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Angiogenesis is a critical process in the formation of new capillaries and a key participant
in rheumatoid arthritis (RA) pathogenesis. The adipokine apelin (APLN) plays critical roles
in several cellular functions, including angiogenesis. We report that APLN treatment of RA
synovial fibroblasts (RASFs) increased angiopoietin-1 (Ang1) expression. Ang1 antibody
abolished endothelial progenitor cell (EPC) tube formation and migration in conditioned
medium from APLN-treated RASFs. We also found significantly higher levels of APLN and
Ang1 expression in synovial fluid from RA patients compared with those with
osteoarthritis. APLN facilitated Ang1-dependent EPC angiogenesis by inhibiting miR-
525-5p synthesis via phospholipase C gamma (PLCg) and protein kinase C alpha (PKCa)
signaling. Importantly, infection with APLN shRNA mitigated EPC angiogenesis, articular
swelling, and cartilage erosion in ankle joints of mice with collagen-induced arthritis. APLN
is therefore a novel therapeutic target for RA.
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INTRODUCTION

Rheumatoid arthritis (RA) is one of the most common
autoimmune disorders, characterized by the accumulation of
inflammatory cytokines in the synovial joint, resulting in pannus
formation, cartilage degradation and bone destruction (1).
Angiogenesis is a critical driver of RA disease, in which pre-
existing blood vessels promote the entry of blood-derived
leukocytes into the synovial tissues to facilitate and potentiate
inflammation (2).

Endothelial progenitor cells (EPCs) develop from bone
marrow-derived endothelial stem cells, which contain the cell
surface markers CD133, CD34 and vascular endothelial growth
factor receptor 2 (VEGFR2) and are capable of stimulating
postnatal vasculogenesis (3) and angiogenic function (4). EPC
proliferation and migration facilitate angiogenesis (4), enabling
the development of RA (5, 6). EPC-dependent angiogenesis
therefore seems to be a worthwhile treatment target in RA. EPC
proliferation, migration and angiogenesis is regulated by the
balance in activities between proangiogenic factors such as
vascular endothelial growth factor (VEGF), platelet-derived
growth factor (PDGF) and angiopoietin-1 (Ang1), and
antiangiogenic factors including thrombospondin-1 (7, 8). Ang1
plays a critical role in endothelial cell adhesion, migration and
production during angiogenesis (9). However, the effects of Ang1
in EPC angiogenesis in RA disease are unclear.

Apelin (APLN) is a member of the adipokine superfamily that
is expressed in different human tissues including nervous system,
adipose and endothelial tissues (10, 11). APLN has been linked
with numerous disorders, including cardiovascular and
neurodegenerative diseases (10, 11). Emerging evidence has
highlighted the association between APLN and arthritic
diseases, including RA and osteoarthritis (OA), for example
(12). Treating human chondrocytes with APLN increases the
synthesis of matrix metalloproteinases (MMPs) and other
catabolic factors (13). APLN also promotes the production of
the proinflammatory cytokine interleukin 1 beta (IL-1b) in
human OA synovial fibroblasts (OASFs) (14). In RA patients,
levels of APLN expression are associated with the expression of
the catabolic enzyme MMP-9 (15). These reports suggest that
APLN is a novel avenue for treating arthritic diseases.

MiRNAs are single-stranded noncoding RNA molecules that
manipulate gene expression at the post-transcriptional level (16).
Various miRNA genes expressed in immune, inflammatory and
synovial cells from patients with RA (17) can cause synovial
hyperplasia and bone damage, or promote inflammation,
through positive or negative manipulation (18). Recently,
miRNAs have been found to regulate angiogenic activity in the
progression of arthritic diseases (19, 20). However, it remains
unclear as to how the APLN-miRNA axis regulates angiogenesis
in RA disease. Our study has identified higher levels of APLN
and Ang1 expression in patients with RA than in those with OA.
APLN treatment increased RASF-derived Ang1 production and
facilitated EPC angiogenesis by inhibiting miR-525-5p synthesis
via phospholipase C gamma (PLCg) and protein kinase C alpha
(PKCa) signaling. Inhibition of APLN expression diminished
Frontiers in Immunology | www.frontiersin.org 2
Ang1-dependent angiogenesis and inhibited collagen-induced
arthritis (CIA) in mice. APLN is therefore a novel therapeutic
target for RA.
MATERIALS AND METHODS

Materials
APN, Ang1, PLCg and PKCa antibodies were purchased from
Santa Cruz Biotechnology (CA, USA). p-PLCg and p-PKCa
antibodies were purchased from Cell Signaling Technology
(Danvers, MA, USA). All siRNAs (ON-TARGETplus) were
obtained from Dharmacon Research (Lafayette, CO, USA).
Taqman® one-step PCR Master Mix, qPCR primers and
probes were obtained from Applied Biosystems (Foster City,
CA, USA). b-Actin antibody and pharmacological inhibitors
were obtained from Sigma-Aldrich (St. Louis, MO, USA).

Human Synovial Fluid Samples
Study approval was granted by the Institutional Review Board of
China Medical University Hospital (Taichung, Taiwan) and all
patients provided written informed consent before participating
in the study. Synovial fluid samples were obtained from patients
undergoing total knee arthroplasty for OA (n=20) or RA (n=20).

Cell Culture
Human RASFs were purchased from the Riken Cell Bank
(Ibaraki, Japan). Primary human EPCs were isolated according
to the procedure detailed in our previous reports (21, 22). Mouse
osteoblastic cell line MC3T3-E1 were purchased from the
American Type Culture Collection (Manassas, VA, USA).
RASFs and EPCs were maintained in DMEM while MC3T3-E1
cells were cultured in a-MEM medium. The culture mediums
were supplemented with 20 mM HEPES and 10% fetal bovine
serum, 2 mM glutamine, penicillin (100 U/ml) and streptomycin
(100 mg/ml) at 37°C with 5% CO2.

Western Blot Analysis
RASF cells (5 × 105 cells) were seeding in 6 well plate. Cell lysates
were resolved by SDS-PAGE and transferred to Immobilon®

PVDF membranes. Western blot analysis was performed
according to the procedures detailed in our previous
investigations (23–26).

Quantitative Real-Time PCR (qPCR)
Analysis of mRNA and miRNA
Total RNA was extracted from RASFs and paws using TRIzol
reagent and then reverse-transcribed into cDNA using oligo(dT)
primers. For the miRNA assay, cDNA was synthesized using the
TaqMan MicroRNA Reverse Transcription Kit. qPCR analysis
was conducted according to an established protocol (27–29).

Preparation of Conditioned Medium (CM)
RASFs were plated in 6-well dishes and grown to confluence. The
culture medium was exchanged with serum-free DMEM
September 2021 | Volume 12 | Article 737990
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medium. CM were collected 1 days after the change of media and
stored at -20°C until use. In the series of experiments, cells were
pretreated for 30 min with inhibitors, including U73122,
GF109203X and Go6976 or transfected with miR-525-5p
mimic, PLCg, PKCa and PKCd siRNA for 24 h followed by
treatment with APLN for 24 h to prevent signaling via the
APLN pathway.

ELISA Assay
RASFs were treated with pharmacological inhibitors then
incubated with APLN for 24 h and the medium was quantified
for Ang1 expression using a Ang1 ELISA kit (Peprotech, Rocky
Hill, NJ, USA), following the manufacturer’s protocol.

EPC Migration and In Vitro Tube
Formation
EPCs were treated with RASF conditioned medium (CM) for
24 h. EPC migration and in vitro tube formation were evaluated
by the procedures detailed in our previous publication (30).

The Chick Chorioallantoic
Membrane Assay
In vivo angiogenic activity was assessed using the chorioallantoic
membrane (CAM) of the chick embryo, as described previously
(6, 31). Fertilized chick embryos were incubated in an 80%
humidified atmosphere at 37°C. All animal investigations
adhered to approved protocols issued by the Institutional
Animal Care and Use Committee of China Medical University
(Taichung, Taiwan).

In Vivo Matrigel Plug Assay
Four-week-old nude male mice received a single subcutaneous
injection of Matrigel containing RASF CM. Mice were
subcutaneously injected with 300 mL of Matrigel. On day 7, the
Matrigel plugs were harvested, partially fixed with 4% formalin,
embedded in paraffin, and subsequently processed for
immunohistochemistry staining for CD31, CD34, and CD133.
Hemoglobin concentrations were measured, according to
previously described methodology (6, 31, 32).

CIA Mouse Model
The CIA mouse model was performed according to the
methodology detailed in our previous publications (6, 32, 33).
After receiving two immunizations, the mice were given weekly
intra-articular injections of ~7.1 × 106 plaque-forming units (PFU)
of control or APLN short hairpin RNA (shRNA). Upon sacrifice
after 49 days of treatment, phalanges and ankle joints were
removed from each mouse then fixed in 4% paraformaldehyde
for micro-computed tomography (micro-CT) analysis. Analysis
was performed using CTAn 1.18.4 (Bruker micro-CT, Kontich,
Belgium). First, we segmented the reaction area which showed less
calcium content with porous structure. We then labelled the
isolated reaction area with purple color.

Statistical Analysis
All statistical analyses were carried out using GraphPad Prism
5.0 (GraphPad Software) and all values are expressed as the
Frontiers in Immunology | www.frontiersin.org 3
mean ± S.D. Differences between selected pairs from the
experimental groups were analyzed for statistical significance
using the paired sample t-test for in vitro analyses and by one-
way ANOVA followed by Bonferroni testing for in vivo analyses.
* p < 0.05, ** p < 0.01 and *** p < 0.001 versus the control group;
# p < 0.05 versus the APLN-treated group.
RESULTS

APLN Facilitates Ang1-Dependent EPC
Angiogenesis
APLN is associated with the progression of arthritic diseases,
including RA (12). Ang1 is an important angiogenetic regulator
in endothelial cell angiogenesis (9). First, we examined whether
APLN promotes Ang1 synthesis in RASFs. Stimulation of RASFs
with APLN dose-dependently increased Ang1 transcription and
translation levels (Figures 1A, B) and also the secretion of Ang1
protein (Figure 1C). EPC tube formation and migration assays
examined the effects of APLN-controlled angiogenesis in RASFs
(5). CM from APLN-treated RASFs significantly increased the
formation and reorganization of capillary-like network
structures as well as migratory activity (VEGF-increased vessel
formation served as the positive control) (Figures 1D, E).
Treatment with Ang1 but not VEGF antibody, dramatically
reduced the effects of CM from APLN-treated RASFs upon
EPC tube formation and migration (Figures 1D, E), indicating
that Ang1 is more important than VEGF in APLN-promoted
EPC angiogenesis. To directly examine whether APLN acts as an
angiogenic factor in vivo, the CAM assay was used. Matrigel was
mixed with CM from APLN-treated RASFs and placed onto the
surface of the CAMs. CM from APLN-treated RASFs
synthesized new capillaries then control (VEGF-increased
vessel formation served as the positive control) (Figure 1F),
suggesting that APLN promotes Ang1 production in RASFs and
enhances tube formation and migration of EPCs.

High Levels of APLN and Ang1 Expression
in RA Patients Induce EPC Homing and
Angiogenesis
Next, we investigated APLN and Ang1 levels in RA patients. We
found markedly higher levels of APLN and Ang1 expression in
synovial fluid from RA patients compared with OA synovial fluid
samples (Supplementary Figures 1A, B). Synovial fluid levels of
APLN and Ang1 were positively correlated (Supplementary
Figure 1C). Next, we examined whether synovial fluid from
RA patients promotes EPC homing and angiogenesis. Migratory
activity, as well as the formation and reorganization of capillary-
like network structures, was significantly greater in EPCs
incubated with RA synovial fluid compared with EPCs
incubated with OA synovial fluid (Supplementary Figures 1D,
E). Treatment with Ang1 antibody dramatically diminished the
effects of RA synovial fluid upon EPC migration and tube
formation (Supplementary Figures 1D, E), indicating that
high levels of APLN and Ang1 expression in RA patients
induce EPC homing and angiogenesis.
September 2021 | Volume 12 | Article 737990
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FIGURE 1 | APLN increases Ang1 expression in RASFs and promotes EPCs tube formation and migration. (A–C) RASFs were incubated for 24 h with APLN; Ang1
expression was quantified by qPCR, Western blot and ELISA assays. (D, E) RASFs cells were treat with APLN does manner for 24 h and collected conditioned
medium (CM) was applied to endothelial progenitor cells (EPCs), then EPC migration and angiogenesis was measured. (F) Matrigel plugs containing CM from APLN-
treated RASFs or VEGF (positive control) were applied to 6-day-old fertilized chick embryos for 4 days. CAMs were examined by microscopy and photographed, and
vessels counted. *p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group; #p < 0.05 versus the APLN-treated group.
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PLCg and PKCa Signaling Cascades
Regulate APLN-Promoted
Ang1 Expression and
Angiogenesis in EPCs
PLC and PKC signaling pathways control different cellular
functions, including angiogenesis (34). We therefore sought to
determine how these pathways affect APLN-induced upregulation
of Ang1 synthesis and EPC angiogenesis. Treatment of RASFs
with a PLC inhibitor (U73122) or PLCg siRNA reduced the effects
of APLN upon Ang1 expression (Figures 2A, B) and inhibited
Frontiers in Immunology | www.frontiersin.org 5
APLN-induced upregulation of EPC migration and tube
formation (Figures 2C, D). Incubating RASFs with APLN
induced PLCg phosphorylation (Figures 2E, F). In addition, the
PKCa inhibitors (GF109203X and Go6976) and PKCa siRNA,
but not the PKCd inhibitor (Rottlerin) or PKCd siRNA, abolished
APLN-facilitated Ang1 expression and EPC angiogenesis
(Figures 3A–D). Stimulation of RASFs with APLN also
increased PKCa phosphorylation (Figure 3E). Thus, APLN
promotes Ang1 expression in RASFs and enhances EPC
angiogenesis via PLCg and PKCa signaling.
A B

DC

FE

FIGURE 2 | PLCg signaling regulates APLN-induced effects on Ang1 expression and EPC angiogenesis. (A, B) RASFs were left untreated, stimulated with APLN (3
ng/mL) alone for 24 h, or pretreated with U73122 for 30 min, or transfected with PLCg siRNA for 30 min, prior to 24 h of APLN (3 ng/mL) stimulation. Ang1
expression was examined by qPCR and ELISA assays. (C, D) Collected CM was applied to EPCs, and angiogenesis was determined. (E) RASFs were treated with
APLN for varying amounts of time and Western blot (n=3) determined PLCg phosphorylation. (F) Densitometry analysis of (E). *p < 0.05, **p < 0.01 and ***p < 0.001
versus the control group; #p < 0.05 versus the APLN-treated group.
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Inhibition of miR-525-5p Controls APLN-
Promoted Ang1 Synthesis and
EPC Angiogenesis
The dysregulated expression of miRNAs in patients with RA
differs from miRNA expression in healthy individuals (35, 36).
Using open-source miRNA software (miRanda, https://bioweb.
pasteur.fr/packages/pack@miRanda@3.3a/; Microt4, http://
diana.imis.athena-innovation.gr/DianaTools/index.php?r=
microtv4/index; and miRWalk, http://mirwalk.umm.uni-
heidelberg.de/), we identified 8 candidate miRNAs that could
possibly bind to the 3’UTR region of Ang1 mRNA. Among these
8 miRNAs, levels of miR-525-5p expression were suppressed by
Frontiers in Immunology | www.frontiersin.org 6
the greatest extent after APLN administration (Figure 4A and
Supplementary Figure S2). Treating RASFs with APLN
concentration-dependently reduced miR-525-5p synthesis
(Figure 4B). Transfection of RASFs with miR-525-5p mimic
antagonized the effects of APLN upon Ang1 production and EPC
angiogenesis (Figures 4C–E). Similarly, transfection with miR-
525-5p mimic downregulated Ang-1 expression in mouse
MC3T3-E1 cells (Supplementary Figure S3).

To examine whether miR-525-5p regulates ANG1 gene
transcription, we constructed a luciferase reporter vector with the
wild-type 3’UTR ofANG1mRNA (wt-Ang1-3’UTR) and amutated
vector harboring mismatches in the predicted miR-525-5p binding
A B

DC

E

FIGURE 3 | PKCa signaling regulates APLN-induced effects on Ang1 expression and EPC angiogenesis. (A, B) RASFs were pretreated with GF109203X and
Go6976 for 30 min, or transfected with PKCa and PKCd siRNAs for 24 h, then stimulated with APLN for 24 h. Ang1 expression was examined by qPCR and ELISA
assays. (C, D) Collected CM was applied to EPCs, and EPC angiogenesis was determined. (E) RASFs were treated with APLN time-manner and Western blot (n=3)
determined PKCa phosphorylation. *p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group; #p < 0.05 versus the APLN-treated group.
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site (mt-Ang1-3’UTR) (Figure 4F). MiR-525-5p mimic reduced
APLN-induced luciferase activity in the wt-Ang1-3’UTR plasmid,
but not in the mt-Ang1-3’UTR plasmid (Figures 4G, H).
Moreover, U73122, GF109203X and Go6976 all reversed APLN-
induced inhibition of miR-525-5p expression (Figure 4I),
indicating that PLCg and PKCa signaling mediate APLN-
induced inhibition of miR-525-5p.
Frontiers in Immunology | www.frontiersin.org 7
Inhibition of APLN Reduces EPC
Angiogenesis as Well as Arthritis
Severity In Vivo
APLN shRNA was used to validate the in vivo role of APLN.
Infection of RASFs with APLN shRNA reduced APLN and Ang1
levels (Figures 5A, B). Compared with RASF CM, APLN
shRNA-infected RASF CM reduced EPC migration and tube
A B

D

C

FE

G IH

FIGURE 4 | APLN facilitates Ang1 synthesis and EPC angiogenesis by inhibiting miR-525-5p. (A) Open-source software enabled identification of miRNAs that
possibly interfere with Ang1 transcription. (B) RASFs were incubated with APLN for 24 h. miR-525-5p expression was determined by the qPCR assay. (C) RASFs
were transfected with miR-525-5p mimic for 24 h, then stimulated with APLN for 24 h. Ang1 levels were determined by qPCR. (D, E) Collected CM was applied to
EPCs, and EPC angiogenesis was quantified. (F) Schematic 3′UTR representation of human Ang1 containing the miR-525-5p binding site. (G, H) RASFs were
transfected with the indicated luciferase plasmid with or without miR-525-5p mimic for 24 h, then stimulated with APLN for 24 h. Relative luciferase activity was
determined. (I) RASFs were pretreated with U73122, GF109203X and Go6976 for 30 min, then stimulated with APLN for 24 h. miR-525-5p expression was
quantified by qPCR. *p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group; #p < 0.05 versus the APLN-treated group.
September 2021 | Volume 12 | Article 737990
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formation (Figures 5C, D). CAM and Matrigel investigations
demonstrated that CM from RASFs enhanced vessel formation
in vivo (Figures 5E, F), while APLN shRNA reduced RASF CM-
promoted induction of vessel formation (Figures 5E, F). These
results were confirmed by IHC staining of hemoglobin levels and
the human-specific vessel marker CD31, as well as EPC markers
CD34 and CD133 (Figures 5G, H).

Next, we used the CIA mouse model to investigate the
therapeutic effect of inhibiting APLN in vivo. Compared with
controls, CIA mice exhibited significant paw swelling that
Frontiers in Immunology | www.frontiersin.org 8
improved after administration of APLN shRNA (Figures 6A, B).
Micro-CT images of the hind paws showed that APLN shRNA
reversed CIA-induced reductions in bone mineral density
(p<0.01), bone volume (p<0.0001) and trabecular numbers
(p<0.0001) (Figures 6C–E). Moreover, CIA mice exhibited lower
cartilage thicknesses, as indicated by H&E and Safranin-O/Fast-
green staining (Figure 6F). APLN shRNA reversed CIA-induced
cartilage degradation (Figure 6G). According to IHC staining
data, levels of vessel marker (CD31) and EPC markers (CD34 and
CD133) were all markedly higher in CIA mice than in controls.
A B

D

C

F

E

F
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H

FIGURE 5 | Inhibition of APLN reduces EPC angiogenesis in vivo. (A, B) RASFs were infected with APLN shRNA for 24 h. APLN and Ang1 expression was
examined by Western blot (n=3) and ELISA. (C, D) Collected CM was applied to EPCs, and EPC angiogenesis was quantified. (E) After subjecting RASFs to the
treatment conditions as indicated, the harvested CM was applied to 6-day-old fertilized chick embryos for 4 days. CAMs were examined by microscopy and
photographed, and vessels were counted manually. (F, G) Matrigel plugs containing the harvested CM were subcutaneously injected into the flanks of nude mice.
After 7 days, the plugs were photographed, and hemoglobin levels were quantified. (H) Plug specimens were immunostained with CD31, CD34 and CD133
antibodies. *p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group; #p < 0.05 versus the APLN-treated group.
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Notably, APLN shRNA treatment antagonized CIA-induced
upregulation of CD31, CD34 and CD133 expression
(Figure 6G). Furthermore, the in vitro results were confirmed by
qPCR assays, showing lower levels of APLN mRNA in the APLN-
shRNA group compared with those in the CIA group, while levels
of miR-525-5p were higher in the APLN-shRNA group than in the
CIA group (Supplementary Figure S4). These results indicate that
inhibiting APLN lowers EPC angiogenesis as well as disease
activity in CIA-induced arthritis.
Frontiers in Immunology | www.frontiersin.org 9
DISCUSSION

RA is well recognized for its manifestations of synovial
inflammation and joint destruction (1, 37, 38). The
development of RA disease relies upon pannus formation and
neovascularization (2). Ang1 is a critical modulator during the
physiological and pathological progression of angiogenesis (39).
APLN reportedly increases IL-1b expression and VEGF-
mediated angiogenesis, facilitating OA development (14, 19).
A B

D

F

C

F

E

G

FIGURE 6 | APLN knockdown reduces angiogenesis and the severity of RA in vivo. CIA mice received intra-articular injections of 7.1 × 106 PFU APLN shRNA or
control shRNA on day 14 and were euthanized on day 49. (A) In comparisons of digital plethysmometer values for the amounts of hind paw swelling in the CIA and
APLN shRNA groups, the statistical comparisons were not significant on days 14 and 21 (p=0.5 and p=0.3, respectively), but they were significant change on days
14, 21, 28,35,42 and 49 (p=0.001, p<0.0001, p<0.0001, and p<0.0001, respectively). (B) Representative micro-CT images of the hind paws taken on day 49.
(C–E) Micro-CT SkyScan Software quantified bone mineral density, bone volume and trabecular numbers. (F, G) Histological sections of ankle joints were stained
with H&E or Safranin O and immunostained with CD31, CD34 and CD133. *p < 0.05 versus the control group; #p < 0.05 versus the APLN-treated group.
*p < 0.05 and **p < 0.01 versus the control group; #p < 0.05 versus the CIA group.
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Here, we report finding higher APLN and Ang1 expression in
patients with RA than in those with OA. Moreover, we found
that APLN stimulates Ang1 synthesis in RASFs and facilitates
EPC angiogenesis by inhibiting miR-525-5p synthesis via PLCg
and PKCa signaling. Importantly, inhibiting the expression of
APLN reduces EPC angiogenesis, reducing the progression of
RA in vivo.

EPCs also stimulate new vessel formation (40, 41) and
promotion of EPC mobilization by angiogenic factors facilitates
tumor development and angiogenesis (42). EPC angiogenesis plays
a vital role in RA (5, 43). EPC infiltration into joints has been
reported in the CIA-induced RA mouse model (5). Here, we
observed that compared with OA synovial fluid, RA synovial
fluid facilitates EPC infiltration and angiogenesis, indicating that
EPC-dependent angiogenesis is an important step during RA
progression. Levels of EPC-specific markers were higher in our
CIAmouse model than in controls. APLN shRNA reduced levels of
vessel markers and EPC markers and mitigated the severity of RA
disease. Thus, inhibition of APLN shows promise as a novel strategy
in RA disease, reducing EPC angiogenesis and disease development.
Frontiers in Immunology | www.frontiersin.org 10
Various proangiogenic factors, including VEGF, fibroblast
growth factor, PDGF and Ang, are involved in the angiogenic
process of several different diseases, including arthritis (2).
Interestingly, we found that Ang1 antibody significantly
antagonized increases in EPC angiogenesis induced by RA
synovial fluid, suggesting that Ang1 is a vital modulator in
EPC-mediated angiogenesis during RA development.
Incubation of RASFs with APLN concentration-dependently
promotes Ang1 synthesis, resulting in EPC angiogenesis.
Importantly, Ang1 antibody, but not VEGF antibody,
abolished EPC migration and tube formation in CM from
APLN-treated RASFs, indicating that Ang1 is more important
than VEGF in APLN-induced angiogenesis during RA disease.

Activation of the PLC/PKC signaling cascade is essential
for regulating various cellular functions, including pathogenesis
of arthritic diseases (34, 44). The proliferation of synoviocytes
from patients with RA has been reported to be suppressed by PLC
and PKC inhibitors (44). In our previous research, we found that
the PLC/PKC pathway was involved in thrombin-induced
interleukin-6 synthesis in rheumatoid synovial cells (45).
FIGURE 7 | The schematic diagram summarizes the mechanisms of APLN-induced Ang1-dependent EPC angiogenesis during RA pathogenesis. APLN induces
Ang1 expression in RASFs by suppressing miR-525-5p expression via the PLCg and PKCa signaling pathways, and promotes EPC angiogenesis in RA.
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However, the impact of these molecules on synovium-induced
angiogenesis is not clear. In OA-related research, APLN increased
angiogenesis responses, including endothelial cell migration,
proliferation, and the capillary tube-like structure formation of
endothelial cells (19, 46). Our investigations found that PLC and
PKC inhibitors reduced APLN-enhanced Ang1 expression in
RASFs and EPC angiogenesis. This was confirmed by findings
from genetic siRNA experiments demonstrating that PLCg and
PKCa mediate the angiogenic effects of APLN. Treatment of
RASFs with APLN also augmented PLCg and PKCa
phosphorylation. This suggests that PLCg and PKCa activation
are controlled by APLN-dependent Ang1 angiogenesis in EPCs.
Recent publications have described how PKCd activation
regulates lymphangiogenesis and angiogenesis in RASFs and
LEC cells (31, 47). However, our study showed that neither the
PKCd inhibitor (Rottlerin) nor the genetic siRNA affected
APLN-facilitated expression of Ang1 and angiogenesis in
EPCs, indicating that the PKCd pathway is not involved in
APLN-regulated angiogenic effects. Thus, PKCa but not
PKCd activation regulates APLN-induced Ang1 expression and
EPC angiogenesis.

MiRNAs post-transcriptionally regulate gene expression (48).
In RA, aberrant miRNA expression regulates the expression of
inflammatory pathways (35, 36). Numerous miRNAs also
control angiogenesis during RA progression (49). MiR-525-5p
has been implicated in multiple cancers, including for instance
glioma (50), cervical cancer (51) and NSCLC (52), but no
evidence to date has indicated the involvement of miR-525-5p
with RA progression. In this study, stimulation of RASFs with
APLN inhibited miR-525-5p expression and transfecting them
with miR-525-5p mimic antagonized APLN-promoted
upregulation of Ang1 expression and EPC angiogenesis. It has
been reported that transcriptional and post-transcriptional
regulation play key roles in miRNA activation and inhibition
(53). In this study, treating RASFs with PLCg and PKCa
inhibitors reversed APLN-promoted inhibition of miR-525-5p
expression, which suggests that APLN may assist with Ang1
production and EPC angiogenesis by inhibiting miR-525-5p
synthesis via the PLCg and PKCa signaling cascades. Whether
PLCg/PKCa signaling regulates miR-525-5p expression through
transcriptional or post-transcriptional regulation needs
further examination.

In conclusion, we have determined that APLN increases Ang1
synthesis and subsequently facilitates EPC angiogenesis by
suppressing miR-525-5p synthesis via PLCg and PKCa signaling
(Figure 7). The evidence supports the targeting of the APLN-
dependent miR-525-5p/Ang1 axis in RA treatment regimens.
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