

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(3,5-Difluorophenyl)-4,4,4-trifluorobutane-1,3-dione

K.E. Manoj Kumar,^a B. S. Palakshamurthy,^b P. A. Suchetan,^c S. Madan Kumar,^d N.K. Lokanath^d and S. Sreeniyasa^a*

^aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, ^bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, ^cDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and ^dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India

Correspondence e-mail: drsreenivasa@yahoo.co.in

Received 14 October 2013; accepted 17 October 2013

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.006 Å; *R* factor = 0.074; *wR* factor = 0.239; data-to-parameter ratio = 10.4.

In the title compound, $C_{10}H_5F_5O_2$, the C=O bonds are *syn* to one another. In the crystal, molecules are linked into C(9) chains parallel to [101] through weak C-H···O interactions, with the O atom adjacent to the -CF₃ group acting as the acceptor.

Related literature

For biological-activity studies of compounds with trifluoromethyl substituents, see: Manoj Kumar et al. (2013).

Experimental

Crystal data C₁₀H₅F₅O₂

 $M_r = 252.14$

Monoclinic, $C2/c$	Z = 8
a = 12.393 (4) Å	Mo $K\alpha$ radiation
b = 13.433 (5) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 12.877 (5) Å	T = 294 K
$\beta = 112.49 \ (2)^{\circ}$	$0.24 \times 0.20 \times 0.16 \text{ mm}$
$V = 1980.7 (13) \text{ Å}^3$	
Data collection	

Bruker APEXII CCD	5651 measured reflections
diffractometer	1604 independent reflections
Absorption correction: multi-scan	1246 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.040$
$T_{\min} = 0.959, \ T_{\max} = 0.972$	

Refinement

ł

S 1

$R[F^2 > 2\sigma(F^2)] = 0.074$	154 parameters
$vR(F^2) = 0.239$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ Å}^{-3}$
604 reflections	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3\cdots O2^i$	0.93	2.53	3.462 (5)	177
Symmetry code: (i)	$x - \frac{1}{2}, -v + \frac{1}{2}, z - v$	$+\frac{1}{2}$.		

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the IOE X-ray diffractometer Facility, University of Mysore, Mysore, for the data collection. KEM and SS acknowledge Tumkur University, Tumkur, for providing laboratory facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7151).

References

Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Manoj Kumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhu Chakrapani Rao, T. (2013). *Molbank*, M803, doi:10.3390/M803.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2013). E69, o1705 [doi:10.1107/S1600536813028535]

1-(3,5-Difluorophenyl)-4,4,4-trifluorobutane-1,3-dione

K.E. Manoj Kumar, B. S. Palakshamurthy, P. A. Suchetan, S. Madan Kumar, N.K. Lokanath and S. Sreenivasa

1. Comment

As part of our ongoing studies of the biological activities of compounds with a trifluoromethyl substituent (Manoj Kumar *et al.*, 2013), we now describe the structure of the title compound, (I).

The two C=O bonds are *syn* to one another (Fig.1), the O1—C7—C8—C9 and O2—C9—C8—C7 torsion angles being 0.4 (5) and -0.3 (6)°, respectively. In the crystal, the molecules are linked into C(9) chains parallel to [101] through a weak C3—H3…O2 interaction (Fig.2).

2. Experimental

3,5-Difluoroacetophenone (1 mmol) and sodium hydride (1.5 mmol) were taken in dry THF (20 ml), and the solution was stirred for 30 min at 0°C. To this solution trifluoroethylacetate (1.2 mmol) was added and the reaction mixture was stirred for 10 h at room temperature under nitrogen atmosphere. The reaction was monitored by TLC. The crude mass was purified by column chromatography using petroleum ether and ethyl acetate as an eluent (7:3), to obtain a yellow solid. Pale yellow prisms were obtained by recrystallisation fron dichloromethane/methanol (9:1) solution.

3. Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the U_{eq} of the parent atom).

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Figure 2

Molecular packing foming C(9) chains parallel to [101] with hydrogen bonding shown as dashed lines.

1-(3,5-Difluorophenyl)-4,4,4-trifluorobutane-1,3-dione

Crystal data	
C ₁₀ H ₅ F ₅ O ₂ $M_r = 252.14$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.393 (4) Å b = 13.433 (5) Å c = 12.877 (5) Å $\beta = 112.49$ (2)° V = 1980.7 (13) Å ³ Z = 8 E(000) = 1008	Prism $D_x = 1.691 \text{ Mg m}^{-3}$ Melting point: 393 K Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1023 reflections $\theta = 0.0-24.6^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 294 K Prism, colourless $0.24 \times 0.20 \times 0.16 \text{ mm}$
Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{min} = 0.959, T_{max} = 0.972$ 5651 measured reflections 1604 independent reflections

1246 reflections with $I > 2\sigma(I)$	$h = -14 \rightarrow 14$
$R_{\rm int} = 0.040$	$k = -15 \rightarrow 7$
$\theta_{\max} = 24.6^\circ, \ \theta_{\min} = 2.3^\circ$	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.074$	Hydrogen site location: inferred from
$wR(F^2) = 0.239$	neighbouring sites
S = 1.08	H-atom parameters constrained
1604 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1433P)^2 + 2.2069P]$
154 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.012$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.47 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.0373 (3)	0.3441 (3)	0.4970 (3)	0.0558 (9)	
H1	0.0691	0.4058	0.4923	0.067*	
C2	-0.0308 (3)	0.3323 (3)	0.5594 (3)	0.0624 (10)	
C3	-0.0787 (4)	0.2426 (3)	0.5705 (3)	0.0684 (11)	
H3	-0.1238	0.2360	0.6135	0.082*	
C4	-0.0565 (4)	0.1636 (3)	0.5147 (4)	0.0649 (10)	
C5	0.0106 (3)	0.1700 (3)	0.4506 (3)	0.0574 (9)	
Н5	0.0242	0.1143	0.4144	0.069*	
C6	0.0574 (3)	0.2624 (2)	0.4416 (3)	0.0474 (8)	
C7	0.1298 (3)	0.2699 (2)	0.3734 (3)	0.0476 (8)	
C8	0.1640 (3)	0.3603 (3)	0.3419 (3)	0.0511 (8)	
H8A	0.0937	0.3983	0.3019	0.061*	
H8B	0.2077	0.3967	0.4101	0.061*	
С9	0.2304 (3)	0.3596 (3)	0.2760 (3)	0.0515 (9)	
C10	0.2656 (3)	0.4562 (3)	0.2375 (3)	0.0624 (10)	
F1	-0.0500 (3)	0.4121 (2)	0.6129 (3)	0.1000 (11)	
F2	-0.1027 (3)	0.0740 (2)	0.5224 (3)	0.1010 (11)	
F3	0.2245 (3)	0.4627 (2)	0.1272 (2)	0.0913 (9)	
F4	0.3807 (2)	0.4629 (2)	0.2695 (3)	0.0989 (10)	
F5	0.2306 (3)	0.5370 (2)	0.2748 (3)	0.1110 (13)	
01	0.1598 (2)	0.18650 (19)	0.3425 (2)	0.0671 (8)	
02	0.2645 (2)	0.2827 (2)	0.2411 (2)	0.0666 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.065 (2)	0.051 (2)	0.066 (2)	0.0018 (15)	0.0410 (17)	-0.0022 (16)
C2	0.072 (2)	0.063 (2)	0.070 (2)	0.0110 (18)	0.0473 (19)	-0.0002 (17)
C3	0.070 (2)	0.083 (3)	0.073 (2)	0.007 (2)	0.050(2)	0.012 (2)
C4	0.072 (2)	0.059 (2)	0.081 (2)	-0.0095 (18)	0.048 (2)	0.0108 (19)
C5	0.064 (2)	0.050(2)	0.069 (2)	-0.0058 (15)	0.0380 (17)	-0.0011 (15)
C6	0.0508 (18)	0.0460 (18)	0.0561 (18)	0.0013 (13)	0.0323 (15)	0.0034 (14)
C7	0.0473 (16)	0.0457 (18)	0.0588 (19)	0.0002 (13)	0.0306 (15)	-0.0036 (14)
C8	0.0564 (18)	0.0448 (19)	0.065 (2)	0.0001 (14)	0.0373 (16)	-0.0009 (15)
C9	0.0535 (18)	0.048 (2)	0.063 (2)	-0.0011 (14)	0.0335 (16)	-0.0016 (15)
C10	0.069 (2)	0.058 (2)	0.079 (3)	-0.0047 (17)	0.049 (2)	-0.0035 (18)
F1	0.146 (3)	0.0803 (18)	0.121 (2)	0.0129 (16)	0.105 (2)	-0.0090 (15)
F2	0.125 (2)	0.0773 (18)	0.138 (3)	-0.0305 (16)	0.092 (2)	0.0011 (16)
F3	0.112 (2)	0.0859 (19)	0.0818 (18)	-0.0116 (15)	0.0440 (15)	0.0191 (13)
F4	0.0676 (15)	0.096 (2)	0.139 (3)	-0.0226 (13)	0.0460 (15)	0.0177 (17)
F5	0.169 (3)	0.0515 (16)	0.173 (3)	-0.0089 (16)	0.133 (3)	-0.0034 (16)
01	0.0897 (19)	0.0399 (14)	0.102 (2)	0.0042 (12)	0.0704 (16)	-0.0031 (12)
02	0.0793 (17)	0.0555 (16)	0.0924 (19)	0.0030 (12)	0.0633 (15)	-0.0029 (13)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.379 (5)	C6—C7	1.479 (5)	
C1—C6	1.383 (5)	C7—O1	1.290 (4)	
C1—H1	0.9300	C7—C8	1.396 (5)	
C2—F1	1.344 (5)	C8—C9	1.389 (5)	
С2—С3	1.374 (6)	C8—H8A	0.9700	
С3—С4	1.367 (6)	C8—H8B	0.9700	
С3—Н3	0.9300	C9—O2	1.262 (4)	
C4—F2	1.353 (5)	C9—C10	1.512 (5)	
C4—C5	1.381 (5)	C10—F3	1.316 (5)	
С5—С6	1.393 (5)	C10—F5	1.327 (5)	
С5—Н5	0.9300	C10—F4	1.328 (4)	
C2—C1—C6	118.8 (3)	O1—C7—C8	120.7 (3)	
С2—С1—Н1	120.6	O1—C7—C6	115.8 (3)	
С6—С1—Н1	120.6	C8—C7—C6	123.5 (3)	
F1—C2—C3	118.5 (3)	C9—C8—C7	119.2 (3)	
F1-C2-C1	118.4 (4)	C9—C8—H8A	107.5	
C3—C2—C1	123.1 (4)	C7—C8—H8A	107.5	
C4—C3—C2	116.4 (3)	C9—C8—H8B	107.5	
С4—С3—Н3	121.8	C7—C8—H8B	107.5	
С2—С3—Н3	121.8	H8A—C8—H8B	107.0	
F2—C4—C3	118.5 (3)	O2—C9—C8	125.5 (3)	
F2-C4-C5	117.9 (4)	O2—C9—C10	114.0 (3)	
C3—C4—C5	123.7 (4)	C8—C9—C10	120.5 (3)	
C4—C5—C6	118.0 (4)	F3—C10—F5	106.9 (4)	
С4—С5—Н5	121.0	F3—C10—F4	104.9 (3)	
С6—С5—Н5	121.0	F5	107.1 (3)	

C1—C6—C5	120.0 (3)	F3—C10—C9	111.8 (3)
C1—C6—C7	121.5 (3)	F5-C10-C9	114.1 (3)
C5—C6—C7	118.4 (3)	F4—C10—C9	111.5 (3)
C6—C1—C2—F1	-179.9 (3)	C5-C6-C7-O1	-11.0 (5)
C6—C1—C2—C3	0.8 (6)	C1—C6—C7—C8	-12.7 (5)
F1—C2—C3—C4	-179.9 (4)	C5—C6—C7—C8	168.3 (3)
C1—C2—C3—C4	-0.6 (6)	O1—C7—C8—C9	0.4 (5)
C2—C3—C4—F2	-179.5 (4)	C6—C7—C8—C9	-178.9 (3)
C2—C3—C4—C5	0.4 (6)	C7—C8—C9—O2	-0.3 (6)
F2—C4—C5—C6	179.4 (3)	C7—C8—C9—C10	178.1 (3)
C3—C4—C5—C6	-0.5 (6)	O2—C9—C10—F3	59.0 (4)
C2-C1-C6-C5	-0.9 (5)	C8—C9—C10—F3	-119.5 (4)
C2-C1-C6-C7	-179.9 (3)	O2—C9—C10—F5	-179.5 (3)
C4—C5—C6—C1	0.7 (5)	C8—C9—C10—F5	1.9 (5)
C4—C5—C6—C7	179.8 (3)	O2—C9—C10—F4	-58.1 (4)
C1—C6—C7—O1	168.0 (3)	C8—C9—C10—F4	123.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3…O2 ⁱ	0.93	2.53	3.462 (5)	177

Symmetry code: (i) x-1/2, -y+1/2, z+1/2.