
fmicb-10-01582 July 20, 2019 Time: 13:58 # 1

HYPOTHESIS AND THEORY
published: 23 July 2019

doi: 10.3389/fmicb.2019.01582

Edited by:
Cristina García-Aljaro,

University of Barcelona, Spain

Reviewed by:
Rodolfo García-Contreras,

National Autonomous University
of Mexico, Mexico

Akanksha Singh,
Central Institute of Medicinal

and Aromatic Plants (CIMAP), India

*Correspondence:
Guang Wu

hongguanglishibahao@yahoo.com;
hongguanglishibahao@gxas.cn

Specialty section:
This article was submitted to

Antimicrobials, Resistance
and Chemotherapy,

a section of the journal
Frontiers in Microbiology

Received: 02 April 2019
Accepted: 25 June 2019
Published: 23 July 2019

Citation:
Yan S and Wu G (2019) Can

Biofilm Be Reversed Through Quorum
Sensing in Pseudomonas

aeruginosa?
Front. Microbiol. 10:1582.

doi: 10.3389/fmicb.2019.01582

Can Biofilm Be Reversed Through
Quorum Sensing in Pseudomonas
aeruginosa?
Shaomin Yan and Guang Wu*

State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food
Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi
Academy of Sciences, Nanning, China

Pseudomonas aeruginosa is a Gram-negative bacterium causing diseases in plants,
animals, and humans, and its drug resistance is a major concern in medical care.
Biofilms play an important role in P. aeruginosa drug resistance. Three factors are
most important to induce biofilm: quorum sensing (QS), bis-(3′-5′)-cyclic diguanosine
monophosphate (c-di-GMP), and small RNAs (sRNAs). P. aeruginosa has its own
specific QS system (PQS) besides two common QS systems, LasI–LasR and RhlI–RhlR,
in bacteria. PQS is interesting not only because there is a negative regulation from RhlR
to pqsR but also because the null mutation in PQS leads to a reduced biofilm formation.
Furthermore, P. aeruginosa dispersed cells have physiological features that are distinct
between the planktonic cells and biofilm cells. In response to a low concentration of c-di-
GMP, P. aeruginosa cells can disperse from the biofilms to become planktonic cells.
These raise an interesting hypothesis of whether biofilm can be reversed through the
QS mechanism in P. aeruginosa. Although a single factor is certainly not sufficient to
prevent the biofilm formation, it necessarily explores such possibility. In this hypothesis,
the literature is analyzed to determine the negative regulation pathways, and then the
transcriptomic data are analyzed to determine whether this hypothesis is workable or
not. Unexpectedly, the transcriptomic data reveal a negative regulation between lasI
and psqR. Also, the individual cases from transcriptomic data demonstrate the negative
regulations of PQS with laslI, laslR, rhlI, and rhlR under different experiments. Based
on our analyses, possible strategies to reverse biofilm formation are proposed and their
clinic implications are addressed.

Keywords: biofilm, P. aeruginosa, quorum sensing, transcriptome, positive feedback, negative feedback

INTRODUCTION

Pseudomonas aeruginosa is a Gram-negative bacterium living in soil and water. Being an
opportunistic pathogen, P. aeruginosa can cause the bacterial soft rot in plants (Rahme et al.,
2000; Walker et al., 2004), and diseases in animals (Ferris et al., 2017; Vingopoulou et al., 2018)
and humans, including eye (Willcox, 2007), burn wound (Church et al., 2006), acute and chronic
pulmonary infections, where cystic fibrosis is associated with substantial morbidity and mortality
(Elborn, 2016; Klockgether and Tümmler, 2017).
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Therefore, P. aeruginosa is a major concern in medical care
because of its drug resistance against the traditional antibiotic
therapy (Buhl et al., 2015; Oliver et al., 2015), that is particularly
problematic for immunocompromised patients and the elderly in
nosocomial environments (Xia et al., 2016). P. aeruginosa brings
about its drug resistance through hydrolyzation of antibiotics
with carbapenemases or extended-spectrum β-lactamases or
ApmR (Vatcheva-Dobrevska et al., 2013; Fisher and Mobashery,
2014; Hakemi Vala et al., 2014), the low permeability of outer
membrane (Eren et al., 2013; Zgurskaya et al., 2015), the
multidrug efflux (Poole, 2004; Aghazadeh et al., 2014), etc. Also,
the biofilm is an important player in P. aeruginosa drug resistance
(Mah et al., 2003) because the dense extracellular matrix of
biofilms reduces the efficacy of detergents and antibiotics (Mah
et al., 2003). Such resistance could be increased a thousand times
in some cases (Stewart and Costerton, 2001).

The dispersal of cells from the biofilm colony is a crucial and
unique stage for biofilms to spread and colonize new surfaces
(Monroe, 2007) and for the transition of dispersed cells from the
biofilm to the planktonic growth phase. Could it be possible to
stop the biofilm from happening, or reserve the biofilm back to
the planktonic phenotype, or eradicate the biofilm in bacteria?

Theoretically, this hypothesis could be possible for
P. aeruginosa, because its dispersed cells have physiological
features that are distinct between the planktonic and the biofilm
cells (Chua et al., 2014, 2015). In response to a low concentration
of c-di-GMP, P. aeruginosa cells can disperse from the biofilm to
become the planktonic cells. The drug resistance is not stronger
in the biofilm cells than in the stationary-phase planktonic
cells, but is stronger than in the logarithmic-phase planktonic
cells (Spoering and Lewis, 2001). Additionally, P. aeruginosa
produces cis-2-decenoic acid, which is a fatty acid messenger and
induces dispersion and inhibits the growth of biofilm colonies
(Davies and Marques, 2009). Furthermore, nitric oxide triggers
the dispersal of biofilms in P. aeruginosa (Barraud et al., 2006),
leading to the treatment of chronic infections in cystic fibrosis
(Howlin et al., 2017).

The formation of biofilm is induced and regulated by
numerous genes and environmental factors (Fazli et al., 2014),
of which three are most important. The first one is the
quorum sensing (QS), because QS controls about 10% genes in
P. aeruginosa (Wagner et al., 2003), including many genes that
are actively involved in the biofilm development and dispersal,
although they are unlikely to be involved in the attachment
and the initial of biofilm growth (Davies et al., 1998). The
second one is the bis-(3′-5′)-cyclic diguanosine monophosphate
(c-di-GMP), because its signaling network is the most complex
secondary signaling system in bacteria (Hengge, 2009) and
has the responsibility to decide whether bacteria adopt either
planktonic or biofilm phenotype (Jenal and Malone, 2006). The
third one is the small RNAs (sRNAs) although their role in
biofilm is yet to be clear (Wolska et al., 2016).

Indeed, QS has a close relationship with biofilm (Wolska et al.,
2016). It controls the synthesis of rhamnolipids that maintain
the channels (Stoodley et al., 1994) for distributing nutrient
and oxygen and removing waste products in mushroom-shaped
structures (Davey and O’Toole, 2000). The channels can help in

the release of a large amount of eDNA due to the autolysis of
subpopulation of bacteria (Allesen-Holm et al., 2006) at the late
stage of biofilm development. Various components of the biofilm
matrix, such as extracellular DNA (eDNA), exopolysaccharides
(EPS) and glucan, are closely related to biofilm matrix dynamics
and bacterial virulence (Rainey et al., 2019). Also, there are
other virulence factors, which play an important role in the
QS regulation and biofilm formation. For example, pyocyanin
promotes eDNA release and facilitates the biofilm formation
(Klare et al., 2016).

It is worth reviewing literature to explore whether the biofilm
is theoretically reversible through QS in P. aeruginosa, not
only because P. aeruginosa is a causal organism of important
health ailments but also because P. aeruginosa is a commonly
used biofilm model organism (Rasamiravaka et al., 2015). More
importantly, the synthesis of rhamnolipid in P. aeruginosa occurs
at its late-exponential and stationary phases (Guerra-Santos et al.,
1986). Rhamnolipid helps bacteria to utilize long-chain fatty
acids as sources of carbon (Ochsner et al., 1994a) so it plays an
important role in the biofilm formation (Stoodley et al., 1994;
Davey and O’Toole, 2000; Allesen-Holm et al., 2006).

Reversing of biofilms could be plausible because QS is a target
in many different circumstances such as attenuate virulence
(Chan et al., 2015), bacterial metabolism (Goo et al., 2015),
bacterial response to antibiotics (Rasamiravaka and El Jaziri,
2016), and therapy (LaSarre and Federle, 2013). Besides, the
mechanism to form biofilms in P. aeruginosa is definitely
different from other bacteria such as P. putida, P. fluorescens,
Staphylococcus aureus, and Vibrio cholera (Wolska et al., 2016).

Needless to say, the reversing of biofilms is related to
multiple factors, so a single factor such as QS could have very
limited effects. However, we should theoretically explore those
possibilities one by one at initial stage in view of the importance
of biofilms in clinical meanings.

POSITIVE AND NEGATIVE
REGULATIONS IN QS

If we wish to reverse the biofilm through the QS, we need to
find out whether the QS is reversible or not. So far overwhelmed
evidence suggests that the QS is a positive feedback system, which
implies that it is impossible to stop the QS once the QS is initiated.
However, we have yet to know whether the ending point of
QS is the biofilm formation? If this is the case, the stop of QS
will either reverse the biofilm or stop the biofilm formation. To
answer this issue, it is necessary to find out the negative regulation
(feedback) in QS.

The QS is a cell-to-cell communication by means of
production, detection, and response of chemical compounds,
autoinducers, and thus the QS changes an individual or a
population behavior upon the concentration of autoinducers,
which are subject to the cell density (Fuqua et al., 1994).

Pseudomonas aeruginosa has three QS systems. (i) LasI–
LasR that is related to the synthesis and the use of N-(3-oxo-
dodecanoyl)-L-homoserine lactone (3OC12-HL) (Passador et al.,
1993; Pearson et al., 1994), whose concentration is ranged from
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1 to 5 µM (Pearson et al., 1994, 1995) (brown color items in
Figure 1). (ii) RhlI-RhlR that is related to the synthesis and the
use of N-(butyryl)-L-homoserine lactone (BHL) (Pearson et al.,
1995), whose concentration is about 10 µM (Pearson et al., 1995)
(yellow color items in Figure 1). (iii) Pseudomonas quinolone
signal (PQS)-based QS, PqsABCDH-PqsR that is related to the
synthesis and the use of 2-heptyl-3-hydroxy-4-quinolone (HHQ)
(Mashburn-Warren et al., 2008; Kulkarni and Jagannadham,
2014), whose concentration is about 6 µM (Pesci et al., 1999)
(green color items in Figure 1). The first two QS systems
essentially are N-acylated homoserine lactone (AHL)-based QS
systems (Pesci et al., 1997) and exist in many bacteria.

The sophisticated QS systems in P. aeruginosa are described
as follows. (i) LasI produces 3OC12-HL, which acts on LasR
(Gambello and Iglewski, 1991; Pearson et al., 1994) (the upward
brown arrow from lasR to LasR on the left side of Figure 1). (ii)
LasR acts on aprA (Gambello et al., 1993), lasA (Toder et al., 1991)
and toxA (Gambello and Iglewski, 1991; Gambello et al., 1993;
Passador et al., 1993) (the downward brown arrow on the far left
side in Figure 1). (iii) Both LasI and LasR act on lasB (Pearson
et al., 1994, 1995) through 3OC12-HL, whose half-maximal
expression needs 1.0 nM (Seed et al., 1995) (brown symbols on
the left side of Figure 1). (iv) RhlI produces BHL, which acts
on RhlR (Pearson et al., 1995, 1997) (the bright yellow arrow on
the right side of Figure 1). (v) RhlR acts on pyocyanin synthesis
(Meighen, 1991; Ochsner et al., 1994b; Brint and Ohman, 1995)
(the long yellow arrow on the middle of Figure 1), lasA (Brint and
Ohman, 1995) (the yellow arrow on the middle left of Figure 1),
and rpoS (Latifi et al., 1996) (the yellow arrow on the upper
right corner of Figure 1). (vi) Both RhlI and RhlR act on lasB
through BHL (Brint and Ohman, 1995) (the yellow arrow on the
upper right part of Figure 1), and rhlABR (Ochsner and Reiser,
1995) (the small yellow arrow on the middle of Figure 1), where
rhlAB encodes rhamnosyltransferase (Ochsner et al., 1994a) (two
yellow arrows on the upper middle part of Figure 1) together with
rhlR positively regulate rhamnolipid synthesis (Ochsner et al.,
1994b) (the yellow arrow on the middle upper part of Figure 1).
(vii) LasR and RhlR positively regulate the synthesis of hydrogen
cyanide (Pessi and Haas, 2000) (the downward yellow arrow on
the lower middle part of Figure 1).

Still, Figure 1 displays the effects of PQS-based QS on their
targets. (i) PqsABCDH produces HHQ requiring phnA and phnB
through anthranilate (Gallagher et al., 2002) (the green curly lines
on the middle right part of Figure 1), then HHQ acts on PqsR
(Cao et al., 2001), regulating the production of elastase, PA-IL
lectin, pyocyanin and rhamnolipid (Pesci et al., 1999; McKnight
et al., 2000; Gallagher et al., 2002; Lee and Zhang, 2015) (the
green lines from the lower right corner in Figure 1). (ii) PqsE
positively acts on biosynthesis of various virulent factors, which is
independent of HHQ or any compounds produced related to the
function of pqsABCDE operon although the expression of pqsE
and PqsE are controlled by HHQ and PqsR (Farrow, et al., 2008)
(dashed green line on the lower right part of Figure 1). (iii) PqsR–
HHQ is involved in iron homeostasis (Bredenbruch et al., 2006;
Oglesby et al., 2008) (the lowest green line in Figure 1).

A positive feedback can be found in each of three QS systems.
(i) The first positive feedback goes from LasR–3OC12-HL to

LasI through lasI, whose half-maximal expression needs 0.1 nM
3OC12-HL (Seed et al., 1995) (light gray ellipse on the left
part of Figure 1). (ii) The second positive feedback goes from
RhlR–HL to RhlI through rhlI (Ochsner and Reiser, 1995) (light
gray ellipse on the upper right part of Figure 1). (iii) The
third positive feedback goes from PqsR–HHQ to pqsABCDE
and phnAB operons (Cao et al., 2001; Gallagher et al., 2002;
Wade et al., 2005) (light gray ellipse on the middle right part
of Figure 1).

The relationship among three QS systems in P. aeruginosa is
positive in the following regulations. (i) LasR positively regulates
HHQ through the complex LasR–3OC12-HL on pqsH (Pesci
et al., 1999; Schertzer et al., 2009) (brown arrow on the right
middle part of Figure 1). (ii) RhlR positively regulates HHQ
through PqsE (Pesci et al., 1999) (two arrow-blue lines on the
middle right part of Figure 1). (iii) LasR positively regulates rhlR
through the complex LasR–3OC12-HL (Latifi et al., 1996; Pesci
et al., 1997) and rhlI (Latifi et al., 1996) (the brown horizontal
line with two arrows in Figure 1). (iv) HHQ strongly acts on rhlI
with BHL (two arrow-blue lines in middle right part of Figure 1)
but weakly acts on lasR and rhlR (McKnight et al., 2000). (v)
RhlR positively regulates PqsE, whose overexpression leads to a
high rhamnolipid production (Farrow, et al., 2008) (the yellow
arrow on the right middle part of Figure 1). (vi) PqsE changes
the function of RhlR rather than that of BHL (Farrow, et al., 2008)
(two arrow-blue lines on the middle right part of Figure 1). (vii)
LasR/3OC12-HL controls pqsR (Camilli and Bassler, 2006) (the
end arrow of brown horizontal line in Figure 1).

In fact, there is a negative regulation among QS systems,
namely, RhlR negatively regulates pqsR in P. aeruginosa (Pesci
et al., 1997; Wade et al., 2005), or RhlR and BHL together
negatively affect the production of HHQ and other quinolones
through pqsR to pqsABCDE operon transcription (McGrath et al.,
2004; Jensen et al., 2006; Xiao et al., 2006b) (the yellow arrow
from RhlR–BHL to the yellow horizontal line to the right end with
downward dash end in Figure 1). On the other hand, a negatively
regulatory pathway is not so sure (the yellow end line highlighted
with a red star on the middle of Figure 1).

CAN THIS NEGATIVE REGULATION
WORK?

As PQS-based QS is so particularly relevant to Pseudomonas,
its significance should not be ignored. This is because the null
mutation in PQS leads to a reduced biofilm formation and
decreased the productions of pyocyanin, elastase, PA-IL lectin
and rhamnolipids (Rahme et al., 1997, 2000; Cao et al., 2001;
Diggle et al., 2003). Indeed, PQS directly or indirectly controls
92 or 143 genes as shown in two transcriptomic analyses (Deziel
et al., 2005; Bredenbruch et al., 2006). By contrast, the other two
QS systems together influence the expression in 200-plus genes
(Whiteley et al., 1999).

For PQS, it does not reach its maximal production until the
late stationary phase of growth (McKnight et al., 2000). This
implies that HHQ is not involved in sensing the cell density,
so the observation that the QS response is not reversed for
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FIGURE 1 | Three QS systems with their effects and regulatory pathways. The red star highlights bi-functional regulation of RhlI–RhlR system to PQS synthesis.

small decreases in population density in P. aeruginosa (Williams
and Camara, 2009) is not the failure of PQS. An important
time interval appears between QS systems, i.e., BHL is produced
during the log phase of growth but HHQ is produced during late
time in the stationary phase of growth (McKnight et al., 2000), so
the positive regulation of HHQ on rhlI is more likely to be related
to the second round of RhlI cycle. If HHQ would not function at
this time interval, perhaps the QS would stop.

Another promising point is that the phenazine production
requires HHQ in P. aeruginosa (McKnight et al., 2000; Mavrodi
et al., 2001). In fact, phenazines may have a significant ecological
impact on the biofilm formation in P. aeruginosa as well as other
bacteria persisting in biofilms mixed with P. aeruginosa. Through
affecting H2O2 generation, phenazines bring about the lysis of
competing bacterial cells in mixed biofilms and the subsequent
eDNA release (Das and Manefield, 2013).

Perhaps, one of the best ways to explore the possibility of
whether the QS is reversible through PQS in P. aeruginosa
is to analyze the transcriptomic data in order to find some
common patterns. Accordingly, we analyzed the transcriptomic
data on Affymetrix P. aeruginosa array with 5549 P. aeruginosa
genes, platform GPL84, from Gene Expression Omnibus (GEO)
(Edgar et al., 2002; Barrett et al., 2013), including all the data
in 104 publications (Supplementary Information) with 274
datasets. Each dataset represents the response to a specifically

experimental condition. With these all available transcriptomic
data, we wish to determine if PQS could be depressed under
different experimental conditions.

Table 1 shows correlation coefficients between any two genes
of three QS systems. The rationale is that there are up-regulations
and down-regulations in transcriptomic data. The correlation
between two genes, which are both up-regulated or both down-
regulated, would suggest a positive regulation with a positive
correlation coefficient. By contrast, the correlation between two
genes, which are regulated oppositely, would suggest a negative
regulation with a negative correlation coefficient.

Based upon the correlations within a single QS system in
Table 1, the correlations between lasI and lasR, and between rhlI
and rhlR confirm their auto-induction relationships (Gambello
and Iglewski, 1991; Pearson et al., 1994) within each QS system.
No negative correlation is found between the QS genes in the
same QS system. As pqsR is named mvfR in gene bank, the
auto-induction relationship with the rest of PQS genes are not
very evident as the paired correlations between pdsA, pqsB,
pqsC, pqsD, pqsE, but all paired correlations suggest a positive
regulation within PQS system (Gallagher et al., 2002). Based
upon the correlations between two QS systems in Table 1, the
results conform there is a positive regulation between lasI–lasR
and rhlI–rhlR, and between rhlI-rhlR and pqsABCDE. However,
an undocumented negative regulation is revealed between lasI
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FIGURE 2 | Number of transcriptomic studies affecting QS in P. aeruginosa
PAO1. The figure was made using online server at http://bioinformatics.psb.
ugent.be/webtools/Venn/.

and pqsR/mvfR using these transcriptomic data. Could it be a
potential pathway to reverse the biofilm formation?

Furthermore, the responses of QS systems are analyzed
under different transcriptomic experiments, and classified as
down-regulation, down-regulation/no response, no response,
no response/up-regulation, up-regulation and mixed responses.
Figure 2 shows such analysis according to 94 transcriptomic
experiments. No response on three QS systems was found in
30 transcriptomic experiments (the intersection of three circles
in Figure 2). Both LasI-LasR and RhlI-RhlR have the same
response in 29 transcriptomic experiments (the intersection of
two upper circles in Figure 2), suggesting a good cooperation
between them. By the contrast, only five and six transcriptomic
experiments show the same response for PQS with LasI-LasR
and RhlI-RhlR (the intersection of two upper and lower circles
in Figure 2), respectively. The same response in both LasI-LasR
and PQS systems includes no response in GSE24784, GSE26142,
GSE35248, and GSE39044, and no response/up-regulation in
GSE22684, indicating few positive impact of LasI-LasR on PQS.
The same response in both RhlI-RhlR and PQS systems includes:
down-regulation in GSE9255; down-regulation/no response in
GSE5887; no response in GSE17179 and GSE61925; and no
response/up-regulation in GSE65882 and GSE7402. Thus, the
results from Venn diagram indicate that RhlI-RhlR has weak
impacts on PQS. Figure 2 demonstrates the responses of 30,
29, and 53 transcriptomic experiments solely in LasI-LasR, RhlI-
RhlR, and PQS, respectively, of which their response ranges from
down-regulation to mixed response.

Finally, the negative regulation between different QS
systems is found in four transcriptomic experiments (GSE4152,
GSE8408, GSE6122, and GSE17296). In the study on Australian
clonal strain (AES-1) in patients with cystic fibrosis in
GSE6122 (Manos et al., 2009), lasI, rhlI, and rhlR were
down-regulated while pqsA, pqsB, pqsC, pqsD, and pqsE were
up-regulated. This highlights the PQS remarkable effect on
the biofilm formation and enhanced infectivity. Another three
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transcriptomic experiments show that pqsA, pqsB, pqsC, pqsD,
and pqsE were down-regulated whereas rhlI and rhlR were up-
regulated (Teitzel et al., 2006; Tralau et al., 2007; Kawakami et al.,
2010), of which lasI was up-regulated in copper-stressed (Teitzel
et al., 2006), and both lasI and lasR were up-regulated in sulfate
limitation (Tralau et al., 2007). Therefore, RhlI-RhlR does have
a negative regulation on PQS (McGrath et al., 2004; Wade et al.,
2005; Xiao et al., 2006a).

CONCLUSION

In this hypothesis, we apply the transcriptomic data to verify the
hypothesis of whether the biofilm can be reversed in P. aeruginosa
through QS because there are negative regulations between PQS
and RhlI-RhlR. Interestingly, the transcriptomic data from 104
publications reveal a negative regulation between lasI and psqR,
rendering a support to the hypothesis. Individual cases from
transcriptomic data under different experiments demonstrate the
negative regulations of PQS with laslI, laslR, rhlI, and rhlR.

In general, the relationships among different QS systems
reveal positive regulations, which act together to promote the
biofilm formation. However, the present analyses from literature
and transcriptomic data provide the evidence that both LaslI-
LaslR and RhlI-RhlR systems have negatively regulatory effects
on PQS system. This is very important because these negative
regulations lay the foundation for the biofilm reversion through
QS. Although the exact pathways are still not fully discovered,
the N-acylated homoserine lactone (AHL)-based QS systems can
influence PQS-based QS system by inhibiting the expression
of pqsABCDE operon and pqsR, resulting in the reduction of
HHQ and PqsR synthesis. Consequently, the low concentration
of PQS related products cannot maintain the biofilm, leading
to its reversion. On the other hand, the down-regulated PQS-
based QS system cannot perform well their function of positive
regulations on LaslI-LaslR and RhlI-RhlR systems, which will
further affect the biofilm formation, especially in the second
round of RhlI cycle. Surely, there are other factors that play roles
in the formation of drug-resistant multicellular biofilms, such as
c-di-GMP. As mentioned in section “Introduction,” this signal
can govern bacterial cells to adopt either planktonic phenotype
or biofilm formation (Hengge, 2009). Recent study demonstrates
that high levels of cAMP lead to the decrease of c-di-GMP

content, which inhibits the biofilm formation in P. aeruginosa
(Almblad et al., 2019).

In clinic therapeutics for infectious diseases, antibiotic
resistance has been spreading widely and rapidly, which
becomes a major challenge for modern medicine. The strategy
of interfering the biofilm formation is effective through
bacterial cell-to-cell communication, especially with QS system
(Soheili et al., 2019). More recently, QS inhibitors are
drawing great attention in blocking the pathogenicity from
P. aeruginosa (Calvert et al., 2018; Schütz and Empting,
2018). The transcriptional regulator PqsR becomes an attractive
object and is considered to be one of the most appropriate
targets. Currently, QS regulation mechanism in P. aeruginosa is
mainly related to positive and negative regulation between QS
systems. Clearly, exploration of regulation beyond QS should get
attention in future.
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