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Abstract

Hemerythrins and hemocyanins are respiratory proteins present in some of the most ecologically diverse animal lineages; however,

the precise evolutionary history of their enzymatic domains (hemerythrin, hemocyanin M, and tyrosinase) is still not well understood.

We survey a wide dataset of prokaryote and eukaryote genomes and RNAseq data to reconstruct the phylogenetic origins of these

proteins. We identify new species with hemerythrin, hemocyanin M, and tyrosinase domains in their genomes, particularly within

animals, and demonstrate that the current distribution of respiratory proteins is due to several events of lateral gene transfer and/or

massive gene loss.We conclude that the last commonmetazoan ancestorhadat least twohemerythrindomains, one hemocyaninM

domain, and six tyrosinase domains. The patchy distribution of these proteins among animal lineages can be partially explained by

physiological adaptations, making these genes good targets for investigations into the interplay between genomic evolution and

physiological constraints.
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Introduction

Hemoglobins, hemerythrins, and hemocyanins are three dif-

ferent respiratory proteins present in animals (Terwilliger

1998). Hemoglobins have a Fe–protoporphyrin ring to revers-

ibly bind oxygen and are the most common molecules for

oxygen transport and storage in the Bilateria (Weber and

Vinogradov 2001). Globin proteins are widespread in the

tree of life and, in animals, respiratory globins likely evolved

from a membrane-bound ancestor that acquired a respiratory

function independently in different lineages (Roesner et al.

2005; Blank and Burmester 2012). In contrast to the wide-

spread hemoglobins, hemerythrins and hemocyanins have

been detected in fewer animal groups. Hemerythrins transport

oxygen using two Fe2+ ions that bind directly to the

polypeptide chain and have been described in a cnidarian

(Nematostella vectensis), priapulids, brachiopods, some anne-

lids, and sipunculans (Terwilliger 1998; Bailly et al. 2008).

Recently, it has been shown that regulation of iron homeo-

stasis in vertebrates involves an E3 ubiquitin ligase (FBXL5

gene) with an iron-responsive hemerythrin domain in its struc-

ture (Salahudeen et al. 2009; Vashisht et al. 2009), although it

is not clear how this hemerythrin domain-containing protein is

related to invertebrate respiratory hemerythrins. Hemocyanins

are large proteins that have copper-binding sites to transport

oxygen in arthropods and molluscs (Bonaventura and Bona-

ventura 1980). Despite their shared name, arthropod and mol-

luscan respiratory hemocyanins are considered to have

evolved independently from a common ancestral copper

GBE
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protein based on protein similarities (Burmester 2001; van

Holde et al. 2001). A deeper understanding of the evolution-

ary history of hemerythrins and hemocyanins, and thus of the

different respiratory strategies in animals, is limited by the

absence of data for many invertebrate groups and, in partic-

ular, for unicellular holozoans and other eukaryotes. In this

study, we survey a wide phylogenetic distribution set of ge-

nomes and RNAseq data to identify new hemerythrin and

hemocyanin proteins, and we then reconstruct their evolution

within the eukaryote tree of life, with particular focus on

animal lineages.

In addition to the respiratory hemerythrin sequences previ-

ously characterized in animals (Vanin et al. 2006; Bailly et al.

2008; Meyer and Lieb 2010), we identified respiratory hem-

erythrins in the priapulid Priapulus caudatus, the arthropod

Calanus finmarchicus, and the bryozoans Alcyonidium diapha-

num and Membranipora membranacea (see supplementary

table S1, Supplementary Material online). In bryozoans, no

respiratory proteins have been previously described, despite

the presence of a circulatory system in these animals

(Schmidt-Rhaesa 2007). Differently from other animal hemer-

ythrins, the hemerythrin domain shows a Ca2+-binding EF-

hand domain in its N-terminal region in both bryozoan spe-

cies. Additionally, we identified an E3 ubiquitin ligase contain-

ing an F-box domain together with a hemerythrin domain, as

in FBXL5, in cnidarians and across bilaterally symmetrical ani-

mals (see supplementary table S1, Supplementary Material

online), suggesting an ancient origin of the iron-sensing

system described in vertebrates. Our phylogenetic analyses

show two major clades of hemerythrin-containing proteins

(fig. 1), one comprising the metazoan FBXL5 gene and most

of the eukaryote hemerythrins (clade A) and the other com-

prising the metazoan respiratory hemerythrins (including the

newly identified sequences from this study) (clade B). As

shown in a previous report (Bailly et al. 2008), respiratory

hemerythrins are closely related to some Naegleria gruberi

hemerythrins and a sequence from the amoebozoan

Acanthamoeba castellanii. To eliminate possible bacterial con-

tamination, we checked the gene structure and confirmed

that the Acanthamoeba gene has introns within the hemery-

thrin domain. The two major clades (A, nonrespiratory, and B,

respiratory) are separated with high nodal support, which is in

agreement with observed structural differences (Histidine 74

being only present in clade B) (Thompson et al. 2012).

Interestingly, clade B hemerythrins seem to be more

common and highly diversified in prokaryotes (French et al.

2008) than in eukaryotes. Metazoans may have acquired

them during an ancient event of lateral gene transfer (LGT),

but, according to our phylogeny, it is more likely that clade B

hemerythrins are ancient and have been lost in many

eukaryotic lineages, so far only present in three extant distant

lineages: Amoebozoa, Excavata, and Metazoa. Clade B pro-

karyote hemerythrins have been shown to bind oxygen as

metazoan respiratory hemerythrins (Xiong et al. 2000) but
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FIG. 1.—Maximum likelihood (ML) phylogenetic tree of the hemery-

thrin domain as obtained by RAxML. The tree is rooted using the midpoint-

rooted tree option. 1,000 replicate bootstrap values (BV, in black) and BPP

(in red) are shown for each node. A black dot in the node indicates BV

>95% and BPP>0.95. Metazoan hemerythrins are highlighted by colored

rectangles. Domain architectures are shown for major lineages (abbrevia-

tions and accession numbers of each domain are listed in supplementary

table S2, Supplementary Material online).

Martı́n-Durán et al. GBE

1436 Genome Biol. Evol. 5(7):1435–1442. doi:10.1093/gbe/evt102 Advance Access publication July 9, 2013

(van Holde, etal. 2001
)
; Vanin
,
 etal. 2006
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt102/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt102/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt102/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt102/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt102/-/DC1
,
,
 respiratory 
(clade B) 
, but scarce
thus 
them
 phylogeny
or else t
 supports 
t
hey 
e
 as 
 still possess them
,
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt102/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt102/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt102/-/DC1


have been mostly related to oxygen sensing and aerotaxis

processes (Xiong et al. 2000; Isaza et al. 2006) and oxygen

supply to other metabolic enzymes (Karlsen et al. 2005). This

suggests that the oxygen storage and transport function of

hemerythrins may have evolved independently in metazoans,

given the lack of functional data for the Excavata and the

Amoebozoa. Under this scenario, the role of respiratory hem-

erythrins in iron storage, metal detoxification, and immunity

observed in some annelids (e.g., the leeches Theromyzon tes-

sulatum and Hirudo medicinalis and the polychaete Neanthes

diversicolor) (Baert et al. 1992; Demuynck et al. 1993; Vergote

et al. 2004) are secondary specializations of this type of pro-

teins. Finally, nonrespiratory hemerythrins (clade A) are quite

common in eukaryotes and have recruited several companion

domains in different lineages.

Searches for the hemocyanin M domain (arthropod hemo-

cyanins) identified this copper-binding protein in amoebozo-

ans, the fungus Aspergilus niger, the sponge Amphimedon

queenslandica, the ctenophore Mnemiopsis leidyi, and the

hemichordate Saccoglossus kowalevskii (see supplementary

table S1, Supplementary Material online). Therefore it is

likely to be a unikont synapomorphy. Our phylogenetic anal-

yses show the monophyly of all metazoan sequences, as well

as of the main arthropod protein families (fig. 2). The relation-

ship of the sponge and fungal sequences may be due to an

ancient LGT, though the presence of hemocyanins in the more

distant amoeobozoans does not support that idea. Moreover

the A. niger gene has a N-terminal intron and is located be-

tween two other fungal genes, making it less likely to come

from a recently incorporated segment of metazoan DNA.

Furthermore, a pseudogene with a hemocyanin M domain

is present in the fungus Neosartorya fischeri (a congeneric

species despite the name), but absent from all 6 other

Aspergillus genomes and also from all the other fungi se-

quenced to date. The newly identified sequences in this

study demonstrate that the N-domain of arthropod hemocy-

anins and related proteins is a specific molecular signature of

the Panarthropoda (Onychophora + Arthropoda), although

there is some degree of similarity of these regions in nonar-

thropod sequences. The presence of hemocyanin-like proteins

in the tunicate Ciona intestinalis with putative phenoloxidase

activity suggested that respiratory hemocyanins evolved from

an ancestral prophenoloxidase (Immesberger and Burmester

2004). Given the absence of functional data for the nonbila-

terian animals (i.e., the ctenophore M. leidyi and the sponge

A. queenslandica) and our phylogeny (fig. 2), this is still the

most parsimonious functional explanation for the evolution of

the respiratory properties of arthropod hemocyanins.

An extensive search for the tyrosinase domain (molluscan

hemocyanin) demonstrated a wide distribution of this copper-

binding protein across metazoan lineages (see supplementary

table S1, Supplementary Material online), with the remarkable

exception of arthropods. The absence in arthropods could be

associated with the expansion and diversification of the

hemocyanin M domain in this lineage, which can exhibit sim-

ilar activities to the tyrosinase domain, for example in melanin

biosynthesis (Sugumaran 2002). In contrast to a previous anal-

ysis (Esposito et al. 2012), our phylogenetic reconstruction of a

broader dataset shows that the animal tyrosinase domains

group in six independent clades (clades A–F) (fig. 3), which

are further supported by the domain architecture of the pro-

teins nested in each clade (e.g., clade D and clade F). The

tyrosinase domain that gave rise to the molluscan hemocya-

nins is related to brachiopod and tunicate sequences (clade B),

and the series of duplications that lead to the typical arrange-

ment of eight tyrosinase domains in tandem (Bonaventura

and Bonaventura 1980) is specific to molluscs. With the ex-

ception of clade E, which is restricted to nonbilateral animals

(fig. 3), the other clades exhibit an extremely patchy distribu-

tion across bilaterally symmetrical animals (see supplementary

table S1, Supplementary Material online), not only between

major animal groups but also within the same group (e.g., in

molluscs, Crassostrea gigas has only a clade D tyrosinase,

Lottia gigantea has clade A and D tyrosinases, and Sepia offi-

cinalis has both clade B and D tyrosinases). Despite the poor

resolution of deeper nodes, our phylogenetic scenario at least

strongly supports three independent origins of metazoan ty-

rosinases. Clades A, B, and F are well supported (PP>0.9) and

nested with nonmetazoan sequences. The other three clades

(clades C, D, and E) are not robustly supported, but have

unique domain architectures and do not significantly cluster

with other metazoan groups, therefore they might also come

from independent origins. Moreover, our phylogenetic analy-

sis demonstrates that the tyrosinase-containing proteins of

plants likely originated due to a LGT event from bacteria, cor-

roborated by these proteins exhibiting the same domain

architecture (see fig. 3).

Altogether, our data clarify the origins and evolutionary

history of the alternative respiratory strategies observed in an-

imals (fig. 4). Respiratory hemerythrins, arthropod hemocya-

nins, and molluscan respiratory tyrosinases originated

independently from enzymatic domains that were most

likely already present in the last common metazoan ancestor.

Although their function in early branching lineages that do not

possess circulatory systems needs to be elucidated (e.g., the

function of hemerythrins in the cnidarian N. vectensis or the

hemocyanin M domain in sponges and ctenophores), the co-

option of these domains for respiratory purposes occurred

independently, and most likely took place at the base of the

Protostomia (hemerythrin), the (Pan-)Arthropoda (arthropod

hemocyanins), and the Mollusca (molluscan tyrosinase “he-

mocyanins”). Accordingly, the similarities observed between

arthropod and molluscan hemocyanins (e.g., use of copper to

reversibly bind oxygen as a respiratory strategy, oligomeriza-

tion, and secretion to the hemolymph) are the result of con-

vergent evolution. The evolutionary history of hemerythrins

and hemocyanins is characterized by frequent losses, even

after a respiratory function has been acquired when a
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higher selective pressure against loss could be expected. For

instance, the use of tyrosinase as an oxygen transport mole-

cule seems to be absent in some groups of molluscs, such as

solenogasters and pteriomorphids (e.g., C. gigantea, as also

shown in this study) (Lieb and Todt 2008), in which it was

probably replaced by other respiratory proteins that have

evolved independently in these lineages. This is the case for

gastropods in the group Planorbidae, which lack hemocyanin

in their hemolymph and which utilize an extracellular hemo-

globin (evolved from an intracellular myoglobin present in the
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gastropod radula muscle) as an alternative strategy for oxygen

transport. This high molecular mass hemoglobin has a higher

affinity for oxygen than the ancestral hemocyanin (Lieb et al.

2006). Similar adaptations are also observed within the

Crustacea, such as in branchiopods, ostracods, copepods, cir-

ripeds, and decapods, which lost hemocyanins and evolved

hemoglobins as respiratory proteins (Terwilliger and Ryan

2001). In the water flea Daphnia magna, for instance, the

tandemly duplicated gene cluster of hemoglobin genes

shows multiple hypoxia inducible factor (HIF) binding sites,

which dramatically induce the expression of hemoglobins

when daphnids are exposed to hypoxia (Kimura et al. 1999;

Gorr et al. 2004). The extremely patchy distribution of these

proteins across the animal phylogeny can be partially under-

stood by the different biochemical properties of their oxygen-

binding domains and the changing physiological needs of

each particular animal lineage, which make one or the other

respiratory protein more effective in their function as oxygen

carriers. Recent studies show that many enzymatic genes have

complex evolutionary histories, with massive gene losses in

most of the eukaryote genomes sampled, but retention in

certain tips of the tree of life (Allen et al. 2011; de Mendoza

and Ruiz-Trillo 2011; Stairs et al. 2011; Attenborough et al.

2012). In contrast, transcription factors, signaling pathways,

and adhesion molecules, for instance, can be traced back in a

congruent phylogenetic pattern (Pang et al. 2010; Sebé-

Pedrós et al. 2010; Srivastava et al. 2010; Sebé-Pedrós et al.

2011). In some cases, the patchy phylogenetic distribution

observed in enzymatic families could be explained by multiple

events of LGT, although the phylogenetic signal is often not

strong enough. Together with gene structure and synteny

analysis we do not find strong evidences of LGT, with the

exception of plant tyrosinases (see above). Moreover, the

study of the evolution of respiratory proteins emerges as an

ideal model to study the interplay between molecular evolu-

tion, biochemical constraints, and physiological-ecological

needs.

Materials and Methods

All potential hemerythrin, hemocyanin, and tyrosinase se-

quences were identified by HMMER searches against the

Protein, Genome, and EST databases at the NCBI (National

Center for Biotechnology Information) and against completed

genome/transcriptome projects databases publicly available or

that are being conducted in our laboratories (sequences avail-

able in supplementary file S1, Supplementary Material online)

with the default parameters and an inclusive E-value of 0.05.

The retrieved sequences were aligned using MAFFT (Katoh

et al. 2002) L-INS-i algorithm, and then manually inspected

to remove those hits fulfilling one of the following conditions:

1) incomplete sequences with >99% sequence identity to a

complete sequence from the same taxa; 2) sequences that

showed extremely long branches in the preliminary maximum

likelihood trees; and 3) incorrect gene model predictions. The

final alignment was carried out using the MAFFT G-INS-i al-

gorithm (for global homology). Maximum likelihood (ML) phy-

logenetic trees were estimated by RaxML (Stamatakis 2006)

and the best tree from 100 replicates was selected. Bootstrap

support was calculated from 1,000 replicates. Bayesian infer-

ence analyses were performed with PhyloBayes (Lartillot and

Philippe 2004), using two parallel runs for 500,000 genera-

tions and sampling every 100. Bayesian posterior probabilities

(BPP) were used for assessing the statistical support of each

bipartition. The domain architecture of all retrieved sequences

was inferred by performing a Pfam scan with the gathering

threshold as cut-off value. The domain information was used

to assess the reliability of each sequence of the initial dataset,

to help define protein families according to their architectural

coherence, and to assess the level of functional and structural

diversification of hemerythrins, hemocyanins, and tyrosinases

across the eukaryote lineages.

Supplementary Material

Supplementary files S1, tables S1 and S2 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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