elasticity theory18 are also overlaid; details of
this calculation are given in the Supporting Information.
The black points connected by bold lines in Figure 4 are the

true free energy change of the networks upon expansion.
Increasing the number of bridges in the system, moving from
left to right in the figure panels, has the obvious effect of
increasing the free energy required to expand the network. This
is the collective “entropic elasticity” of the polymer chains.
Adding more polymers to the network increases the (entropic)
work required to increase the end-to-end distances of the
chains. At large strains, chains approach being stretched to their
maximum end-to-end length. The free energy therefore
increases more drastically.
The translational entropy of the nodes (cross-links)

themselves play a significant role in the network free energy
as it is expanded. Indeed, if we “freeze out” the nodes such that
they are localized to their most probable positions, the free
energy cost to expand the network is larger. As shown by the
blue data sets in Figure 4, this effect is particularly notable when
the nodes have fewer bridges attached to them, as in the left-
most network in the figure. As the network is interconnected
with more bridges (i.e., the right-most network in Figure 4),
then each node intrinsically has less translational freedom.
Isolating the nodes to their most probable positions therefore
has less of an effect in changing the free energy landscape of the
network as it is expanded.
As the networks are deformed to larger extents, nodes in the

networks lose their translational entropy and are increasingly
restricted to their most probable positions. Thus, the blue and
black points in Figure 4 converge, indicating the loss of node
translational entropy. This is also observed in Figure 3, where
the entropy of all nodes approaches zero as the shear strain γ
increases.
Figure 4 also shows predictions for the free energy of

deformation given by classical rubber elasticity theory.18 In the
theory, the only free energy contribution to deformation arises
from stretching the polymers. The polymers are assumed to be
purely Gaussian, and the nodes are assumed to be localized to
their most probable positions while deforming affinely with the
overall deformation of the network. Thus, for small
deformations, the classical elasticity theory naturally correlates
with the blue curves in Figure 4, i.e., the SCFT calculations in
which nodes are localized to their most probable positions. The
correlation also confirms that the network is deforming affinely
in this regime within the lattice model. At larger deformations,
chains approach being stretched to their maximum end-to-end
lengths in the lattice model, leading to a sharper growth in the
network free energy compared to that predicted by the purely
Gaussian elasticity theory.

■ CONCLUSIONS

Polymers connected into a network exhibit complex conforma-
tional behavior. How the conformational space for each
polymer in the network evolves upon deformation depends
in a nontrivial way on the network topology. Other ingredients,
such as interactions between the polymers, complicate this
picture further.

With this in mind, we have developed a simple lattice model
based on polymer self-consistent field theory, with the goal of
having a tool that efficiently samples the equilibrium statistics of
an arbitrary polymer network. A potent aspect of our model is
that it is able to generate the complete equilibrium ensemble of
finitely extensible polymer conformations and cross-link
positions on a lattice, without any prior information as to
what these should be. Cross-link entropy can be easily extracted
from the model results and nonaffinity of deformation assessed.
To make the model computationally feasible, we decouple

the node spatial distributions into independent fields that
nevertheless satisfy the input polymer network topology. This
approximation leads to a simple model that captures the salient
variations in node entropy and spatial fluctuations upon
deformation. Indeed, the results of our model are in close
agreement with molecular dynamics simulation, including when
the polymer networks are sheared to high strains. Albeit at the
expense of some molecular complexity, our model is well suited
to studying large polymer networks without the kinetic barriers
and computational limitations often encountered in a full
molecular simulation.
As an example, we have shown how our approach can be

used to compute the deformation “free energy landscape” of a
polymer network that intrinsically captures the unique
translational entropy of each cross-link. This leads to
deformation free energy landscapes that are quite different
from those expected by classical rubber elasticity theory.
Indeed, our model presents an advantage over more simplified
mean-field approaches to polymer networks, given that it has
topological specificity and provides spatial resolution of the
polymer network statistics.
At present, the model does not account for chain

noncrossing and entanglements. We anticipate adding this
ingredient into the model by a cross-link species that can bind,
slide, and unbind along the participating polymer chains. Mean-
field monomer incompressibility, using a conjugate chemical
potential field,30 can also be naturally incorporated into our
approach; however, it is likely this would necessitate a more
sophisticated method for finding the self-consistent solution to
the model equations.
The simplicity of our approach makes it amenable to

including more complex molecular ingredients. Because it is
based on self-consistent field theory, our model can borrow
from the vast body of research that has already been done on
that method. The computational efficiency of the model
particularly on GPUs also makes it well-suited to studying very
large networks while retaining microscopic detail. We believe
this will be useful for studying chain failure and structural
change in strongly deformed polymer networks along with
recent experimental realizations of dynamic network bonding,
e.g., in vitrimers,7 self-healing polymers,2 and reversibly cross-
linked materials.5
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