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Abstract

We explore a framework to model the dose response of allosteric multisite phosphorylation proteins using a single auxiliary
variable. This reduction can closely replicate the steady state behavior of detailed multisite systems such as the Monod-
Wyman-Changeux allosteric model or rule-based models. Optimal ultrasensitivity is obtained when the activation of an
allosteric protein by its individual sites is concerted and redundant. The reduction makes this framework useful for modeling
and analyzing biochemical systems in practical applications, where several multisite proteins may interact simultaneously.
As an application we analyze a newly discovered checkpoint signaling pathway in budding yeast, which has been proposed
to measure cell growth by monitoring signals generated at sites of plasma membrane growth. We show that the known
components of this pathway can form a robust hysteretic switch. In particular, this system incorporates a signal proportional
to bud growth or size, a mechanism to read the signal, and an all-or-none response triggered only when the signal reaches a
threshold indicating that sufficient growth has occurred.
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Introduction

Protein phosphorylation is a common form of post-translational

modification frequently used in nature to alter protein activity, for

instance by changing the electrostatic properties of the protein or

its spatial structure. The phosphorylation of the same protein at

multiple different aminoacid residues is also very common, and it

is found in proteins such as p53 [1], Sic1 [2], EGFR [3], Wee1 [4],

Ste5 [5] and many others [6].

The differences in the function of single-site vs. multisite

phosphorylation are not completely understood. Many multisite

proteins are involved in regulatory processes that can benefit from

the presence of bistability, hysteresis, or limit cycles, which require

sufficiently nonlinear interactions in addition to the right type of

feedback [7,8]. A reasonable hypothesis is that multisite phos-

phorylation can give rise to ultrasensitive dose responses, in a way

that would not be possible in a comparable single-site system

[9–13]. Many detailed mechanisms have also been proposed to

explain the role of multisite systems in the emergence of bistability

(for examples, see [14,15]).

On the other hand, such detailed multisite mechanisms are

normally not used as part of actual mathematical models of

biochemical interactions. This is because explicitly modeling

multiple sites usually involves the introduction of numerous

variables, one or more for each phosphorylation state, and realistic

models are often too complex already to justify this additional effort.

Systems that attempt to model biochemical reactions explicitly often

use the assumption that the protein has two states, one active and

one inactive, with a simple reaction to transform one into the other,

effectively assuming that the protein only has one site. Other models

are more phenomenological in nature and include, for example,

Hill function terms in the equation that are less clearly tied to the

actual biochemical reactions [16,17].

In this paper we describe a simple mechanistic approach for

modeling multisite allosteric proteins. This approach, named

modified fraction (MF) modeling, is capable of describing

ultrasensitive dynamics without introducing a large number of

additional variables. Under this framework one keeps track of the

fraction of modified sites in the protein, and the concentration of

active protein over time is estimated from this information. The

protein is activated in a way that requires the phosphorylation of

several but not all of the sites. The approximation becomes

increasingly precise as the number of sites increases, with good

estimates already for around four or more sites. In a sense, this

mechanism can be considered a one-variable, quasi-steady state

reduction of a model similar to the Monod-Wyman-Changeux

allosteric system [18], although uses of MF modeling outside of

MWC are also possible. The MF framework can also be extended

to other types of multisite modification such as ligand binding,

multisite transcription factor regulation, multisite methylation or

acetylation, ubiquitination, etc [19,20].

Perhaps the best way to test the versatility of a modeling tool

such as the one proposed is to implement it in an actual

biochemical system. In the current work we describe a detailed

mechanistic model of a cell size checkpoint. Cell size checkpoints

halt the cell cycle at specific points until sufficient cell growth has
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occurred [21,22]. The mechanisms by which cell size checkpoints

operate are poorly understood, and it is unclear whether they

monitor actual cell size or parameters more closely related to the

extent or rate of growth. In budding yeast, growth of a new cell is

initiated when a daughter bud is formed on the surface of the cell

[23]. The daughter bud initially grows in a polar manner, with all

growth directed to the bud tip. Growth of the bud eventually

switches to isotropic growth, in which the bud grows over its entire

surface (see Figure 1A) [24]. The timing of the switch determines

the duration of polar growth, which influences cell size and shape.

It has been proposed in recent work by one of the authors that a

cell size checkpoint controls the timing of this switch [25]. This

checkpoint is the subject of our model. The variables are

illustrated in Figure 1B and described in more detail below. See

Tyson and Novak [26] for an accessible introduction to the

systems-wide modeling of cell cycle checkpoints.

The MF approximation equation was first developed in [27], in

the context of multisite systems with independent modification

sites, with an emphasis on the estimation of the Hill exponents of

sequential and nonsequential systems and on the comparison of

their qualitative behavior. A major advance of the current paper,

beyond the application to the cell cycle checkpoint, is to extend

this work to cooperative and allosteric systems. Such systems are

by definition non-independent, since the modification of one site

accelerates the rate of modification of its neighbors. Cooperative

systems are also more common and much better characterized

than independent ones. The validation of the approximation in

cooperative systems is ultimately based on a computational

comparison of the MF reduction with detailed cooperative models

having n or 2n variables.

In the first two Results sections we carry out a description of the

modified fraction method to model multisite systems, and we

compare simulations of the reduced model with those of a detailed

mechanistic model. In the remaining two Results sections we carry

out a mathematical analysis of the proposed checkpoint signaling

pathway. We hypothesize that this interaction pathway has the

capacity to produce a bistable signal responsible for a sudden

switch from polar to isotropic growth, once the bud has undergone

sufficient polar growth. The model presents several desirable

qualities for a checkpoint, in particular a clear downstream signal

when a sufficient polar bud growth has occurred.

Results

The MF framework describes a compact multisite
mechanism

We start by describing the assumptions on our model in the

context of multisite phosphorylation (although it could also be

applied to other irreversible covalent modifications as well as

noncovalent ligand binding). Suppose that a protein substrate P is

phosphorylated by a kinase E at n possible sites and dephosphor-

ylated by a phosphatase F . The system is assumed to be

nonsequential, so that there are 2n different phosphoforms of P,

and the number of sites is thought to be relatively large e.g. n§5.

The system is cooperative in the sense that site phosphorylation

accelerates the phosphorylation of neighboring sites. Since the

number of sites is relatively large, the activation is thought to be

cumulative and the effect of any individual site is assumed to be

small. The sites are assumed to be equivalent to each other, in the

Figure 1. The Rho1 Network. A: A yeast bud grows first in a
particular direction (polar growth) and eventually switches to growth in
all directions (isotropic growth). B: The Rho1 signaling pathway starts
with inactive Rho1 flowing into the bud attached to membrane vesicles.
Rho1 is then activated and binds to Pkc1, forming an upstream system.
The downstream system describes the activation of the PP2A/Zds1
dimer leading up to the modification of cell cycle regulatory protein
Cdk1. Multiple intermediate feedback loops are shown to allow for
robust hysteretic and switch-like behavior.
doi:10.1371/journal.pcbi.1003443.g001

Author Summary

A large number of proteins in the cell are modified post-
translationally by phosphorylation at multiple specific
locations. This can help bring about interesting dynamical
behaviors such as bistability or all-or-none responses to
stimuli. Such behaviors are in turn important for cellular
decision-making, differentiation, or the regulation of
cellular processes. In this paper we propose the use of a
specific technique for modeling allosteric multisite pro-
teins, which can be thought of as the reduced version of a
more detailed set of reactions. After validating this
technique computationally by comparison to more de-
tailed systems, we apply it to a new model of a signal
transduction pathway with several multisite proteins. The
model is concerned with a mechanism in budding yeast
that is thought to measure the extent of daughter bud
growth and send a signal to initiate mitosis when sufficient
growth has occurred. Using the given framework we
derive an analytically tractable model that creates the
desired all-or-none signal. Overall, we give quantitative
support to a newly discovered biochemical pathway, and
we show the utility of the new modeling framework in the
context of a realistic biological problem.

Compact Multisite Modeling of Cell Size Checkpoint
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sense that the rate of phosphorylation and dephosphorylation is

similar across all sites and that no site has a stronger effect on

substrate activation than other sites. The activation of the substrate

may be due to binding to another molecule or body, such as the

cell membrane. It could also be due to an internal structural

change that allows the substrate to interact differently with other

proteins. Thus the active protein concentration can be defined as

the concentration of the protein bound to a particular molecule or

in a particular molecular state.

Suppose that the phosphorylations lead to the concerted,

redundant activation of the protein. That is, multiple phosphor-

ylations are necessary for activation (concerted), and not all sites

need to be phosphorylated for full activation (redundant). We

define the activity function h : ½0,1�?½0,1� such that the fraction of

active protein with i phosphorylated sites is given by h(i=n).

There are many systems that likely fall within this general

framework. For instance, Ste5 is a scaffold protein in budding

yeast with n~8 phosphorylation sites, which relays a pheromone

response only when it is bound to the membrane [28,29]. When

phosphorylated by Cdk1, it tends to unbind from the membrane,

shutting down its activity. The sites are predicted to lie on an

unstructured region of the protein and appear to act by changing

the protein’s bulk electrostatic properties. In the paper [29], it was

shown through site-directed mutagenesis that around five or more

phosphorylations are necessary and sufficient for deactivation.

Another recent example is the multisite phosphorylation of Cdc25

by Cdk1 in fission yeast, which was similarly studied in detail by

mutating individual sites [30].

According to the modified fraction framework, we estimate the

concentration of a particular protein state from the overall fraction

of modified sites. For instance, if the protein has n~3 sites and the

fraction of phosphorylated sites is p, then the fraction of protein

with only the first and last sites phosphorylated is roughly

P101

�PP
&p2(1{p):

Here �PP is the total protein concentration. This is not an equality

since cooperative effects introduce correlations among the sites, i.e.

the sites are not independent of each other, but it is an

approximation assuming cooperative effects are sufficiently weak.

Multiplying on both sides by �PP and adding over all possible

phosphoforms with i phosphorylations, the concentration Pi of

proteins with exactly i phosphorylated sites out of a total of n sites is

Pi&�PP
n

i

� �
pi(1{p)n{i:

One can estimate the overall concentration P of active protein as

P~
Xn

i~0

h
i

n

� �
Pi&�PP

Xn

i~0

h
i

n

� �
n

i

� �
pi(1{p)n{i:

A key aspect of this formula is that if we denote the right hand side

by fn(p), it can be shown that fn(p) converges to �PPh(p) as n increases

[31]. This gives the approximation

P&�PPh(p), ð1Þ

which becomes increasingly precise for large n. Notice that the

different quantities in this formula can potentially be measured in

the lab - the active protein concentration via an activity assay, the

total protein concentration via Western blot, and the activity

function h(x) through site-directed mutagenesis.

A timescale decomposition argument can be made to use this

approximation away from steady state. If p(t) is the fraction of

active sites over time, and the timescale of protein activation is

much faster than the rate at which p(t) changes, then one can

approximate P(t)&�PPh(p(t)) at any given time using the same

formula. This produces a convenient method for modeling

multisite systems under the given assumptions by keeping track

of the variable p(t), without creating n, let alone 2n variables. On

the other hand, if p(t), or any other process affecting protein

activation, is at least as fast as protein activation itself, then

nontrivial dynamics might take place such as limit cycle

oscillations, and the approximation can introduce errors.

It is necessary to calculate the fraction of phosphorylation p
itself. Assuming linear rates of phosphorylation and dephosphor-

ylation for p, one obtains the system

pinP
aE

bF

p:

That is, dp=dt~aEpin{bFp, where pin~1{p is the fraction of

inactive sites. This is the default for the model, although any other

rate equation for dp=dt can be used, including Michaelis-Menten

complex formation at the level of the individual sites.

As for the activity function h(x), any sigmoidal function can be

used, including functions measured directly by experiments. By

default we assume the following form, which we will derive in the

next section:

h(x)~
ecx

dzecx
:

See also [5,9,27] for other uses and derivations of this formula in

the literature. The function h(x) can actually be highly switch-like

for large c, which illustrates how small increases in the kinase E
can result in large activity changes in the protein P, unlike linear

rate models with only one site. Other forms for the activity

function h(x) have effectively been considered by by Kapuy et al

[32], and also by Wang et al [10].

In Figure 2A we show the relationship between the fraction of

phosphorylated sites p and the active protein concentration P for a

particular choice of the MF parameters a,b,c,d, using the

approximation formula P&�PPh(p) (and chosen to fit the detailed

model described in the next section for n~6). Notice that the

activation is concerted and redundant, in that a minimal threshold

of phosphorylation is required for activation, and activation is

reached for less than full phosphorylation.

The MF model reproduces the dynamics of detailed
allosteric systems

A validation of the performance of this model for n~6 is now

shown in Figure 2 in the context of a system similar to the classical

and widely used Monod-Wyman-Changeux model of an allosteric

multisite protein [18]. The original MWC model describes the

binding of oxygen to the different sites of hemoglobin and the

allosteric transitions of this protein between two different states.

Rather than modeling oxygen binding, a protein with i
phosphorylations is assumed to change between an active

conformation Ai and an inactive conformation Ii. Each of these

forms can also be phosphorylated or dephosphorylated at the rates

Compact Multisite Modeling of Cell Size Checkpoint
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given in the diagram in Figure 2B. Although the model is

interpreted in a different way from MWC, from a mathematical

point of view it is almost identical. The coefficient ev1 accounts

for an assumption that the protein is phosphorylated at a faster

rate when it is active than when it is inactive. The coefficients

n,n{1 etc represent the fact that this is still a nonsequential model:

for instance, A0 can be phosphorylated at n different sites, so the

phosphorylation rate is multiplied by n. See the derivation of this

model from more basic principles in Text S1, and a recent review

on multisite systems by one of the authors [28].

Using this multisite model, we now derive parameters for a

corresponding MF model. For instance, one can define the ‘average’

phosphorylation rate at a given phosphorylation site, regardless of

whether the protein is active or inactive, a~�aa
ffiffi
e
p

, and the

dephosphorylation rate b~�bb. By way of derivation of the activity

function h(x), suppose that a protein with i phosphorylations is

switching between active and inactive form,

Ai P
L2

L1ei

Ii:

At steady state, we assume that this exchange is balanced and

calculate L1eiAi~L2Ii. Then the fraction of active sites with i
phosphorylations at steady state is

h(i=n)~
Ai

IizAi

~
L2

L1eizL2
~

e{i

L1=L2ze{i
~

e{n(ln e) i
n

L1=L2ze{n(ln e) i
n

:

In other words h(x)~ecx=(dzecx), where c~{n ln e and

d~L1=L2. See Text S1.3 for more details. In particular, the

ultrasensitive behavior of the function generally increases with the

number of sites.

Figure 2. Comparison of MWC and MF models. A: The MF approximation formula is used to relate the fraction of phosphorylated protein p with
the active protein concentration P. B: A detailed phosphorylation model structurally similar to the Monod-Wyman-Changeux model [18] is used to
validate the MF approximation. C: The full MWC model is compared with the MF approximation at steady state as a function of kinase concentration

E. Also for comparison, a model in which it is simply assumed that the protein has a single site. Here n~6, e~0:1, �PP~12 nM, F~1 nM, L1~e{n=2 ,
�aa~�bb~L2~1 for the detailed model, and a~

ffiffi
e
p

, b~1, c~{n ln e, d~L1 for the MF approximation. D: Comparison of the error between the MF and
the MWC model, for different values of n and e and the remaining parameters computed as above. E: Calculation of the Hill exponent of the MF

model for different values of n, e. In each case L1~e{n=2 , to allow for half maximal activation with n=2 phosphorylations, and �aa~�bb~L2~1. F: The
default equations for the MF approximation. The active protein concentration P is a function of the fraction of active sites p and the total protein �PP.
The values of p are calculated via a simple chemical reaction, and a form for the function h(x) is suggested.
doi:10.1371/journal.pcbi.1003443.g002

Compact Multisite Modeling of Cell Size Checkpoint
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At any given time, the active protein concentration of the full

model is defined as PMWC~A0z . . . zAn. In Figure 2C we

compare the full 12-variable MWC model for n~6 with the

corresponding MF approximation. For every value of the input

kinase concentration, the resulting concentration of active protein

P is plotted at steady state. Notice the close similarity between the

two graphs, which is even more surprising since MF is essentially a

one-variable model.

For comparison, we also plot the behavior of an overly

simplified but all too commonly used model, in which the

substrate is assumed to have a single phosphorylation site instead

of n sites, and it is modeled according to the reaction

PinP
aE

bF

Psingle site

using linear reaction rates. Notice that the behavior of this single-

site model in Figure 2C is very different from that of the MWC

model, and that any switch-like behavior in the response is lost.

This can have important consequences regarding the existence of

multiple steady states, hysteresis, oscillations etc in the context of

larger systems, which will be illustrated below. It is easy to show

that Psingle site&�PP p, i.e. it corresponds to PMF when h(x)~x. It

should be noted that if the single site system is modeled using

Michaelis-Menten reactions rather than linear rates, it could have

strongly ultrasensitive behavior in the saturation regime via zero-

order ultrasensitivity [33]; see the Discussion section for more

details.

We carried out a calculation of the distance between PMF and

PMWC for many different combinations of the number of sites n
and the allosteric parameter e. For every such set of parameters,

the two graphs were plotted at steady state as a function of E, and

the error maxE DPMWC(E){PMF (E)D=�PP was calculated in

Figure 2D. Notice that the approximation is within 1% precision

for arbitrary n and ew0:2. On the other hand, in order to obtain

high ultrasensitivity it is required that n be relatively large and/or e
be small (Figure 2E). See also Figure S2, where additional

parameter variations are explored over four orders of magnitude

using the same type of graphs, with similar results.

It is worth comparing this methodology with the approach

known in the literature as rule-based modeling, where a series of

chemical reactions is defined using a streamlined algorithm, and

high-powered computing is used to handle the resulting large

number of variables; see e.g. BioNetGen [34]. The advantage of

this method is that a large number of reactions can be defined and

handled this way, including complex parameter optimizations.

One disadvantage is that the combinatorial explosion resulting

from combining reactions can sometimes exceed the computa-

tional power. Another is that the large number of equations makes

any mathematical analysis difficult, if at all possible.

It is interesting that the MWC model can actually be described

in terms of rule-based modeling. In Figure S1A we describe a

series of chemical reactions, over all possible phosphoform states,

and we show in Text S1 that this system is in fact equivalent to the

MWC model. Thus MF can also be seen as the 1-variable

reduction of a system with 2nz1 variables and a much larger

number of reactions.

Control theoretic analysis of the pathway reveals two
robust switches

In this section, we will embed the MF system within increasingly

complex systems of equations. We consistently use upper case for

proteins and lower case for modified fractions of sites. However,

we will first provide some technical experimental background

regarding this specific pathway.

Background: The cell size checkpoint pathway. Any

theory for cell size checkpoints should ideally account for several

mechanistic features. First, cell size checkpoints should translate

growth into a proportional checkpoint signal. Second, they should

read the signal to detect when it reaches a threshold that indicates

when sufficient growth has occurred. Finally, when the threshold is

reached the checkpoint should trigger a switch-like cell cycle

transition. All of these mechanisms should be robust and adaptable

to function in cells of diverse size and shape, and under conditions

of fluctuating growth rates.

It was recently hypothesized that the timing of the polar to

isotropic growth transition described in the introduction is

controlled by a mitotic cell size checkpoint. Mitotic cell size

checkpoints are controlled by Wee1 and Cdc25 [25]. Wee1 is a

protein kinase that delays entry into mitosis by phosphorylating

and inhibiting Cdk1, while Cdc25 is a phosphatase that promotes

entry into mitosis by dephosphorylating Cdk1. The budding yeast

homologs of Wee1 and Cdc25 are known as Swe1 and Mih1;

however, for clarity we will use their more commonly known

names. In this model, a checkpoint signal originates at the site of

polar membrane growth in the bud, and downstream components

read the strength of the signal and trigger activation of Cdk1 when

it reaches a threshold, using the pathway described in Figure 1B. A

switch-like increase in Cdk1 during entry into mitosis is postulated

based on evidence of this qualitative behavior of Cdk1 in other

systems. Also, blocking polar membrane growth causes a Wee1-

dependent arrest before mitosis, which indicates that entry into

mitosis is linked to membrane growth [25]. The timing of the

switch from polar to isotropic growth determines the duration of

polar growth, which influences cell size and shape. In this sense, it

is a cell size checkpoint.

Signaling is thought to be initiated by delivery of the GTPase

Rho1 to the site of membrane growth. Rho1 is delivered by

vesicles that are sent to the bud and fuse with the membrane to

increase its size [35]. Therefore the inflow of Rho1 is proportional

with the rate of polar membrane growth. Rho1 on vesicles is

inactive and it undergoes activation when vesicles fuse at the site of

growth [35]. Active Rho1 binds protein kinase C (Pkc1), a member

of the protein kinase C family, and induces it to undergo

autophosphorylation [36]. Importantly, phosphorylation of Pkc1 is

dependent upon and appears to be proportional to membrane

growth, which suggests that Rho1 relays proportional checkpoint

signals regarding the extent of membrane growth [25]. This

scenario describes the upstream component of the pathway in

Figure 1B.

Regarding the downstream component in Figure 1B, it is

thought that hyperphosphorylation of Cdc25 by a poorly

understood kinase inhibits its activity [37,38]. Thus, a key event

necessary for initiation of early mitotic events is dephosphorylation

of Cdc25. This dephosphorylation is carried out by the

phosphatase PP2A (more precisely, the heterotrimeric complex

PP2ACdc55 that includes the Cdc55 regulatory subunit [25]). PP2A

is in turn activated by the upstream Pkc1 protein. Activation of

PP2A is also dependent upon an accessory protein named Zds1

[25,38] (Zds1 has a redundant paralog named Zds2, which will be

identified with Zds1 in the model). Zds1 forms a tight stoichio-

metric complex with PP2A [25]. It also binds to Pkc1, although

that bond is not included explicitly in the model. PP2A is also

believed to dephosphorylate Pkc1. Thus, inactivation of PP2A

causes hyperphosphorylation of Pkc1 [25]. Although the functions

of Pkc1 phosphorylation are not yet fully known, this observation

suggests that PP2A restrains activation of Pkc1 by checkpoint

Compact Multisite Modeling of Cell Size Checkpoint
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signals. Similarly, PP2A also dephosphorylates associated Zds1,

which suggests that activation of PP2A by Pkc1 leads to

dephosphorylation of Zds1 and activation of targeted dephos-

phorylation of Cdc25 [38]. In this way PP2A is at the heart of

checkpoint signaling: it opposes phosphorylation of both Zds1 and

Pkc1, and it is responsible for the critical step of dephosphorylating

Cdc25. There is also good evidence that PP2A regulates Wee1,

although it is less clear whether this function of PP2A is controlled

by signals from Pkc1 [4,38].

A bistable switch between Zds1 and PP2A. We can now

analyze a model involving two different multisite proteins, Zds1

and PP2A, each of them described according to the MF

framework. This forms the downstream component of a larger

model for the signal transduction of Rho1, and it is described

inside the lower dashed rectangle in Figure 1B.

The activity of each of the two proteins can be modified through

phosphorylation and dephosphorylation, and both proteins bind

together to form a dimer. Only the dimer configuration of these

molecules is active as an enzyme, and only to the extent that the

Zds1 and PP2A components have been modified appropriately

through phosphorylation or dephosphorylation. Moreover, as

shown in the figure and justified by experimental data, the active

dimer is itself involved in the modification of the Zds1 protein.

Denote by �ZZ,�PP the total monomer concentration of Zds1 and

PP2A respectively, regardless of their phosphorylation state, Z,P
their active concentration, z,p the modified fraction of Zds1 and

PP2A sites, and �DD the total Zds1/PP2A dimer concentration. Call

C the active Rho1/Pkc1 dimer concentration, which can be

treated as a constant input to the system for now. The

dimerization reaction can be written as

�ZZz�PPP
q2

q{2

�DD:

Now, following the argument in the previous section and given

that both Zds1 and PP2A have been found to have 5 to 10

phosphorylation sites each, we keep track of z,p using the

equations

zinP
q1D

q{1

z, pinP
q3C

q{3

p:

Since Zds1 is activated through dephosphorylation, here z
represents the fraction of dephosphorylated Zds1 sites, while p
represents the fraction of phosphorylated PP2A sites. Using the

MF equation one can then estimate

Z~�ZZh1(z), P~�PPh2(p):

See Figure 3A for a graph of these two functions. The level of

ultrasensitivity of each curve is dependent on the estimated

number of sites in each protein (see the Methods section), but

notice that the graphs are roughly consistent with the measure-

ments done for example in the Ste5 protein. A simple mathemat-

ical analysis of this 5-dimensional model in Text S1.1 shows that

the solutions of the system converge towards the steady states, and

that the steady state equations can actually be reduced to a single

equation for z,

C1z~h2
C

Czq{3=q3

� �
h1(z)(1{z), ð2Þ

where C1 can be calculated from the system parameters. For a

given value of C this equation can have one or possibly three

solutions, depending on the parameter values. Plotting the left and

right hand sides separately can be helpful (Figure 3B). As C
increases, the function h1(z)(1{z) is rescaled vertically, which can

control the number of solutions and create a hysteretic response on

the variable z.

Given a solution for z in this equation one can solve for the

concentration of Z, P and every other protein. In particular one

can calculate the concentration of the active form of the Zds1/

PP2A dimer which we call D, and which constitutes the natural

output of this system. For specific values of the parameters in the

model, a bifurcation graph of the output D as a function of the

input C can be found in Figure 3C (solid line).

One can interpret this graph in the following way. There is a

positive feedback loop in the system consisting of Zds1 promoting

its own activation via dimerization with PP2A. This positive

feedback allows the possibility of two stable steady states in the

system. When C~0, there can be binding between Zds1 and

PP2A but since PP2A is inactive, most of the PP2A/Zds1 dimer is

also inactive. For high values of C, PP2A is forced to become

active, however the PP2A/Zds1 dimer may still have two steady

states or only one, depending on the parameters of the system.

A bistable switch between Rho1 and Pkc1. In a similar

way as it was carried out for the interaction between Zds1 and

PP2A, one can study the activation of Rho1 and its binding with

Pkc1. This upstream system includes all the variables and

interactions that are not in the Zds1/PP2A module. Once again

following the biological evidence and the diagram in Figure 1B, we

define the biochemical reactions

RinP
q6

q{6

R, wP
q9v

q{9

Rin, R ?
q{9

w,

where Rin,R denote inactive and active Rho1 in monomer form

respectively and v the rate of vesicle fusion to the membrane. That

is, the protein Rho1 is activated at a linear rate, the vesicle flow

increases Rho1 concentration in inactive form, and both active

and inactive Rho1 are degraded. The protein Pkc1 is modeled

using a MF mechanism and denoted by the variables k, K :

kin P
q5C

q{5D
k, K~ �KKh3(k):

For the study of this subsystem, D will be considered a fixed

input parameter; it constitutes the feedback from the downstream

Zds1/PP2A system. Calling �CC the total Pkc1/PP2A dimer

regardless of activity,

Rz�KKP
q4

q{4

�CC

Notice that Rho1 needs to be active to bind with Pkc1. However

active Rho1 binds with Pkc1 regardless of the activity or inactivity

of the latter. Pkc1 does need to be active in order for the dimer to

become active as a kinase, so that C=�CC~K= �KK~h3(k), or

Compact Multisite Modeling of Cell Size Checkpoint
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C~�CCh3(k):

Once again, one can carry out a complete mathematical

analysis of this multi-dimensional system at steady state and

essentially reduce its solutions to one equation for C. The resulting

equation is

C2C~v SK h3
C

CzQ5D

� �
{C

� �
, ð3Þ

where Q5~q{5=q5, C2 can be calculated from the parameters

and constants of the system (other than v, D), and SK is constant.

See Text S1.2 for a full analysis.

Figure 3D illustrates the solutions of the above equation in the

general case, plotting right and left hand sides separately. For fixed

v and D values, C~0 is always a solution, however there may also

be solutions Cw0. For increasing values of D, the values decrease

on the right hand side of the equation, and the steady state Cw0
eventually disappears. Figure 3E illustrates a typical bifurcation

graph of the steady states of C using the input parameter D and

fixed v. In the case D~0 there is actually only one solution for C,

since equation (3) becomes linear.

The bifurcation graph can be interpreted as follows. For all but

small values of the PP2A/Zds1 dimer D, there is the steady state

with C~k~R~0, in which the pathway is inactive since the lack

of active Rho1 inhibits the activation of Pkc1. For middle

concentrations of D, the system may be bistable, again due to the

positive feedback from Rho1/Pkc1 to the activation of Pkc1. For

high concentrations of D, Pkc1 is almost fully inactivated by D and

the pathway is shut down.

The Rho1 pathway can implement a cell size checkpoint
In order to find the steady states of both subsystems together,

recall that each one can be reduced to a single equation, so that

the steady states correspond to the joint solution of the two

equations. For fixed v, the solutions of the full model form the

intersection of the graphs for the equations (2), (3). This is

illustrated in Figure 3F, where the graphs in Figure 3C and

Figure 3E are superimposed on the same plane. From a control

perspective, the upstream and downstream systems have each an

input and an ouptut, and they feed back into each other (see the

two dotted boxes in Figure 1B). The active Zds1/PP2A dimer D

also acts as the overall output of the system, since it triggers the

downstream response to cell cycle regulatory proteins.

Although it is natural that an increase in the Rho1 flow can

eventually trigger the activation of the pathway, the main focus

here is not in the flow but in the overall Rho1 concentration at the

bud tip. Given that Rho1 has a rate of growth proportional to v

and a linear rate of degradation, at steady state one can show that

v and RzRin are proportional, RzRin~vq9=q{9. This follows

from adding the ODE rate equations at steady state,

0~R0zRin
0zC0~q9v{(RinzR)q{9. In this way one can use

the total Rho1 concentration �RR~RzRin as a bifurcation

parameter at steady state even though it is simultaneously a

Figure 3. Control theoretic model analysis. The overall model is analyzed by decomposing it into upstream and downstream levels. A: The
functions h(x) used to describe the activation of Zds1, PP2A and Pkc1. B: The solutions of the downstream Zds1 - PP2A system (for fixed C)
correspond to the intersections of the two graphs; see equation (2). C: Bifurcation graph for the downstream Zds1 - PP2A system. D: the solutions of
the upstream Rho1/Pkc1 system (for fixed D) correspond to the intersections of these graphs; see equation (3). E: Bifurcation graph for the upstream
Rho1 - Pkc1 system. F: Both bifurcation graphs superimposed - the steady states of the full model correspond to the intersection of these two graphs.
doi:10.1371/journal.pcbi.1003443.g003
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variable in the system. Alternatively, since enzymatic reactions and

dimer formation are fast processes compared with Rho1 flux and

Rho1 degradation, one can let �RR be the slow variable in the system

and carry out a timescale decomposition analysis using �RR as a

constant [39].

Let’s look at how the system has a hysteretic response for

increasing values of the flow signal v and the corresponding total

Rho1 concentration at steady state. An increase in these values has

the effect of raising the graph associated with the upstream system,

as shown in Figure 4A. For smaller values of �RR, the intersection of

both graphs includes three positive steady states (notice the two

graphs don’t quite intersect at the origin). But when �RR increases

over a certain threshold, the intersection of the two graphs

contains a single positive steady state, with a large value of D. This

can cause an abrupt change in the qualitative behavior of the

system, triggering a sudden increase in the Zds1/PP2A output.

Once this change has taken place, the concentration of the output

stays high even if the input decreases.

Figure 4B shows a sample timecourse of the system for a time-

variable vesicle flow (dotted line). The total Rho1 concentration

increases over time with the inflow of vesicles. At a certain

timepoint the active Rho1 concentration abruptly increases, due to

the switch at the Pkc1/Rho1 upstream level. An increase in

Rho1/Pkc1 concentration some time before this can be seen in

Figure 4C. At a later time the switch between Zds1 and PP2A is

also triggered, leading to a sudden increase in PP2A/Zds1

concentration. Even under variable flow, the total Rho1 concen-

tration roughly corresponds to the membrane accumulated at the

bud, except for a certain amount of variability due to Rho1

degradation. Lowering the Rho1 degradation rate can decrease

this difference. Notice that the vesicle flow oscillations do not

correspond to cell division, but to oscillations in the rate of growth,

for instance due to varying food availability.

In Figure 4D we plot the output signal PP2A/Zds1 as a function

of total Rho1 at steady state and overlay the solution of the

timecourse simulation (red stars). This graph also illustrates the

hysteretic behavior of the system, in that once a critical threshold

of Rho1 concentration is reached, the output signal is dramatically

increased. This change would constitute a clear signal that the bud

has reached a large enough size for crossing the polar/isotropic

growth checkpoint.

Since both the downstream (PP2A, Zds1) switch and the

upstream (Rho1,Pkc1) switch are driven by positive feedback

loops, it is valid to ask which of the two loops is more relevant for

the overall system behavior. We argue that it is the downstream

loop that is more essential, using the bifurcation analysis in Figure 3

Figure 4. Checkpoint analysis. A: Qualitative analysis of the steady states of the system for different values of the total Rho1 concentration �RR, as a
result of changing the value of the fixed flux rate v. When �RR reaches a sufficiently large value there is a single positive steady state and it has a large D
concentration. B,C: Response of the checkpoint pathway to a variable vesicle flow input (dashed line). For simplicity the membrane is modeled using
the equation m’(t)~q9

:v(t). D: The steady state values of the output D as a function of �RR (solid line), and plot of the timecourse in 4C over time
(stars).
doi:10.1371/journal.pcbi.1003443.g004
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and Figure 4A. If the upstream system is not bistable but has a

single steady state for every input D, then the graph in Figure 3E is

replaced by a single-valued decreasing function. Nevertheless this

(green) line can still have one or three intersections with the (blue)

downstream dose response in Figure 4A, indicating hysteresis for

the overall system. On the other hand if the downstream system is

not bistable, then the blue curve in Figure 4A is replaced by a

single-valued, increasing function, which would be unlikely to have

three intersection points with the (green) upstream dose response.

Thus the downstream switch is essential, while the upstream

switch is not.

Notice that this system contains the standard elements of a

signal transduction pathway, including an initiating signal

(vesicles), a sensor (Rho1), a series of transducers (Pkc1, PP2A,

etc), and an effector (active Zds1/PP2A). Total Rho1 is a proxy for

the membrane concentration, even if bud growth slows for a

period of time, and the cascade of reactions allows the signal to be

transduced from the membrane to Zds1/PP2A and ultimately the

cyclin dependent kinase. To ensure the high fidelity of the signal

transmission [40], the downstream signal is sent abruptly after

total Rho1 concentration reaches a particular size. Notice that

longer periods of inactivity can potentially reduce the Rho1

concentration significantly – one possible prediction is that after

such a period the bud grows longer than expected.

Discussion

In this paper we have introduced a simple and compact

framework to describe the dynamics of allosteric multisite

phosphorylation systems, and we have applied this tool to a new

molecular model of a size checkpoint in budding yeast. Multisite

phosphorylation modeling can be problematic because ignoring

the multiple sites can have significant effects in the dynamics, while

introducing many auxiliary phosphoform variables can be

cumbersome in more realistic models. The modified fraction

approach is intuitive and flexible (model the sites instead of the

protein), and it only introduces one additional variable per protein.

The components of the MF model, namely the function h(x) and

the rates of phosphorylation and dephosphorylation of individual

sites, can potentially be subject to direct experimental measurement,

unlike the use of more abstract Hill function terms. This can allow to

carry out ‘raw-data modeling’ e.g. to use an experimentally

measured activity function h(x) directly in the model rather than

using it to derive parameters. This methodology is also useful out of

equilibrium when the timescale of phosphorylation is sufficiently fast

compared with other timescales in the system.

There are several reasons why the MF method might be

particularly suitable for modeling many multisite phosphorylation

systems. Nonsequential phosphorylation is likely more common in

nature than the more often modeled sequential systems, since

enforcing sequential phosphorylations would require an additional

mechanistic effort. Bioinformatic data suggests that most phos-

phorylation sites in multisite proteins are located in unstructured

and unconserved protein regions [6], suggesting that often it is the

collective effect that matters rather than the individual sites. There

is also experimental evidence in yeast signal transduction that

certain proteins, such as Ste5, are activated in a concerted and

redundant manner, although this type of information is still

unknown for most proteins. Notice that the approximation

formula would still hold if the protein activation is not concerted

or redundant. In that case the formula will just approximate a dose

response that may not be ultrasensitive.

One of the best known mechanisms for ultrasensitive dose

responses is zero-order ultrasensitivity, as suggested by Goldbeter

and Koshland [33,41]. Its main assumption is that substrate

concentration needs to be in the saturation regime i.e. large

compared to the Km value of the enzymes. The MF method does

not pose any constraint on Km, in fact the linear regime we used

can be found when substrate concentrations are small compared to

Km values. Moreover, MF also applies when the enzymatic

reactions involve complex formation, by writing a Michaelis-

Menten equation for dp=dt. Therefore zero-order ultrasensitivity

can be used in synergy with MF in the saturation regime, and MF

can be used regardless of Km value. A zero-order dose response

could likely replicate the behavior of the MWC model as shown in

Figure 2C, however it could not be considered a short hand

notation for MWC since the two mechanisms are fundamentally

different.

In the case of the checkpoint pathway, the active proteins Pkc1

and PP2A have been found to have an approximate Km of 0.5 mM
[42] and 1.2 mM [43], respectively, for specific targets. The

overall concentrations of their substrates in the cell are much lower

- however these proteins tend to localize at the bud, so that the

resulting local concentrations are unknown and it is unclear

whether a zero-order approach would apply. A recent paper by

Martins and Swain [44] points out that zero-order ultrasensitivity

often results from low enzyme to substrate ratios, and localized

proteins that act as enzymes and substrates for each other would

likely not satisfy such ratios. That paper proposes instead a

mechanism involving an allosteric model analogous to MWC,

using enzyme sequestration to obtain ultrasensitivity. The paper

by Kapuy et al [32] also proposes a mechanism for bistability

through ultrasensitive effects, and this mechanism is applied to a

detailed model of the budding yeast G1-S transition in Barik et al

[45]. Other mechanisms for ultrasensitivity involve competition

among substrates for the same enzyme [46] and protein

localization [12], among others [28,47].

More generally, in cell regulatory networks there is a need to

implement nontrivial dynamics such as bistable switches and

hysteresis, which requires some form of nonlinear response in

addition to the right feedback interconnections. It has been

observed that several regulatory proteins have multiple phosphor-

ylation sites, and there are many open questions regarding their

intended function. Together with the onerous nature of modeling

several multisite proteins using sequential networks and multiple

variables each, it can be seen why a one-variable reduction such as

MF can allow for much-needed simplicity.

The actual mechanisms regulating the interactions between cell

size and cell division remain largely unanswered in many cases.

This has left few alternative options apart from somewhat heuristic

approaches in otherwise very detailed models, see e.g. [48]. The

present model is an attempt, based on recent experiments, to

construct a detailed mechanistic model in the context of the polar

to isotropic bud transition in yeast. Notice that if the proteins

PP2A, Pkc1, Zds1 had only one site each, then hi(x)~x according

to the argument in the first Results section, and the downstream

and upstream models could never be bistable (see equations (2)

and (3)). The multiple sites are providing the underlying

nonlinearity so that the models can have interesting dynamical

behaviors. This is consistent with the work by Yang et al [49],

which reached the same conclusion through randomized param-

eter searches in multisite cell cycle models. Also, the equations (2),

(3), which represent the steady states of the downstream and

upstream systems, have the same qualitative behavior for a wide

range of parameters. In this sense one can say that the switch-like

nature of the checkpoint is robust to many parameter changes,

provided that a few key qualities are satisfied. The bistability in

each subsystem is due in part to positive feedback loops in each

Compact Multisite Modeling of Cell Size Checkpoint
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subsystem, one between Pkc1 and the Rho1/Pkc1 dimer, and

another between Zds1 and the PP2A/Zds1 dimer. Notice that

while Rho1/Pkc1 activates PP2A, the downstream PP2A/Zds1

inactivates Pkc1, forming a negative feedback loop. This feedback

could serve to reduce the activity of the pathway before a sufficient

Rho1 signal has accumulated. Notice that the switch-like

activation of Cdk1 is a complex process that may well be

regulated by other mechanisms in conjunction with the switch

discussed, and that this overall regulation also depends on the

organism studied.

The MF framework eliminates several parameters such as the

number of phosphorylation sites n (as long as it is sufficiently large),

the transition rates Li and the cooperativity coefficient e. The

remaining parameters, such as the shape of the activity function

h(x), can potentially be measured in the lab using site-directed

mutagenesis and activity assays. However this is still a formidable

task and one that is yet to be done for most proteins involved in

cell cycle regulation.

Since it is assumed in the derivation of the formula (1) that the

sites are roughly independent from each other, one might think

that the MF framework doesn’t work for allosteric or cooperative

systems. However the detailed model in Figure 2 is allosteric, and

yet the model closely describes its dynamics. In simulations we find

that the accuracy of the representation is increased when n is large

(e.g. nw10) and/or the cooperativity is weak. The use of a MWC-

type model for multisite phosphorylation has been pointed out in

the past, see for instance [5] and the more recent [44].

Questions for future work include the following: if phosphor-

ylation and dephosphorylation of the multisite protein P is not

faster than other processes in the system, can one still approximate

P(t) away from equilibrium? This might be possible by defining a

simple differential equation for P instead of the algebraic equation

(1). Also, the linear dynamics used to calculate the fraction p can

be replaced by more complex models such as a Michaelis-Menten

reaction, which may be explored in detail, including the

interaction with zero-order mechanisms. This might lead to

bistable behavior in the full multisite model, which raises the

question of how the corresponding model reduction might be,

possibly involving multivalued functions h(x).

Methods

For convenience we include in one location all chemical

reactions of the model, mass conservation laws, the definition of

auxiliary variables following the multisite modeling formalism, and

a self contained set of differential equations after eliminating

additional variables. Recall that for multisite proteins x represents

the fraction of active sites, X the active monomer concentration,
�XX the total concentration including active and inactive forms, and

SX the total amount of X in the system including dimer and

monomer forms. Also recall that Rho1 and Pkc1 are denoted by

R, K , Zds1 and PP2A by Z, P, and the Rho1/Pkc1 and Zds1/

PP2A dimers by C, D, respectively.

Model reactions

zinP
q1D

q{1

z �ZZz�PPP
q2

q{2

�DD pinP
q3C

q{3

p

Rz �KKP
q4

q{4

�CC kin P
q5C

q{5D
k RinP

q6

q{6

R

wP
q9v

q{9

Rin R ?
q{9

w

Mass conservation laws

zinzz~1 pinzp~1 kinzk~1

�ZZz�DD~SZ
�PPz�DD~SP

�KKz�CC~SK

MF framework equations

Z~�ZZh1(z)~(SZ{�DD)h1(z)

P~�PPh2(p)~(SP{�DD)h2(p)

K~ �KKh3(k)~(SK{�CC)h3(k)

C~�CCh3(k)

D~�DDh1(z)h2(p)

Differential equations

dz

dt
~q1

�DDh1 zð Þh2 pð Þ 1{zð Þ{q{1z

d �DD

dt
~q2(SZ{�DD)(SP{�DD){q{2

�DD

dp

dt
~q3

�CCh3(k)(1{p){q{3p

dR

dt
~{q4R(SK{�CC)zq{4

�CCzq6Rin{q{6R{q{9R

d �CC

dt
~q4R(SK{�CC){q{4

�CC

dk

dt
~q5

�CCh3(k)(1{k){q{5
�DDh1(z)h2(p)k

dRin

dt
~{q6Rinzq{6Rzq9v{q{9Rin

Parameter values
Since most quantitative information about the pathway is

unknown, we make educated estimates on the order of magnitude

of the parameters. Since parameters are clustered in equations (2)
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and (3), dependence on the parameters is more limited. Protein

concentrations usually range from 0.001 mM to 10 mM in the cell.

The concentrations of total PP2A (SP), Zds1 (SZ ) and Pkc1 (SK )

are set between 0.01 mM and 0.1 mM as indicated in Table 1.

Define Qi~q{i=qi for all i. The dissociation rate Q2 has been

observed to be quite low in experiments since most Zds1 has been

found bound to PP2A. We set it as 0.001 mM, which is in the

range of drugs binding to their target proteins. Q4 is set higher at

0.1 mM. The unit-less parameters Q5, Q6 are set to 0.1 and 1

respectively, indicating the steady state ratio of inactive to active

substrate when the two antagonistic enzymes are in similar

concentration. The rates Q1,Q3 are set to 0.01 mM, indicating

that when e.g. C~0:01 mM there are equal amounts of active and

inactive substrate p at steady state. Q9 is set at 0.0002 1=s.

Very little is known about the values of the individual rates

qi,q{i. Fortunately as it is shown in the analysis in Text S1, most

of the dynamic rate constants appear only in the form Qi~q{i=qi,

instead of individually. These steady state ratios are generally

easier to estimate experimentally than the individual parameters

[50]. However the actual rates qi,q{i determine the transient

behavior of the system and to some extent determine also its steady

state values. Since a majority of the reverse rates q{i share the

same units of 1=s, we set the values of these parameters and then

find the corresponding qi to fit the given ratio Qi . For simplicity we

set q{1~q{2~q{3~q{4~q{6~1 s{1 [14,51]. We set

q{5D~1 s{1 for maximal protein concentration D~SP, that is,

q{5~1=SP. The Rho1 degradation rate q{9 is set to 0.0001 s{1;

it can be further decreased in order to stabilize the Rho1 protein.

Regarding the activity functions hi, we assume that the

ultrasensitive behavior of these graphs increases with the number

of phosphorylation sites; see the derivation of h(x) in the Results

and also [5]. Since PP2A, Zds1, and Pkc1 have been found to have

around 3, 5, and 8 sites respectively, we implement this with

parameters that produce the graph observed in Figure 3A. See

Table 1 for a list of parameter values.

The initial conditions used in the model correspond to the

system in the off state. They are equal to zero for all variables,

except �CC~1 nM and k~0:5.

Supporting Information

Figure S1 A: A rule-based approach for modeling multisite

phosphorylation, which results in a system equivalent to MWC.

Here I[f0,1gn
represents any phosphoform state, and J is the

result of adding one site phosphorylation to I . B: Timecourse

simulation for the MWC model in which the kinase concentration

E is increased linearly over time, and the full MWC model is

compared with the MF approximation and a model using a single

site. Here n~12, e~0:3,�PP~12 nM, F~1 nM, L1~e{n=2,

�aa~�bb~L2~1 for the detailed model, and a~
ffiffi
e
p

, b~1,

c~{n ln e, d~L1 for the MF approximation.

(EPS)

Figure S2 For the MWC model in Figure 2B, a bootstrap

parameter analysis of the corresponding MF system. Baseline

parameter values are �aa~�bb~L2~1, L1~e{n=2. A: The param-

eters �aa,�bb,L1 are varied over four orders of magnitude each, and

the percentage error with the MF model is calculated. B: A similar

analysis of the Hill exponent of the MF model.

(EPS)

Text S1 The supplementary material to this paper has three

sections. In Section S1.1 and S1.2 we carry out a mathematical

analysis of the downstream and upstream subsystems of the

checkpoint model, respectively. Each analysis results in the

reduction of the system at steady state to a single equation. In

Section S1.3 we derive the MWC model using a system of

equations involving all 2n protein phosphoforms and a rule-based

system of reactions.

(PDF)
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