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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is an ag-
gressive cancer resistant to current therapies, including oxaliplatin 
(Oxa). Growing evidence supports the ability of cancers to harness 
sphingolipid metabolism for survival. Sphingosine-1-phosphate 
(S1P) is an anti-apoptotic, pro-survival mediator that can influence 
cellular functions such as endoplasmic reticulum (ER) stress. We hy-
pothesize that PDAC drives dysregulated sphingolipid metabolism 
and that S1P inhibition can enhance ER stress to improve therapeutic 
response to Oxa in PDAC.

Methods: RNA sequencing data of sphingolipid mediators from The 
Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Pro-
ject (GTEx) datasets were analyzed. Murine and human PDAC cell 
lines were treated with small interfering RNA (siRNA) against sphin-
gosine kinase-2 (SPHK2) or ABC294640 (ABC) and incubated with 
combinations of vehicle control or Oxa. In an orthotopic syngeneic 
KPC PDAC model, tumors were treated with either vehicle control, 
Oxa, ABC, or combination therapy.

Results: RNA sequencing analysis revealed multiple significantly 
differentially expressed sphingolipid mediators (P < 0.05). In vitro, 
both siRNA knockdown of SPHK2 and ABC sensitized cells to Oxa 
therapy (P < 0.05), and induced eukaryotic initiation factor 2α (eIF2α) 
and protein kinase RNA-like endoplasmic reticulum kinase (PERK) 
phosphorylation, hallmarks of ER stress. In vitro therapy also in-

creased extracellular high mobility group box 1 (HMGB1) release (P 
< 0.05), necessary for immunogenic cell death (ICD). In vivo combi-
nation therapy increased apoptotic markers as well as the intensity of 
HMGB1 staining compared to control (P < 0.05).

Conclusions: Our evidence suggests that sphingolipid metabolism 
is dysregulated in PDAC. Furthermore, S1P inhibition can sensitize 
PDAC to Oxa therapy through increasing ER stress and can potenti-
ate ICD induction. This highlights a potential therapeutic target for 
chemosensitizing PDAC as well as an adjunct for future chemoim-
munotherapy strategies.

Keywords: Sphingosine-1-phosphate; Pancreatic ductal adenocarci-
noma; Oxaliplatin; Endoplasmic reticulum stress

Introduction

The prognosis for pancreatic ductal adenocarcinoma (PDAC) 
patients remains poor with 5-year overall survival of less than 
10% [1]. Unfortunately, standard conventional chemotherapy 
regimens including FOLFIRINOX and gemcitabine/nab-pa-
clitaxel provide marginal survival benefit of only months as 
resistance commonly develops [2, 3]. Similarly, PDAC is re-
sistant to immunotherapeutic strategies either as monotherapy 
[4] or in combination with chemotherapy [5, 6]. Understand-
ing the underlying mechanisms of chemotherapy resistance is 
essential to develop strategies to improve outcomes for PDAC 
patients.

Growing evidence suggests that cancers harness metabolic 
pathways to promote survival [7-10]. Sphingolipids are bio-
active, structural components of the cell membrane involved 
in cell growth, cellular proliferation, and programmed cell 
death [11]. A concept of a “rheostat” between pro-apoptotic 
ceramides and pro-proliferative sphingosine-1-phosphate 
(S1P) [12, 13] has been well described [14], which may drive 
a shift between a pro-apoptotic or pro-survival phenotype in 
cancer cells depending on the balance of these two sphin-
golipid species [15-17]. Studies support the role of S1P in 
promoting PDAC cell survival and proliferation [18-22]. Of 
particular clinical relevance is inhibition of the sphingosine ki-
nase-2 (SPHK2)/S1P axis [23] via the small molecule inhibitor 
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ABC294640 (ABC). ABC is the only drug targeting S1P that 
has been used in an oncology clinical phase I trial, where it in-
duced a partial treatment response as monotherapy in cholan-
giocarcinoma and maintained stable disease in other advanced 
solid tumors [24].

Multiple antineoplastic agents such as cisplatin [25], ox-
aliplatin (Oxa) [26], and 5-fluorouracil (5-FU) [27] can induce 
cellular stresses leading to endoplasmic reticulum (ER) stress 
and activation of the unfolded protein response (UPR) [28]. 
Continued activation of UPR pathways results in apoptosis 
[29-32] and immunogenic cell death (ICD) [33, 34]. Interest-
ingly, ER stress and the ceramide/S1P axis intersect at mul-
tiple crucial junctions. ER stress and protein kinase R-like 
endoplasmic reticulum kinase (PERK) activation can induce 
ceramide generation [35]. Conversely, ER stress can induce 
S1P synthesis through upregulation of SPHK2 [36] and can 
utilize S1P as part of downstream signaling mechanisms [37]. 
Evidence from preclinical cancer models demonstrates that 
cancer cells can upregulate SPHK2 as a survival mechanism 
in response to ER stress [38], and increased intracellular S1P 
can promote cell survival in a PERK-dependent fashion [39].

Together, these data support the rationale for a compre-
hensive understanding of the role of sphingolipid metabolism 
in PDAC, as well as investigating the role of SPHK2/S1P as a 
potential therapy target for PDAC. We hypothesize that PDAC 
drives dysregulated sphingolipid metabolism and that S1P in-
hibition can enhance ER stress and ICD to improve therapeutic 
response to Oxa in PDAC. Thus, the objectives of this study 
were to first characterize sphingolipid dysfunction via an in 
silico approach across a large, combined RNA-seq dataset of 
normal pancreas and PDAC samples. Considering the relation-
ship between S1P and ER stress, we also explored the impact 
of in vitro antitumoral effect of S1P inhibition via ER stress 
on ICD induction, both alone and in combination with Oxa. 
Finally, we investigated the therapeutic effectiveness of S1P 
inhibition combined with Oxa using an in vivo orthotopic mu-
rine syngeneic PDAC model to understand the impact on anti-
tumoral immunity.

Materials and Methods

Analysis of The Cancer Genome Atlas (TCGA) and Gen-
otype-Tissue Expression Project (GTEx) RNA sequencing 
datasets

Publicly available RNA sequencing data were analyzed using 
normal pancreatic samples from the GTEx [40] and pancreatic 
tumor samples from TCGA [41]. The expected RSEM count 
data from the combined GTEx/TCGA dataset were download-
ed from the UCSC Xena platform [42] using UCSCXenaTools 
v1.4.8 [43]. The RNA sequencing data were back transformed 
into raw counts and filtered to remove lowly expressed genes 
and to include only expression data from protein coding genes 
[44]. An annotation of genes in the sphingolipid metabolic 
process as well as mediators of the S1P biosynthetic process 
was curated from Gene Ontology (GO: 0006665) [45] and 
KEGG (map00600) [46]. The count data for this annotation 

were converted to log2-counts-per-million values, and unsu-
pervised clustering of these genes was performed in R v4.3.0 
using Pearson correlation. Differential gene expression was 
performed using edgeR v3.42.4 [47] using the quasi-likelihood 
pipeline with false discovery rate correction at a nominal value 
of 0.05. The log2 fold change cutoff was set at a nominal value 
of 0.5.

To understand the clinical association between dysregulat-
ed sphingolipid metabolism and clinical outcomes of PDAC, 
clinical data for PDAC samples from TCGA [41] were ana-
lyzed using GEPIA2 [48] for associations between sphingolip-
id mediator genes and overall survival using Kaplan-Meier 
estimates.

Institutional Review Board approval is not applicable to 
this study. This study was conducted in compliance with all the 
applicable institutional ethical guidelines for the care, welfare, 
and use of animals (IACUC Protocol #AN-8645).

Cell culture

Human cell lines were obtained directly from the American 
Type Culture Collection (ATCC). Murine Panc02 cells were 
obtained from the NCI DCTD Tumor Repository (NCI, Fred-
erick MD) and KPC cells were graciously provided by Dr. 
Guttridge (Medical University of South Carolina, Charles-
ton, SC). MIAPaCa-2, BxPC-3, HPAC, Capan-2, Panc-1, 
and AsPC-1 cells were obtained from the ATCC. L3.6pl cells 
were graciously provided by L. Ellis (MD Anderson, Houston 
TX). MIAPaCa-2, HPAC, Panc-1, Panc02 and KPC cells were 
grown in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 10% fetal bovine serum (FBS), penicillin (50 
IU/mL), streptomycin (50 µg/mL) in a humidified incubator 
with 5% CO2 at 37 °C. BxPC-3 and AsPC-1 cells were grown 
in Roswell Park Memorial Institute (RPMI) 1640 media sup-
plemented with 10% FBS, penicillin (50 IU/mL), streptomycin 
(50 µg/mL) in a humidified incubator with 5% CO2 at 37 °C. 
Capan-2 cells were grown in McCoys A medium supplement-
ed with 10% FBS, penicillin (50 IU/mL), streptomycin (50 µg/
mL) in a humidified incubator with 5% CO2 at 37 °C. All cell 
lines used in this study were tested for mycoplasma contami-
nation at regular intervals using a PCR-based detection meth-
od and submitted for STR authentication at regular intervals.

Reagents

Oxa was purchased from SelleckChem and dissolved in dis-
tilled water. ABC was provided by Apogee Biotechnology Cor-
poration (Hummelstown, PA). ABC was dissolved in DMSO 
for in vitro treatment and in a formula of 46.6% saline, 46.6% 
PEG 400 and 6.6% Tween-80 for in vivo animal treatment.

SPHK2 knockdown in PDAC cells

SPHK2 knockdown in human PDAC cells was performed by 
transfection of small interfering RNA (siRNA) which target 
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human SPHK2 gene (targeted sequence: #1, CCCUGAAAC-
UAAACAAGCUUGGUAC and #2, CGUGCUUCCCAU-
GAUCUCUGAAGCT, 5′ to 3′) with Lipofectamine® 3000 
DNA Transfection Reagent (Invitrogen) according to the man-
ufacturer’s protocol. A non-target scrambled siRNA (scram-
bled sequence: UACAGUUUAUUGAUAUUCAAUAAAG, 
5′ to 3′) was used as a negative control of siSPHK2. Forty-
eight hours after transfection, cells were added with the indi-
cated treatment in a six-well plate. SPHK2 protein level was 
determined by immunoblotting with the specific antibody.

Cell viability assay

MTT assay was used to determine cell viability in vitro. Cells 
were seeded in 96-well plates at 1,000 - 3,000 cells per well for 
24 h, followed by indicated treatment for 24 to 72 h. Cells were 
then incubated with MTT solution (thiazolyl blue tetrazolium 
bromide, 5 mg/mL) (Tocris Bioscience) at different endpoints 
at 37 °C for 2 h. After the removal of medium and MTT so-
lution, 100 µL DMSO was added to each well. The absorb-
ance was read at 570/630 nm on a 96-well CLARIOstar (BMG 
Labtech) plate reader. Each experiment was performed at least 
in triplicates.

Immunoblotting

Cells were harvested and lysed in TNN buffer (50 mM Tris, 
0.25 M NaCl, 5 mM EDTA, and 0.5% Nonidet P-40), and total 
proteins of tumor samples were extracted in RIPA buffer (50 
mM Tris, pH 8.0, 150 mM NaCl, 0.5% sodium deoxycholate, 
1% Nonidet P-40, 0.1% SDS) with protease inhibitor cock-
tails. After sonication, the protein concentration was measured 
by BCA assay (Invitrogen). The lysates were boiled in SDS 
loading buffer, analyzed by sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE) gel, transferred 
to the polyvinylidene fluoride (PVDF) membrane (Bio-Rad) 
and immunoblotted with described antibodies. After imaging 
of the immunoblots, optical density (OD) was calculated for 
the detected protein bands using ImageJ by normalizing the 
target band against the loading control, and then comparing 
protein bands of interest against a control protein band.

The following antibodies were used for immunoblotting: an-
ti-SPHK2 antibody (#17096-1-AP, Proteintech), anti-phospho-
eIF2α antibody (#3597, Cell Signaling), anti-phospho-PERK 
antibody (#3179, Cell Signaling), anti-PERK antibody (#sc-
377400, Santa Cruz), anti-eIF2α antibody (#sc-133132, Santa 
Cruz), anti-GAPDH antibody (#sc-25778, Santa Cruz), anti-β-
actin antibody (#sc-47778, Santa Cruz), ER stress/UPR antibody 
pack (#NBP2-52746, Novus), anti-rabbit IgG-HRP (#7074, Cell 
Signaling) and anti-mouse IgG-HRP (#7076, Cell Signaling).

High mobility group box 1 (HMGB1) release detection

The Lumit™ HMGB1 (human) immunoassay kit (Promega) 
was used to detect HMGB1 released from cultured cell en-

vironment undergoing immunogenic cell death. Generally, 
10,000 - 15,000 cells were seeded in 96-well plate and followed 
by indicated treatment next day. The bioluminescence signal 
was measured on a 96-well CLARIOstar (BMG Labtech) plate 
reader within 45 min after the addition of Lumit™ substrate. 
Each experiment was performed at least in triplicates.

Orthotopic KPC in vivo model

This study was conducted in compliance with all the applica-
ble institutional ethical guidelines for the care, welfare, and 
use of animals. Male C57B1/6 mice of 7 to 8 weeks old were 
purchased from Jackson Laboratory and housed in a pathogen-
free, biohazard barrier facility according to protocols approved 
by the Institutional Animal Care and Use Committee at Baylor 
College of Medicine. During the surgery, mice were anesthe-
tized, and the left flank was shaved and sterilized with Beta-
dine. A 1-cm subcostal incision was made through the skin, 
subcutaneous tissues, and peritoneum. The pancreas was exte-
riorized, and 0.15 × 106 KPC cells in 0.03 mL PBS (Hyclone) 
were injected into the pancreatic tail using a sterile 0.5 mL in-
sulin syringe with a 28-gauge needle. Mice were administered 
pain medication for 3 days post-operatively and sacrificed if 
evidence of pain or suffering was present.

In vivo animal therapy protocol

After orthotopic injection of KPC cells was performed, 7 to 
10 healthy appearing mice were randomized to four treatment 
groups. Treatment was started 7 days after tumor implantation. 
Oxa at 3 mg/kg was intraperitoneally injected twice weekly 
and 50 mg/kg of ABC dissolved in the formula of 46.6% sa-
line, 46.6% PEG 400 and 6.6% Tween-80 was administrated 
by oral gavage three times per week. The same amount of for-
mula was given as vehicle control of gavage feeding. Mice 
were monitored for health during the treatment and euthanized 
3 weeks after the treatment to measure tumor burden.

Histological analysis

Following sacrifice, tumors were resected, fixed overnight in 
10% buffered formalin, set in paraffin blocks, and cut into 5 
µm thick sections. Sections were stained with standard hema-
toxylin and eosin staining. Sections were also stained with Ki67 
antibody (1:400 dilution, cat#12202, Cell Signaling), cleaved 
caspase-3 (CC3) antibody (1:400 dilution, cat#9661, Cell Sign-
aling), HMGB1 antibody (1:1,000 dilution, cat#6893, Cell Sign-
aling), CD3 antibody (1:400 dilution, cat# NB600-1441SS, No-
vus Biologicals), and CD8 antibody (1:400 dilution, cat#98941s, 
Cell Signaling). Stained slides were scanned using the EVOS 
M5000 Imaging System at × 40 magnification after white bal-
ance calibration. From each tumor sample, five randomly select-
ed regions chosen by a lab technician blinded to treatment groups 
were quantified for positively stained nuclei per high power field 
using QuPath. The intensity of stained nuclei was calculated by 
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thresholding the stained nuclear OD into low, medium, and high 
intensity staining and converted into an H-score.

Statistical analysis

Statistical analysis was performed using GraphPad PRISM 
v9.5.0. The unpaired two-tailed t-test or two-way analysis of 
variance (ANOVA) were used to compare the differences be-
tween experimental groups, where appropriate. The false dis-
covery rate was controlled using the two-stage step-up method 
of Benjamini, Krieger and Yekutieli [49], with a q-value < 
0.05 considered statistically significant. Similarly, for multiple 
comparisons, Tukey’s honest significant difference (HSD) test 
was used for multiple comparisons in two-way ANOVA, with 
an adjusted P-value < 0.05 considered statistically significant.

Results

Sphingolipid metabolism is dysregulated in PDAC

To evaluate the role of sphingolipid metabolic dysregulation in 
PDAC, we initially analyzed publicly available RNA sequenc-
ing data of normal and pancreatic tumor samples. In total, 167 
normal pancreatic tissue samples from GTEx and 183 pancre-
atic tumor samples from TCGA were included in this analysis. 
Unsupervised clustering of annotated sphingolipid metabolic 
genes discriminated between normal pancreatic tissue and 

PDAC (Fig. 1a). On comparison of PDAC and normal tissue, 
100 of the 140 sphingolipid metabolic genes were significantly 
differentially expressed with a log2 fold change greater or less 
than 0.5 (Fig. 1b). For example, serine palmitoyltransferase is 
the initial and also rate-limiting enzyme in global sphingolipid 
biosynthesis to form 3-ketosphinganine [50]. Two of its iso-
forms, SPTLC1 and SPTLC2, are significantly upregulated 
in PDAC. Other S1P biosynthesis pathway genes including 
ACER1, ACER3, and SPHK1 were significantly upregulated 
compared to normal pancreatic tissue (Fig. 1b). The immediate 
downstream receptors of S1P are five G-protein-coupled re-
ceptors known as sphingosine-1-phosphate receptors (S1PR1-
5) [51]. Four of the five S1P receptors (S1PR1-4) are also sig-
nificantly upregulated in PDAC compared to normal pancreas. 
Similarly, a panel of pancreatic cancer cell lines demonstrated 
strong expression of upstream and downstream S1P mediators 
(Fig. 2a). Based on the TCGA PDAC patient cohort, multi-
ple significantly overexpressed sphingolipid genes involved 
in S1P biosynthesis such as KDSR, SPHK1, and SPTLC2 
are significantly associated with worsened survival (P < 0.05) 
(Supplementary Material 1, www.wjon.org). Taken together, 
these data suggest that S1P biosynthetic pathways (Fig. 2b) are 
highly dysregulated in PDAC and likely contribute to aggres-
sive biology observed in patients with PDAC.

S1P signaling inhibition enhances the antitumoral activity 
of Oxa

Next, we investigated the antitumoral effects of S1P signaling 

Figure 1. In silico sphingolipid profiling in PDAC. (a) Unsupervised clustering of genes included in the sphingolipid metabolic 
annotation (GO: 0006665) demonstrates accurate discrimination of normal pancreas tissue from pancreatic tumor tissue using 
samples from GTEx and TCGA. (b) Volcano plot of differentially expressed genes in the sphingolipid metabolic annotation, with 
S1P biosynthetic pathway members identified. PDAC: pancreatic ductal adenocarcinoma; S1P: sphingosine-1-phosphate.
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inhibition in PDAC cell lines. Based on cell viability assay, 48-h 
knockdown of SPHK2 (siSPHK2) demonstrated no significant 
change in cell viability compared to controls across multiple 
PDAC cell lines. However, siSPHK2 significantly enhanced 
Oxa cytotoxicity in multiple cell lines (Fig. 3a). For example, 
in the MiaPACA-2 cells, the addition of siSPHK2 to Oxa de-
creased cell viability by 40% compared to cells treated with 
control scramble siRNA and Oxa (P-value < 0.001). SPHK2 
inhibition successfully sensitized PDAC cells to Oxa treatment 
at both high and low Oxa doses. The effect of SPHK2 inhibition 
was confirmed using an additional siRNA clone.

To further explore the ability of SPHK2-S1P inhibition 
to sensitize PDAC cells to Oxa, we tested the combination of 
ABC, a small molecular inhibitor of SPHK2-S1P signaling, and 
Oxa. While treatment with ABC alone inhibited cell viability, 
we observed that the combination of ABC and Oxa increased 
cancer cell cytotoxicity compared to Oxa alone across multiple 
PDAC cell lines. In Panc-1 and KPC PDAC cell lines, treat-
ment with ABC decreased cell viability by an additional 20% 
compared to treatment with 20 µM of Oxa alone (P-value < 
0.001, Fig. 3b). This effect was apparent at multiple doses of 
Oxa, similar to the combination of siSPHK2 with Oxa. Taken 
together, we demonstrate that therapeutic inhibition of SPHK2-
S1P signaling can enhance the antitumoral effects of Oxa.

S1P signaling inhibition enhances Oxa-induced ER stress 
and ICD in PDAC

Oxa is a well-described agent that drives ER stress [26] and 
UPR through phosphorylation [52] of the PERK/eukaryotic 

initiation factor 2α (eIF2α) axis [26], as well as immune ac-
tivation through ICD [33, 34]. Considering the enhanced cy-
totoxicity of combination Oxa and S1P inhibition in PDAC, 
we explored the role of S1P in mediating response to Oxa and 
its immunogenic effects. In both human and murine PDAC 
cell lines, Oxa administration induced ER stress and phospho-
rylation/activation of the PERK/eIF2α pathway (Fig. 4a). si-
SPHK2 alone mildly activated the ER stress pathway through 
PERK/eIF2α axis, with a twofold increase in phosphorylated 
eIF2α expression and phosphorylated PERK expression across 
both cell lines based on densitometry analysis (Fig. 4a, b). Fur-
ther, the combination of Oxa and SPHK2 knockdown induced 
a greater degree of ER stress and UPR activation compared to 
either treatment alone. For example, in the KPC cell line, com-
bination treatment produced a 1.3-fold increase in phosphoryl-
ated PERK expression and a twofold increase in phosphorylat-
ed eIF2α expression compared to the cells treated with control 
scramble siRNA and Oxa. Similar to the results with siSPHK2, 
ABC (Fig. 4b) increased expression of ER stress mediators and 
increased the response to Oxa. While either Oxa or ABC treat-
ment alone of KPC cells both increased protein expression of 
the PERK/eIF2α pathway, combination therapy leads to a 2.6-
fold increase in phosphorylated PERK expression and a five-
fold increase in phosphorylated eIF2α expression compared to 
controls. This, along with our previous data demonstrating the 
combined antitumoral efficacy of S1P signaling inhibition and 
Oxa, further supports the concept that inhibition of S1P signal-
ing can increase Oxa-induced ER stress in PDAC.

Considering the close relationship between ER stress and 
ICD [33, 34, 53, 54], as well as the strong influence of S1P 
signaling on ER stress, we investigated the ability of S1P to 

Figure 2. Sphingolipid mediator profiling across human and murine PDAC cell lines. (a) Western blot profiling of upstream and 
downstream mediators of S1P signaling. (b) Diagram of the biosynthetic pathway of S1P synthesis, with significantly differentially 
expressed members highlighted. PDAC: pancreatic ductal adenocarcinoma; S1P: sphingosine-1-phosphate.
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augment ICD. HMGB1 is a key mediator of ICD [55, 56]. 
Compared with control scramble siRNA, siSPHK2 resulted in 
a twofold increase in extracellular HMGB1 after 72 h (Fig. 
4b, P-value < 0.0001). Experimental results with ABC inhibit-
ing the SPHK2-S1P pathway produce similar results (Fig. 4c). 
Compared to DMSO control, treatment with ABC produced an 
almost threefold increase in HMGB1 release in MIAPaCa-2 
cells (P-value < 0.0001) and a twofold increase in KPC cells 
(P-value < 0.0001). ABC administration also led to signifi-
cant increases in HMGB1 expression compared to Oxa treat-
ment alone in both MIAPaCa-2 and KPC cell lines (P-values 

< 0.0001). This effect was sustained with combination treat-
ment, as treatment with ABC with Oxa maintained a twofold 
increase in HMGB1 release compared to Oxa alone across 
both cell lines (P-values < 0.0001). The increase in extracellu-
lar HMGB1 release is consistent across different doses of Oxa 
treatment, suggesting that S1P inhibition can potentiate the 
post-apoptotic release of HMGB1 associated with Oxa treat-
ment [57] to stimulate a more robust ICD response in PDAC. 
Taken together, our evidence supports the concept that S1P 
signaling inhibition can potentiate ICD induction from con-
ventional chemotherapy.

Figure 3. SPHK2 inhibition enhances cytotoxicity of Oxa in PDAC cell lines. (a) After transfection with either siSPHK2 (black 
bars) or scramble control (gray bars), MiaPaCa-2 and Panc-1 cells were treated with Oxa for 48 h and tested for cell viability 
based on MTT assay. Western blots confirming effective knockdown of SPHK2 using siRNA clones are displayed below. (b) 
PDAC cell lines were treated with combination of 20 µM ABC and Oxa for 48 h. Cell viability was assessed by MTT assay. For 
cell viability assay, data shown represent at least three biological replicates (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 
Oxa: oxaliplatin; PDAC: pancreatic ductal adenocarcinoma; S1P: sphingosine-1-phosphate; SPHK2: sphingosine kinase 2.
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Combination Oxa with S1P inhibition in an orthotopic 
PDAC model

Next, we investigated the in vivo antitumor effect of the com-
bination of S1P inhibition inhibitor and Oxa using an ortho-
topic KPC model (Fig. 5a). Mice with KPC tumors received 
treatment for 21 days at which time tumors were harvested 
and analyzed. As expected, Oxa reduced tumor weight com-
pared with vehicle control by 51% (Fig. 5b, P-value = 0.03). 
The combination of ABC and Oxa reduced mean tumor weight 
by 17% compared to Oxa, although this was not statistically 
different (P-value = 0.72). Considering the robust ER stress 
and ICD signaling in response to combination S1P and Oxa, 
we further evaluated the ability of ABC to potentiate Oxa ef-
fects on proliferation and apoptosis (Fig. 5c, d). Based on im-
munohistochemical staining, Oxa significantly reduced Ki67 
expression compared to the control group (P-value < 0.0001), 
consistent with the known anti-proliferative effects of Oxa. 
However, we did not observe significant differences in Ki67 
with ABC treatment either as monotherapy compared to con-
trol, or with combination treatment compared to Oxa alone 
(P-values = 0.13 and 0.64, respectively), suggesting that ABC 
did not exert an in vivo antiproliferative effect. In contrast, the 
combination of Oxa and ABC significantly increased apoptotic 
CC3 staining more than twofold compared to control (P-value 
= 0.025). This effect was not observed with either ABC or Oxa 
treatment alone, suggesting that ABC can potentiate the thera-
peutic benefit of Oxa in PDAC.

Considering the findings that SphK2 inhibition enhances 
cellular ER stress and ICD signaling, we explored whether 

ABC could enhance Oxa-mediated ICD and immune activa-
tion in the orthotopic PDAC model (Fig. 5c). Treatment with 
Oxa, ABC, or combined Oxa and ABC all lead to significantly 
increased intensity of HMGB1 staining compared to vehicle 
control (P-values < 0.001, < 0.03, and < 0.01, respectively), 
although there was no significant difference within these treat-
ment groups. We also noted a trend toward decreased CD3 
staining (P-value = 0.13) as well as a significant 33% decrease 
in CD8 staining (P-value = 0.028) with Oxa monotherapy 
treatment compared to vehicle control. However, the com-
bined administration of ABC and Oxa led to a robust increase 
in CD3 (P-value = 0.006) and CD8 (P-value = 0.04) compared 
to Oxa alone.

Discussion

Understanding chemoresistance mechanisms in PDAC is cru-
cial to improving therapeutic strategies to impact patient out-
comes [2, 3]. Cancers, including PDAC, effectively harness 
metabolic mediators such as sphingolipids to promote surviv-
al, metastasis, and therapy resistance [8, 14, 21, 22]. Consider-
ing the close relationship between SPHK2-S1P signaling and 
ER stress, we hypothesized that PDAC drives dysregulated 
sphingolipid metabolism and that S1P inhibition can enhance 
ER stress and ICD to improve therapeutic and immunologic 
response to Oxa in PDAC.

In the present study, we demonstrated sphingolipid me-
tabolism is highly dysregulated in PDAC compared to normal 
pancreatic tissue. The majority of genes in the S1P biosyn-

Figure 4. SPHK2 inhibition enhances oxaliplatin-induced ER stress in PDAC cell lines. (a) Loss of SPHK2 increases ER stress 
through eIF2α and PERK phosphorylation in human and murine cell lines. OD values for p-PERK and p-eIF2α are displayed 
below the relevant bands. (b) The S1P inhibitor ABC increases ER stress through eIF2α and PERK phosphorylation in human 
and murine cell lines. OD values for p-PERK and p-eIF2α are displayed below the relevant bands. (c) Loss of SPHK2 and (d) 
ABC administration increase extracellular HMGB1 release compared to control or Oxa, suggestive of increased ICD induction 
(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). ABC: ABC294640; ER: endoplasmic reticulum; OD: optical density; Oxa: 
oxaliplatin; PDAC: pancreatic ductal adenocarcinoma; S1P: sphingosine-1-phosphate; SPHK2: sphingosine kinase 2.
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Figure 5. SPHK2-S1P inhibition enhances antitumor activity of Oxa in an orthotopic KPC model. Following treatment for 21 days, 
orthotopic tumors were harvested and analyzed. (a) In vivo experimental schema. After orthotopic injection of KPC cells, mice 
were randomized to four treatment groups of 7 - 10 mice each, starting 7 days post-operatively. Oxa at 3 mg/kg (red arrows) 
was intraperitoneally injected twice weekly and 50 mg/kg of ABC (green arrows) was administrated by oral gavage three times 
per week. Tumors were harvested 3 weeks after tumor implantation. (b) Analysis of harvested tumor weights by treatment group 
(*P < 0.05, **P < 0.01). (c) Analysis of IHC stained tumor samples of positively stained nuclei/HPF for Ki67, CC3, CD3, and CD8 
between treatment groups. Intensity of HMGB1 staining was quantified by calculating an H-score (*P < 0.05, **P < 0.01). (d) 
Representative images of IHC stained images of tumors in different treatment groups. ABC: ABC294640; HPF: high power field; 
IHC: immunohistochemical; Oxa: oxaliplatin; S1P: sphingosine-1-phosphate; SPHK2: sphingosine kinase 2.
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thetic pathways and immediate downstream S1P receptors are 
significantly upregulated in PDAC, while key members such 
as KDSR, SPHK1, and SPTLC2 are associated with worsened 
survival. Combined with previous studies that observed higher 
levels of S1P in tumor [18] and its associations with PDAC 
tumor growth [19] and carcinomatosis [20], our evidence sug-
gests that the ceramide-S1P rheostat [14] is shifted to a pro-
survival phenotype, and strongly implicates S1P biosynthetic 
and signaling pathways as mediators of the aggressive tumor 
biology of PDAC.

In regard to the relationship between ER stress and SPHK2, 
we further explored one aspect of sphingolipid and S1P signal-
ing in PDAC by determining its function in mediating chemore-
sistance. Our experimental data demonstrate that targeting the 
SPHK2-S1P axis through either siRNA knockdown or adminis-
tration of the small-molecule inhibitor ABC results in increased 
chemosensitivity to Oxa at multiple doses and across multiple 
human and murine PDAC cell lines. We also demonstrate that 
while both Oxa and S1P inhibition increase ER stress and subse-
quent phosphorylation of the PERK/eIF2α pathway, the combi-
nation of the two therapies induces a greater degree of phospho-
rylation compared to either treatment alone. Taken together, our 
data suggest that physiologically, SPHK2-S1P signaling serves 
to blunt Oxa-induced ER stress and UPR activation. PDAC pos-
sesses a hypoxic, nutrient-deprived microenvironment [58] and 
exhibits a basal amount of ER stress [59] in response to its dis-
advantageous microenvironmental milieu. However, continual 
accumulation of misfolded proteins and persistent ER stress 
without resolution leads to apoptotic cell death [29-32]. Inhi-
bition of the SPHK2-S1P axis may further increase basal and 
Oxa-induced ER stress, leading to an enhanced pro-apoptotic 
state as observed in the in vivo experiment. These findings are 
consistent with similar cancer investigations that have studied 
the potentiation of Oxa by inducing greater ER stress [60, 61]. 
The increase in in vivo apoptotic markers in our PDAC tumors 
is also encouraging and suggests a chemosensitizing role for 
SPHK2/S1P inhibition.

In addition to chemoresistance, PDAC is plagued by re-
sistance to immunotherapy [4-6, 58]. Induction of ICD has 
been explored as a potential adjunctive therapy strategy [62-
64], and multiple drugs have been investigated but not yet 
clinically utilized for their ability to induce ICD [65], includ-
ing Oxa [66]. The potential for S1P inhibition as an immune 
adjunct is attractive, as the successes seen with immune re-
modeling from combination in other malignancies such as 
lung and breast cancer [67, 68] have not been reproduced in 
PDAC clinical trials [5, 6]. Compared to Oxa alone, in vitro 
SPHK2 knockdown and ABC administration result in a higher 
degree of phosphorylation of eIF2α and induce significantly 
higher levels of extracellular HMGB1 release, both hallmarks 
of ICD [34, 65]. Our in vivo results show a significant increase 
in the intensity of HMGB1 staining along with increased 
CD3 and CD8 marker expression in our tumors treated with 
ABC and Oxa. We also noted a significant decrease in CD8 
staining with Oxa monotherapy compared to vehicle control, 
which was ameliorated with combination treatment with Oxa 
and ABC. Oxa administration has been reported to increase 
the proportion of CD8 T cells in tumors [69-71]. However, in 
vivo Oxa models have also reported hematological toxicity and 

suppression of CD8 T cell populations at doses similar to those 
used in our experiment [72], suggesting that dose and timing 
optimization is important in designing future chemoimmuno-
therapy strategies. It is interesting to note that our combina-
tion therapy group with Oxa and ABC did not experience this 
reduction in CD8 staining. These data suggest that ABC may 
have a protective effect on CD8 tumor immune infiltrates, al-
though the mechanism behind this is not yet elucidated and 
requires further experiments. Taken together with the increase 
in apoptotic marker expression seen in the tumors treated with 
combination therapy, our data argue for a role in SPHK2-S1P 
signaling inhibition in increasing Oxa-induced ICD and im-
mune activation in PDAC tumors. ICD inducers such as Oxa 
have also demonstrated the ability to increase PD-1 and PD-L1 
expression [66] as well as improved outcomes in combination 
with immunotherapy in solid tumors [73, 74]. S1P inhibition 
represents an appealing strategy to potentiate Oxa-induced 
ICD and may also serve as an immune adjunct to support fu-
ture chemoimmunotherapy combinations in PDAC.

Conclusions

Our work highlights the significant dysregulation of sphin-
golipids in PDAC. Furthermore, our evidence implicates 
sphingolipid metabolism and S1P signaling in mediating 
chemoresistance to Oxa, as well as highlighting a potential 
novel therapeutic target for chemosensitizing PDAC. These 
findings also strongly support future efforts to explore the 
downstream immune modulatory effects of ER stress and ICD 
induction following therapeutic targeting of S1P. Finally, the 
immune activating properties of targeting S1P alone or with 
chemotherapy point to an exciting strategy to boost chemoim-
munotherapeutic strategies for PDAC.

Supplementary Material

Suppl 1. Differential expression of selected individual sphin-
golipid mediators with KRAS mutation and survival.
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