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Emergent solidity of amorphous materials as a
consequence of mechanical self-organisation

Hua Tong® "2, Shiladitya Sengupta?> & Hajime Tanaka® 2%

Amorphous solids have peculiar properties distinct from crystals. One of the most funda-
mental mysteries is the emergence of solidity in such nonequilibrium, disordered state
without the protection by long-range translational order. A jammed system at zero tem-
perature, although marginally stable, has solidity stemming from the space-spanning force
network, which gives rise to the long-range stress correlation. Here, we show that such
nonlocal correlation already appears at the nonequilibrium glass transition upon cooling. This
is surprising since we also find that the system suffers from giant anharmonic fluctuations
originated from the fractal-like potential energy landscape. We reveal that it is the percolation
of the force-bearing network that allows long-range stress transmission even under such
circumstance. Thus, the emergent solidity of amorphous materials is a consequence of
nontrivial self-organisation of the disordered mechanical architecture. Our findings point to
the significance of understanding amorphous solids and nonequilibrium glass transition from
a mechanical perspective.
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morphous solids, or glasses, are apparently rigid as a

crystalline state of matter, but at the same time, dis-

ordered as a liquid state. Such a combination of rigidity
and disorder remains a fundamental open question in condensed
matter physics and materials science despite serious efforts over
the years2. On the other hand, a crystal is in a thermo-
dynamically and mechanically equilibrium state. Its solidity is
maintained by the long-range translational order, which may
survive even under thermal noise as long as the long-range order
persists. A glass is, on the other hand, in a thermodynamically
nonequilibrium state without long-range translational order. It is,
therefore, puzzling what can be the general principle of organi-
sation for amorphous solids. Recently, a step forward towards the
solution may have emerged: the critical consequence of
mechanical stability in the inherent state (IS) of the glass, i.e., the
zero-temperature state in mechanical equilibrium in the absence
of the thermal fluctuations, has been shown in the form of long-
range static stress correlation, which decays as a power-law of 1/r4
in d dimensions3~7. This finding provides a theoretical basis for
the earlier studies of stress or strain correlations in both
simulations>*8-11 and experiments!®-14. More importantly, the
existence of long-range stress correlations may serve as the
foundation to understand the emergence of rigidity!>~17 of
amorphous solids and their unique properties observed in
experiments!>11, e.g., the excess of sound attenuation compared
with the Rayleigh prediction!®, but only if its relevance at finite
temperatures can be established.

The expectation that the low-temperature properties of solids
necessarily reflect the IS at zero temperature largely relies on the
solid-state physics of crystals!®. This view has been largely taken
for granted and widely applied to the studies of amorphous solids
and glass transition, e.g., in the celebrated potential energy
landscape (PEL) description for glassy systems2%21. However, its
validity is obscure because of the lack of long-range translational
order in amorphous materials. Indeed, the challenge comes from
two lines of recent researches on glasses. The first focuses on the
zero-temperature amorphous solid itself. Based on the vibrational
mode analysis?2-24, the study of plastic behaviours in strained
amorphous solids?>2%, and by means of variational arguments
and effective medium theory?”28, it is revealed that amorphous
solids are marginally stable?6-30, with soft modes at vanishingly
small frequencies and plastic responses at vanishingly small
deformations. We note that these features were observed for
various interaction potentials (repulsive and attractive)*2?3 and
for 2, 3 and 4 dimensions?4. Another research stream focuses on
the finite-temperature hard-sphere glasses from mean-field
theories31:32. Marginal stability of amorphous solids is predicted
to root in the Gardner transition from a normal glass phase into a
marginally stable one3!32, which leads to hierarchical dynamics
at low temperatures much more complex than simple vibrations
expected from the original PEL picture33. Consequently, the
marginal stability intrinsically cuts off the direct link between
properties of amorphous solids at zero and finite
temperatures>*35, although the concept of marginal stability may
not be universally valid in a strict sense for all amorphous
solids3®. Thus, we may conclude that there is actually no solid
base to deduce the properties of thermal amorphous solids
directly from the IS. Thus, whether the long-range stress corre-
lation exists in thermal amorphous solids remains a fundamental
open question; and if yes, what is the underlying physical
mechanism?

The emergence of long-range stress correlations in amorphous
solids has also been discussed as a consequence of the ideal
liquid-to-glass transition where the relaxation time 7 diverges, by
mode-coupling theories®!0-37, mean-field replica approaches!”
and the fluctuation-dissipation theorem33. However, it is argued

that the long-range character of stress correlations is established
through momentum propagation/conservation®1%-38, which is
therefore dynamical in nature, distinct from the above static
approach for the correlations*~7. The relevance of these mean-
field predictions in experimental glasses!?-14 and the relations
between these dynamical approaches and the above-mentioned
static ones remain to be examined. Concerning these questions, it
is of crucial importance to recognise that amorphous solids are
intrinsically out-of-equilibrium states of matter, the properties of
which depend on the history of preparations?. The critical
question is, therefore, concerned with the emergence of long-
range stress correlations across the protocol-dependent none-
quilibrium glass transition.

To this end, we systematically study the spatial correlation of
the shear-stress field and check the validity of harmonic
approximation in a temperature range in which the system
transforms from a supercooled liquid to a low-temperature solid-
state. We induce the nonequilibrium glass transition by con-
tinuous cooling with a constant rate of y, similarly to experi-
ments. Strikingly, we find the emergence of long-range stress
correlation below a cooling-rate dependent glass transition tem-
perature Ty(y), at which the system falls out of equilibrium and
gets trapped in a metastable glass state. However, the observed
long-range stress correlation in thermal amorphous solids cannot
be explained by straightforwardly applying simple harmonic
approximations to that in the inherent state at zero temperature.
This is because the correlation is established under giant anhar-
monicity, which is revealed in terms of the breakdown of force
balance and the substantial deviation from a harmonic energy
expansion, and more importantly, the fractal-like structure of
PEL. This fact indicates that the thermal fluctuations are non-
perturbative even at very low temperatures (T S T,/10), i.., for
most of the physically relevant temperature region of real glasses.
Therefore, the nature of the long-range correlation in finite-
temperature amorphous solids is intrinsically different from that
at zero temperature. Instead, we show that the long-range stress
correlation in thermal amorphous solids emerges as a con-
sequence of the effective mechanical equilibrium maintained by a
subset of particles, or by a fraction of degrees of freedom in the
high-dimensional configuration space. We identify the presence
of force-bearing networks which percolate across the none-
quilibrium (laboratory) glass transition Tg(y) upon cooling and
demonstrate its general relation with the long-range stress cor-
relation in the large system-size limit. Thus, our study crucially
establishes the emergence of long-range stress correlations under
giant anharmonic effects at finite temperatures, shedding new
light on the very nature of amorphous solids from the mechanical
perspective.

Results

To address the questions described above, we employ binary
particle mixtures interacting with finite-range repulsive poten-
tials, which is widely used in the context of both jamming tran-
sition at zero temperature and glass transition (see ‘Methods’” on
the details of this system and additional systems which are
employed to confirm the generality of our findings). The simple
nature of the potential allows us to study very large ensembles to
precisely access the emergence of long-range stress correlations
even under significant thermal fluctuations.

Emergence of the long-range stress correlation. We start with a
2D plot of the shear-stress correlation (o,(r)o,,(0)) in low-
temperature amorphous solids to give an overview of its spatial
structure, as shown in Fig. 1a. Here o,,(r) is the particle-level shear
stress defined in ‘Methods’. Alternatively, the coarse-grained stress
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Fig. 1 Long-range stress correlation at finite temperatures. a Spatial correlation of shear stress ¢,, at T=0.1. b Angle-averaged shear-stress correlation
CUX (r) at temperatures covering both liquid and solid regimes. The ensemble of configurations is generated by a constant cooling rate y =10-°. The data
colour changes from red to blue with a decrease in T. Three sets of data are highlighted in black colour, which, from top to bottom, correspond to T= 0, the
hypothesized ideal glass transition temperature To =~ 0.63, and slightly below the glass transition temperature Ty~ 1.3. The red solid lines are fits to the
power-law function of 1/r2, indicating the emergence of the long-range correlation below Tg. € Temperature dependence of integrated shear-stress
correlations for different cooling rates y. The y-dependent non-equilibrium glass transition is signalled by the onset of the growth of shear stress correlation
(see Fig. 5 below for the corresponding analysis of shear modulus). See text for detailed definitions.

field can be used, which would produce essentially the same
results®. Consistent with the zero-temperature analyses>*9, we see
a long-range four-fold anisotropic feature, which suggests
the existence of long-range stress correlation at finite tempera-
tures. To quantitatively follow the evolution of stress correlations
with the change of temperature, we perform an angular average of
the 2D correlation function while taking care of the anisotropy

C%(r) =-1L 5" d6(a,,(r)o,,(0)) cos(49)/<aﬁy>, where 0 is the
angle between r and x-axis. The behaviour of Caxy(r) in the

temperature range from the liquid regime too deep in the solid
phase is shown in Fig. 1b. We see that C%(r) decays extremely

fast in the liquid regime and a power-law feature develops, only
when the system falls out of equilibrium, or becomes glass. Data
sets for three characteristic temperatures (from top to bottom, T
= 0 corresponding to IS, T, the hypothesised ideal glass transition
temperature from the VFT fitting of the structural relaxation time,
and a temperature slightly below the glass transition temperature
T,) are highlighted in black colour together with fittings to the
power-law of 1/r2. This result is intuitively reasonable but at the
same time surprising because the marginal stability of zero-
temperature amorphous solids suggests that intrinsically different
features might be observed. Here we note that to resolve the
nontrivial (weak) stress correlation close to T, a very large
ensemble of independent configurations (~2000 trajectories) are
necessary for the calculations. Details on the convergence of
numerics and the finite-size effects are given in Supplementary
Figs. 4 and 5.

In practice, amorphous solids, or glasses, are formed at the
glass-transition temperature T, upon continuous cooling (or
compression), and their properties crucially depend on the
protocol. To access such nonequilibrium effects on the stress
correlations, we study the integrated correlation that characterises

the strength of the correlation C;, = ii zn dr27rr|C% ()], where L
is the linear size of the system, and we set L, = 4 to focus on
the far-field behaviour (so in principle, large L, is preferred).
Therefore, by definition, C;,, vanishes for correlations of a shorter
length scale than L_; . We note that the results are insensitive to
the choice of L; . It is also worth noting that, by definition, C;,;

diverges for a power-law correlation Co, = xr~2 in the limit of
L — co. Therefore, C,, should be regarded as a parameter

characterising the relative difference between different state
points; and hence it should be considered as the relative strength

rather than the absolute strength of shear-stress correlations. In
principle, C,; vanishes for short-range correlations and reflects
the overall amplitude « for the long-range power-law correlation.
The emergence of nontrivial shear-stress correlations across the
cooling-rate dependent glass transition is shown in Fig. Ic,
signalled by the sudden growth of correlation with decreasing
temperature (the noise level at high temperatures is due to
numerical errors). This result proves that the long-range stress
correlation emerges at the glass transition upon cooling, i.e., when
the system falls out of equilibrium and becomes trapped in the
metastable glass state. Considering that the cooling-rate depen-
dent glass transition is nonequilibrium in nature, the long-range
stress correlation at finite temperatures intrinsically inherits such
nonequilibrium character.

Giant anharmonic effects in thermal amorphous solids. To
directly examine whether the observed finite-temperature long-
range stress correlation derives from its existence at zero tem-
perature, which is rooted in the condition of mechanical equili-
brium, we calculate the remaining unbalanced force on each
particle. Specifically, for particle i, the rescaled remaining force is
defined as F!, = |>_£;l/{f), where f; is the force acting on

particle i from j, and (f) is the globally averaged strength of force
bonds. We show the probability distribution of the remaining
force in Fig. 2a. Obviously, F,, remains in the order of 1 even
deep in the solid phase, indicating the serious breakdown of force
balance. This result strongly suggests that the simple expectation
that the long-range stress correlation in thermal amorphous
solids can be explained by a harmonic approximation to the zero-
temperature mechanical equilibrium is not valid, unlike in the
case of crystals.

We further characterize the giant anharmonic effects from the
perspective of PEL. Starting from the finite temperature
configurations, we remove the thermal noise and relax the
system down to the nearest energy minimum, namely IS in the
basin of attraction?%-2!, using the fast inertial relaxation engine
(FIRE) algorithm3® (we confirm that the results are robust for
different parameters inside FIRE and another steepest-descent
algorithm?). We study the structure of the paths taken by the
system during the downhill motion in the dN-dimensional
configuration space. In particular, we measure three quantities of
interest: (1) the direct (end-to-end) distance from a state point in

the path to the corresponding IS Ar = /3 |r; — ¥S|*/N, where
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Fig. 2 Giant anharmonic effects in thermal amorphous solids. a Temperature evolution of the probability distributions of rescaled remaining force F,, on
each particle. F,, is defined as the ratio of the remaining force to the average strength of contacting forces, which measures the degree of deviation from
the mechanical equilibrium of each particle. Here only particles with at least three contacting neighbours (the minimal requirement for local stability) are
counted. We confirm that the others have little contribution to the stable force network. The same colour bar as in Fig. 1b is used. The data set
corresponding to the hypothesised ideal glass transition temperature To &~ 0.63 is highlighted in black colour as a reference. The lowest temperature is T=
0.1in this plot. Inset: Temperature dependence of the average rescaled remaining force (F,.) (top) and the globally averaged strength of force bonds (f)
(bottom). Note that (F,,) remains in the order of 1 even deep in the solid phase. b, ¢ Characterisation of the potential energy landscape. Finite-temperature
configurations, which correspond to the top-right end of each curve, are relaxed to the inherent states (IS) using energy minimisation (EM) methods.
b Relationship between contour distance As and direct distance Ar with respect to IS during EM for different initial temperatures T;. Power-law fits are
labelled by their corresponding exponent. We can see a crossover from a linear relation As ~ Ar close to IS to a fractal one As ~ Ar'35 away from IS. Inset:
As/Ar verse Ar replotted using the data from the main panel. The crossover from As ~ Ar (dashed line) to As ~ Ar'-35 (solid line) is more evident in this plot.
¢ Relationship between energy AE with respect to IS and Ar. The solid black lines indicate the quadratic (harmonic) relation AE ~ Ar. Here the ensemble of
configurations generated by a cooling rate y =102 is used for analyses, but the results are insensitive to the choices of y. All these analyses indicate that

the thermal systems in physically relevant temperatures (e.g., T;=0.2~3.0 in (b) and (c) are completely out of the harmonic regime).

r; and 'S are the positions of particle i in the path and in IS,
respectively; (2) the corresponding contour distance As=

STARy/VN with AR, = /S [x;(1) — £;(1 — 1) . Here, lindicates
the number of FIRE steps away from IS labelled /=0, the
summation goes from 1 to the state point in the path, and ry(])
denotes the position of particle i in step /, and I = 0 indicating IS;
and (3) the potential energy difference with respect to IS AE =
(U~ US)/N, with U and U'S being the total potential energy in
the path and in IS, respectively. We first examine the relation
between As and Ar, which reflects the geometry of PEL, as shown
in Fig. 2b. A linear relation As~ Ar is found close to IS (small
Ar side), suggesting a simple downhill path and hence a simple
geometry of PEL. Interestingly, at a larger distance from IS,
the curve crossovers to a power-law function As ~ Arér with
dppr, = 1.35, suggesting a fractal-like geometry of the downbhill
path*l. Therefore, in this regime, the morphology of PEL is
complex and shows a certain kind of self-similarity when
inspected with respect to IS. Within numerical precision, we
find the fractal dimension dpg; to be invariant when probed from
different initial temperatures. Importantly, we have confirmed the
same behaviour and scaling exponent in 3D harmonic and 2D
Lennard-Jones systems (see Supplementary Fig. 12), strongly
suggesting its relevance across different amorphous materials.
This result points to an intriguing universal fractal-like structure
of PEL in the physically relevant regions of the configuration
space (the starting points of the curves in the large Ar end). We
note that similar observations have been made for the trajectory
of evolving bubble packings*?, which may also be related to the
fractal free-energy landscape predicted in mean-field hard-sphere
glasses3!. Such a complex structure of PEL definitively rules out
the effectiveness of harmonic approximations to the under-
standing of the thermal amorphous solids based on their IS. This
finding calls for a reconsideration of the effectiveness of the PEL
framework for a quantitative understanding of amorphous solids,
not to mention the supercooled liquids.

Moreover, we show the relation between AE and Ar in Fig. 2c
to check the energy expansion. As expected, the quadratic relation
AE ~ Ar? is observed close to IS, which suggests that a harmonic
description is nevertheless practicable at low enough tempera-
tures, in line with previous studies*>*4. A strong deviation from
the harmonic approximation is observed at approximately the
same Ar where the crossover into a fractal-like PEL happens. This
result further confirms the giant anharmonic effects in thermal
amorphous solids in the temperature range studied (see
Supplementary Fig. 6 for further analysis on pressure). Con-
servatively, we estimate the crossover at Ar =102 (see Fig. 2b),
which corresponds to an energy scale AE < 1070 (see Fig. 2c) and
therefore a temperature scale 10~ (we note that temperature is in
the unit of 1073e/kp). This suggests that the harmonic
approximations are applicable only below a characteristic
temperature <1037, (see Fig. 1c for Ty), which is out of physical
relevance in our thermal systems, or in usual experimental
conditions!0-14, Therefore, in principle, there is no solid base to
deduce the properties of thermal amorphous solids from the IS
before we have a deep understanding of the fractal-like PEL.

Percolation of force-bearing network. The coexistence of the
long-range stress correlation and giant anharmonicity appears
paradoxical and counterintuitive. Without the condition of
mechanical equilibrium*>7, what can be the underlying
mechanism leading to the emergence of long-range stress corre-
lation? From the viewpoint of PEL, a possible physical picture is
that, although mechanical equilibrium is not valid for all degrees
of freedom unlike in the zero-temperature case, it is nevertheless
adequately satisfied in a sufficient fraction of them. Such a con-
dition, which we call ‘partial mechanical equilibrium’, may pro-
vide constraints necessary for the long-range stress correlation to
emerge in thermal amorphous solids. However, due to the
complexity of PEL, it is unfeasible to directly resolve the ‘partial
mechanical equilibrium’ in the high-dimensional configuration
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Fig. 3 Percolation of force-bearing particles across the nonequilibrium glass transition. a-c Spatial distribution of force-bearing particles at different
temperatures in the solid phase (a), at the critical temperature (b), and in the liquid regime (c). Configurations are from a cooling rate of y = 10~4. Particles
in the same force-bearing network are clustered and coloured according to the cluster size N.. Clusters with <3 particles are not shown for clarity.

d Temperature dependence of percolation probability P for different y. The y-dependent nonequilibrium glass transition is signalled by the percolation of
force-bearing particles. Inset: Collapse of P from different y when replotted as a function of the fraction of force-bearing particles f. @ Temperature

dependence of the relative size of the largest force-bearing cluster w=sy/N for different y, with s; being the number of particles involved in the largest
cluster. A strong similarity can be seen in comparison with the integrated stress-stress correlation in Fig. 1c. Inset: Collapse of w from different y when
replotted as a function of f. Therefore, while the percolation of force-bearing particles is controlled by T with different functional forms depending on y, it is

uniquely determined by f.

space. Instead, thus, we seek an underlying mechanism leading to
such a scenario in the real space.

In analogy with the force chains that are responsible for the
rigidity of granular packings*>#6, particles involved in a strong
force network are expected to be responsible for the rigidity of
thermal amorphous solids. These force-bearing particles (see
‘Methods’) may contribute to the effective mechanical equili-
brium and give rise to the emergence of the long-range stress
correlation. Indeed, we find that more and more force-bearing
particles emerge with decreasing temperature and form a space-
spanning network across the nonequilibrium glass transition, as
illustrated in Fig. 3a-c. Quantitatively, we characterise the
clustering of force-bearing particles and identify the percolation
transition, i.e., the formation of a system-spanning force-bearing
network, upon cooling with a constant rate of y. Figure 3d shows
the temperature dependence of the percolation probability (see
‘Methods’) for several different cooling rates. We see that the
percolation of force-bearing particles takes place at a y-dependent
glass transition temperature, in good agreement with the
emergence of the long-range shear-stress correlation upon
cooling (see Fig. 1c). Furthermore, of particular importance is
the largest force-bearing cluster, which controls the stress
correlation at long distances. In Fig. 3e, we show the temperature
dependence of the relative size of the largest force-bearing cluster
y=s;/N for several different y, with s; being the number of
particles involved in the largest cluster. We can see a close

similarity between Fig. 3e and Fig. 1c, strongly suggesting a direct
causal relationship between the force-bearing space-spanning
network and the long-range stress correlation. Before proceeding
to explore such an intimate relation (which we detail in Fig. 4a in
the following section), we note that while the percolation of force-
bearing particles appears to be controlled by temperature with
different functional forms depending on y (see the main panels of
Fig. 3d, e), it is after all uniquely determined by f, the fraction of
force-bearing particles in the system (see the data collapse in the
inset of Fig. 3d). The one-to-one correspondence of y with f
shown in the inset of Fig. 3e further indicates that the space-
spanning force-bearing network is responsible for the emergence
of rigidity in thermal amorphous solids upon cooling. This result
crucially establishes the underlying physical mechanism for the
long-range spatial correlations observed in experiments!0-14,

Relation between stress correlation and force network. Moti-
vated by the above result, we plot the integrated shear-stress
correlations (see Fig. 1¢) as a function of the relative size of the
largest force-bearing network vy in Fig. 4a. An excellent collapse of
the data for different y is obtained. This result decisively proves
that the shear-stress correlation, more specifically, its far-field
behaviour, is uniquely controlled by the largest force-bearing
network. In other words, the ‘partial mechanical equilibrium’
realised in the percolating force-bearing network gives rise to the
long-range stress correlation in thermal amorphous solids. Since
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Fig. 4 Percolation of force-bearing particles gives rise to long-range stress correlation. a Corresponding to Fig. 1c, the integrated shear-stress
correlations for different cooling rates y are plotted as a function of the relative size of the largest force-bearing network w=s;/N, with N =4096. The nice
collapse of the data at different y suggests that the shear-stress correlation, more specifically, its far-field behaviour, is uniquely controlled by the largest
force-bearing network. Note that many high-temperature data points of liquids have rather low but finite values of both the integrated correlation and y,
and the nonequilibrium glass transition is signalled by the rapid growth of both of them. However, the finite-size scaling of y (see b and ¢) reveals that the
non-zero values of both the integrated shear-stress correlation and y below the percolation threshold (left-lower side) actually originate from finite-size
effects. Therefore, in the large system-size limit, the filled circle at the origin should describe all liquid states. Then, the dashed line indicates the abrupt
emergence of percolated force-bearing network and long-range stress correlations across the nonequilibrium glass transition, and the solid line illustrates
the general relation between them for a further decrease of temperature. b Percolation probability P as a function of the fraction of force-bearing particles f
for different system-sizes N at y =104, Inset: Scaling collapse of P from different system sizes. Here d = 2 is the spatial dimension, v = 4/3 is the scaling
exponent, and f. = 0.46 is the critical occupation fraction. ¢ Corresponding to (b), the relative size of the largest cluster w=s,/N as a function of f for
different system sizes. The vertical and horizontal arrows indicate f. = 0.46 and the corresponding v, respectively. Inset: Scaling collapse of y from
different system sizes below the percolation transition, using the same f. and v as the inset of (b). The horizontal dashed line indicates y. ~ 0.4 at the
percolation threshold f.. Taken together, both (b) and (¢) indicate that, when N — oo, an abrupt formation of system-spanning force-bearing network takes

place across the nonequilibrium glass transition.

numerical simulations are inevitably limited to finite system sizes,
when we talk about long-range correlations, an important ques-
tion is how the observations are relevant in the large system-size
limit. To address this fundamental problem, we employ a finite-
size scaling analysis. As shown in Fig. 4b, the transition of per-
colation probability P from 0 to 1 as a function of the fraction of
force-bearing particles f becomes steeper with increasing the
system size N. Scaling collapse of P is realized in the inset of
Fig. 4b, indicating a well-defined percolation transition at f, =
0.46 in the large system-size limit. Correspondingly, the relative
size of the largest force-bearing network y as a function of f is
shown in Fig. 4c. The first observation is that the growth of y
with increasing f becomes more abrupt with increasing N. In
particular, the initiation of the growth of y approaches f. with
increasing N, since in the limit of N— oo a system-spanning
cluster with a finite value of y=s;/N is impossible before the
percolation transition. The scaling collapse of y below f. shown in
the inset of Fig. 4c confirms that a system-spanning force-bearing
network with y, = 0.4 emerges abruptly at f, as N — co. After the
percolation transition, we observe that y is controlled by f
without noticeable finite-size effects. Therefore, there is a well-
defined percolation transition of the force-bearing network at
f-=10.46 in the large system-size limit, which corresponds to the
nonequilibrium glass transition. Taking into account the finite-
size scaling of the percolation transition, we deduce the behaviour
of long-range stress correlations in the large system-size limit in
Fig. 4a. At high temperatures, i.e., before percolation, y stays at
zero and the stress correlation is short-ranged. Therefore, the
filled circle at the origin describes all liquid states. So the non-zero
integrated shear-stress correlation and y below the percolation
threshold (left-lower side of finite-size data points) actually ori-
ginate from the finite-size effects. Across the nonequilibrium glass
transition upon cooling, the abrupt simultaneous emergence of
percolated force-bearing network and long-range stress correla-
tions take place, which is indicated by the dashed line. In the

low-temperature solid phase, the stress correlation is long-ranged,
and its relation with the percolated force-bearing network is
illustrated by the solid line. With more particles involved in the
percolated force-bearing network, the overall amplitude of the
long-range stress correlation in thermal amorphous solids
increases with lowering the temperature. We note that in a
jammed system at zero temperature, almost all the particles
participate in the force-bearing network besides rattlers.

In the context of percolation transition, we find that the
percolation of force-bearing network is characterized by critical
exponents: v = 4/3 for spatial correlation (see Fig. 4b, ¢), 7=1.85
for cluster-size distribution, and a fractal dimension drf= 1.98 of
the percolating cluster (see Supplementary Fig. 8). In comparison,
the standard connectivity percolation is characterized by v =4/3,
7=187/91 and dr= 91/48%; and the standard rigidity percolation
by v=1.21 and d;= 1.86*849, Therefore, the critical exponents
we find in the percolation of force-bearing network appear to
differ from those of standard connectivity and rigidity percola-
tion, which indicates different universality classes that they
belong to. It is known that the critical exponents of random
percolation are very robust against the change of model
details*”°0. For example, they do not depend on the short-
range structure of the lattice (e.g., square or triangular) or the
type of percolation (site, bond or even continuum)*’. In other
words, it is only in the presence of long-range correlations that
the critical exponents of percolation transition can be changed.
Therefore, the different critical exponents observed in the
percolation of force-bearing particles are suggestive of a specific
type of long-range correlations, which we speculate is directly
related to the emergence of long-range stress correlation in
thermal amorphous solids.

We expect that the above analyses of the force-bearing network
are relevant for colloidal and granular systems in which the
interparticle interactions are dominated by finite-range repul-
sions. A generalisation to systems interacting with long-range
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attractions is not immediately straightforward. However, we have
performed analyses in systems with the Lennard-Jones potential
by focusing on the strong interacting bonds (see Supplementary
Figs. 13 and 14 and discussions accordingly). The preliminary
results positively support the effectiveness of our approach,
therefore pointing to its general relevance in the understanding of
amorphous materials. This situation is somewhat reminiscent of
the jamming transition, which is not directly inaccessible in
systems with Lennard-Jones interactions®!->2 but still relevant in
the understanding of properties such as the boson peak?3.

Emergence of non-zero shear modulus. The shear modulus is a
central mechanical property of condensed matter, which has been
intensively studied as an important characteristic of the liquid-to-
glass transition!>-17>455 As has been discussed in ref. >, the
apparent shear modulus physically originates from the constraint
in the configuration space, meaning that its value actually relies
on the time scale used in the calculation of Egs. (2)-(5) in
‘Methods’. To properly probe the shear modulus representative of
the ensembles that are generated using different cooling rates (see
‘Methods’; after each step of the quench, the system is equili-
brated for At, which controls the cooling rate y = AT/At), we use
different sampling times of At according to y. Since At for y =103
is too short for necessary averages, we focus on ensembles with
smaller y. At each temperature, 400 trajectories starting from
independent configurations are simulated to gain information of the
average and the fluctuation of shear modulus.

Figure 5a shows the temperature dependence of the average G
for several cooling rates. As expected, the onset of the non-zero G
depends on y, which is consistent with the onset of the nontrivial
shear-stress correlation (see Fig. 1c). Therefore, the long-range
stress correlation and the non-zero shear modulus are expected to
be the closely related mechanical facets of the rigidity of
amorphous solids. Interestingly, the fluctuation (standard deriva-
tion) of the shear modulus G of the corresponding ensemble
shows a peak at the nonequilibrium glass transition temperature,
as shown in Fig. 5b. This means that strong fluctuations of the
system exist among solid-like and liquid-like configurations, in
line with a recent study in polymer glasses®*. Therefore, this result
further supports that the solidity emerges as a result of the
nonequilibrium glass transition, which is not related to any
underlying thermodynamic phase transition.

Discussion
In summary, our results demonstrate the emergence of long-
range stress correlations in thermal amorphous solids even under
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giant anharmonic effects, which provides fresh insight for the
understanding of disordered solid materials. We show that the
long-range stress correlations emerge as a result of the protocol-
dependent (laboratory) glass transition when the system falls out
of equilibrium, which is hence intrinsically nonequilibrium in
nature and not related to any hypothesised thermodynamic phase
transition. Fundamentally, the giant anharmonic effects are
shown to be related to the fractal-like structure of the config-
uration space (PEL), which characterises amorphous solids as
peculiar states of matter, entirely different from the crystalline
counterparts. We propose that the nonequilibrium glass transi-
tion is accompanied by mechanical self-organisation towards
“partial mechanical equilibrium”, namely the effective mechanical
equilibrium realised in a subset of particles. We demonstrate that
the percolation of underlying force-bearing particles serves as the
physical foundation of the observed long-range stress correla-
tions. Such a percolation transition of force-bearing particles is
well-defined in the large system-size limit, providing a novel
mechanical rationale of the nonequilibrium glass transition. All
these findings may open up a way towards the fundamental
understandings of thermal amorphous solids and nonequilibrium
glass transition from the mechanical perspective.

It would be an interesting step forward to directly explore the
long-range stress correlation and especially the percolation of the
force-bearing network in experiments with single-particle reso-
lutions. With the significant advances in super-resolution optical
microscopy in recent years, both from experimental
techniques®”>8 and image-processing methods®®, such measure-
ments can be realised in colloidal systems with high-speed con-
focal microscopy®. The experimental setup which has been
widely used in the study of vibrational modes in colloidal systems
may be easily adjusted for this purpose®!-¢4. Besides, the pho-
toelastic granular system#> and the emulsion system!? under
external vibration, where force chains can be determined,
respectively, through photoelastic pattern and shape distortions,
may also be used as platforms for these measurements. The
generalisation of our analysis from simple glass formers to those
with complex interactions, e.g., glasses with directional bonding
or long-range interactions?, is another interesting direction to
explore in future studies. Stability of space-spanning mechanical
network in amorphous solids should play a key role in various
phenomena such as ageing and devitrification®® and mechanical
fracture. Recently, a similar scenario has been reported for the
emergence of elasticity in colloidal gels due to the mechanical
percolation®@%7, These findings seem to indicate a general origin
of apparent rigidity in disordered nonergodic materials made of
particles covering the glassy and gel states. They would shed new
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Fig. 5 Temperature dependence of shear modulus and its fluctuation. Temperature dependence of the shear modulus G (a) and its fluctuation G (b) for
different cooling rates y. The y-dependent nonequilibrium glass transition temperature is signalled by the onset of the growth of G and a peak of §G. Such a
y-dependent (laboratory) glass transition accompanied by the emergence of solidity is consistent with the characterization of spatial stress correlations
shown in Fig. 1c.
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light on not only the fundamental relationship between none-
rgodicity and rigidity but also the commonality and difference
between glasses and gels.

Methods

Models and simulation methods. We employ systems consisting of a 50:50 binary
mixture of elastic particles, which have been widely studied as a paradigmatic
model for amorphous solids and also serve as canonical glass formers®1->268, We
mainly study the harmonic repulsive systems, in which the interaction between
particles i and j is given by V(r;) = e(1 — rij/oij)z/Z, when r;; < 0j; and zero
otherwise. Here r;; is the separation between the two particles and o; is the sum of
their radii. Large and small particles have a diameter ratio 1.4 but the same mass
m>298, The length, mass, energy and time are in units of small particle diameter o,
m, € and y/mo? /e. The temperature is in the unit of 10~ 3¢/kg, with the Boltzmann
constant kg set to unity. We mainly focus on two-dimensional (2D) systems for the
sake of computational efficiency, with which we can test carefully the parameter
dependence of results, the finite-size effects, the convergence of numerics, and also
performed additional analysis of shear modulus. Systems ranging from N = 512 to
262,144 particles are used to track finite-size effects, and we mainly present results
of N=4096, unless otherwise specified. The volume fraction is fixed at ¢ =0.91
[= Zf\i] no? /AL?] so that the systems have well-defined inherent states at zero
temperature, and the glass transition is controlled by temperature. Molecular
dynamics simulations are performed in square boxes in 2D and cubic boxes in 3D,
with periodic boundary conditions in the NVT ensemble.

To check the general relevance of our conclusions, we have studied the
following systems for selected properties, all of which are 50:50 binary mixtures of
spherical particles with the size ratio of 1.4: (1) 2D harmonic systems of different
volume fractions ¢ = 0.86, 0.95 and 1.0 with the glass transition driven by
temperature; (2) 2D harmonic systems at fixed temperature T = 1.0 with the glass
transition driven by the increase of the volume fraction ¢; (3) 3D harmonic systems
with fixed volume fraction ¢ = 0.7 [= 3N , 70? /6L*] and controlled by
temperature; and (4) 2D systems with Lennard-Jones interactions at number
density p=0.61 and controlled by temperature. More details are given in the
Supplementary Note 2.

Configurations in mechanical equilibrium (T = 0), i.e. the inherent structures,
are generated by relaxing the finite-temperature systems to the nearest potential
energy minima using the fast inertial relaxation engine (FIRE) algorithm39.

Protocols to generate the glass state. To follow the evolution of stress corre-
lations in the temperature range from the simple-liquid regime to deep in the
solids, we construct the following scheme to mimic the formation of glasses

by cooling in experiments. The systems are first equilibrated at high temperature
(T = 3.0 with 7, = 47) for t = 10,000 and then cooled down to T'=0.1 in a stepwise
fashion. The cooling rate is defined as y = AT/At, where the temperature step is
fixed to AT = 0.1 and At is the equilibration time at each temperature point, which
controls y. Ten configurations with a time interval of dt = 5 are sampled at the end
of equilibration for each step of cooling. This simulation setup ensures the gen-
eration of well-defined ensembles with the degree of annealing controlled by y.
Because enhanced statistics is necessary to resolve the power-law correlation at
long distances and temperatures close to the glass transition (see Supplementary
Fig. 5), as many as 2000 independent cooling trajectories are simulated, covering a
range of cooling rates from y =103 to 10~°. We note that, particularly when
entering the glassy regime, even extremely long-time average does not work as
efficiently as our method to sample the configuration space. For extremely low
temperatures below T'= 0.1, the systems are directly quenched from T = 0.1 to the
target temperature and then equilibrated for At = 10%, and configurations are
sampled at the end of equilibration. Basic characterisations of glassy dynamics are
given in the Supplementary Figs. 1-3, providing two characteristic temperatures of
the system: the ideal glass transition temperature T = 0.63 from the
Vogel-Fulcher-Tammann fitting of relaxation time 7, the onset temperature

Ton = 2.1 from the crossover between the Arrhenius and non-Arrhenius beha-
viours, and the mode-coupling temperature Ty, = 1.2137. Accordingly, the tem-
perature dependence of shear-stress correlations (see below) shown in Fig. 1c
indicates that our simulations have accessed nonequilibrium glass transition with
T, lying both above and below the mode-coupling temperature. This is comparable
to the dynamic range covered by present-day colloidal experiments®%7.

Another protocol quite often used to generate a glass is to quench the system
directly from the high-temperature liquid state to the target low temperature. We
have also studied how the stress correlation evolves in this situation, which is
particularly relevant for the understanding of the long-range character as an
emergent property of the metastable glass states. See Supplementary Fig. 7 and
discussions accordingly for details.

Definition of particle-level shear stress. The particle-level shear stress for particle
i can be defined as aiy = vi, Z}fj;rxyj/Z, where V; is the local volume (area in 2D) of
particle i, f;; is the interacting force between particles i and j, x and y indicate the

corresponding Cartesian components, and the summation goes over all contacting
neighbours of particle i%71. V; can be calculated according to the Voronoi tessel-
lation”?, but in practice, we set V; to unity which does not alter the results®’!. The
macroscopic shear stress X, can then be written as the average of the contributions
from individual particles X, = Zil Vo' /V, where V represents the total area of
the system in 2D and volume in 3D. Here the kinetic term is neglected since it
trivially contributes only to short-range fluctuations when considering the spatial
stress correlations®. Alternative definitions can be found in the literature®$13, which
however do not affect the long-range stress correlations of interest.

Characterisation of force-bearing networks. To access the formation of effec-
tively stable force networks in thermal amorphous solids, we identify force-bearing
particles constrained by strong force contacts. An important observation is that
particles essential in the backbone of the force network are necessarily connected
by at least two strong force bonds*®. Therefore, we quantify the degree of local
force balance for each particle using the remaining force rescaled by the strength of
its two strongest force bonds: Fi, = [>=£5/(f:)> where f; is the force acting on
particle i from j, and (f;) is the averaged strength of the two strongest force bonds
of particle i. Particles with F,, <1 are expected to contribute to the stability of force
networks. To diminish the influence of thermal noises, we monitor the system over
a fast 8 (or, cage-rattling) time scale (t=50) and particles with F, <1 for a
probability higher than 50% are categorised as force-bearing ones. In a related vein,
similar ideas for the construction of effective force network in partial mechanical
equilibrium were successfully implemented in the study of jamming transition at
finite temperatures’3-7>,

Upon cooling, the fraction of force-bearing particles increases and gradually a
system-spanning network is formed below some critical temperature. We carry out
standard percolation analysis of the clustering of force-bearing particles in this
process?’. The occupation fraction fis defined as the fraction of the identified force-
bearing particles. Percolation transition is identified whenever a cluster spans from
one side of the system to the other in any direction. The percolation probability at T
or the corresponding occupation fraction f is defined as the proportion of
configurations in the ensemble which contain percolating clusters. We perform the
percolation analysis for ensembles generated by different cooling rates. For y = 103
and 104, different system sizes from N =512 to 16,384 are used for the finite-size
scaling analysis; whereas for y = 10> and 10~°, bounded by the computational
power, systems with N =512 to 4096 particles are analysed.

Characterisation of shear modulus. We characterize the behaviour of shear
modulus upon cooling across the non-equilibrium (laboratory) glass transition, in
parallel with the study of spatial shear-stress correlations. The elastic constants at
finite temperatures are calculated from the fluctuation-dissipation theorem as
follows>0:70:

—Cc

= CB afyk

C afyk

afyx + Cgﬁyw (1 )
where

i

1 PU 10U\ rargryr
B _ L _ L BY
Capye = VZ< (arzﬂ rii arv') ri? @)
i<y

Gz [(S5) - (S)(E)] @

af ¥ L K
Cs/syk = 2pky T(8ay O + OarcFp,), (4)
1 [3U\ o}
o = pkgTd,5 — VZ<$> o (5)
<]

Here the subscripts «, 3, y and « indicate the Cartesian components, the
superscripts i, j are particle indices, V is the area in 2D and the volume of the
system in 3D, p is the number density, U is the total potential energy function, r is
the separation between two interacting particles i and j, and ( - ) indicates the
ensemble average. In particular, Cgﬂyw is the so-called Born term from affine

deformations, Ciﬁyk is the nonaffine component, and CEMK is contributed by the

kinetic energy, which is found to be much smaller than the other terms in

amorphous solids’®. In this work, we focus on the shear modulus G = Crysyr
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