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Abstract

Litter size is one of the most reliable state-dependent life-history traits that indicate parental

investment in polytocous (litter-bearing) mammals. The tendency to optimize litter size typi-

cally increases with decreasing availability of resources during the period of parental invest-

ment. To determine whether this tactic is also influenced by resource limitations prior to

reproduction, we examined the effect of experimental, pre-breeding food restriction on the

optimization of parental investment in lactating mice. First, we investigated the optimization

of litter size in 65 experimental and 72 control families (mothers and their dependent off-

spring). Further, we evaluated pre-weaning offspring mortality, and the relationships

between maternal and offspring condition (body weight), as well as offspring mortality, in 24

experimental and 19 control families with litter reduction (the death of one or more offspring).

Assuming that pre-breeding food restriction would signal unpredictable food availability, we

hypothesized that the optimization of parental investment would be more effective in the

experimental rather than in the control mice. In comparison to the controls, the experimental

mice produced larger litters and had a more selective (size-dependent) offspring mortality

and thus lower litter reduction (the proportion of offspring deaths). Selective litter reduction

helped the experimental mothers to maintain their own optimum condition, thereby improv-

ing the condition and, indirectly, the survival of their remaining offspring. Hence, pre-breed-

ing resource limitations may have facilitated the mice to optimize their inclusive fitness. On

the other hand, in the control females, the absence of environmental cues indicating a risky

environment led to “maternal optimism” (overemphasizing good conditions at the time of

breeding), which resulted in the production of litters of super-optimal size and consequently

higher reproductive costs during lactation, including higher offspring mortality. Our study

therefore provides the first evidence that pre-breeding food restriction promotes the optimi-

zation of parental investment, including offspring number and developmental success.

Introduction

The choice of strategies made by organisms in order to increase their lifetime reproductive fit-

ness is a central issue of life-history evolution [1,2]. Female mammals have evolved a number
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of state-dependent life-history tactics to increase their fitness prospects [3,4]. An optimal

reproductive tactic is defined as a strategy that maximizes an individual’s reproductive value

(i.e. age-specific expectation of all present and future offspring) at every age [5]. A function of

an individual’s reproductive value is reproductive effort, reflecting the proportional allocation

of available time and energy to reproduction [6]. In female mammals, parental effort (i.e. total

parental investment) typically increases with the resources available [7]. Therefore, in polyto-

cous (litter-bearing) species, litter size is one of the most reliable state-dependent life-history

traits that indicate an individual’s parental effort.

David Lack, in his seminal work [8], defined optimal litter size as an average or the most

frequent litter size that produces the most offspring able to reproduce. Nevertheless, since

the optimal size of the litter can vary through time and space, natural selection may instead

operate on parental investment in itself, i.e. the proportion of parental effort received by each

individual offspring [9]. Considering this aspect, Douglas Morris proposed an “optimal invest-

ment hypothesis” [10,11] predicting that litter size should increase with an increasing amount

of available resources. According to this hypothesis, variation in litter size is a mechanism

whereby parents maintain their optimal investment per individual offspring in response to

changing environmental or physiological conditions. A competing “individual optimization

hypothesis” [12], on the other hand, states that such variation in litter size reflects individual

differences in ability to rear offspring.

Parental investment per individual offspring generally increases with decreasing litter size

[11,13]. Therefore, natural selection should favour a larger optimal litter size in favourable ver-

sus adverse conditions [14,15]. An alternative to this tactic may be to produce larger litters in

adverse conditions to compensate for potential offspring loss [16–20]. Because some litters can

be smaller (sub-optimal) or larger (super-optimal) than the parental optimum [21,22], parents

can also optimize their reproduction either by investing more per individual offspring or by

reducing the size of the litter to meet their state-dependent optimum [15]. In addition to this

complexity, not only does optimal litter size depend on parental investment in itself, but also

on its effectiveness in an individual’s fitness returns. There is a lower threshold below which

no offspring can survive and an upper threshold above which an additional investment has no

effect on offspring fitness [21]. Therefore, a fundamental question of the optimal investment

theory is how much to invest in a particular individual offspring.

In general, there are two basic tactics whereby parents can partition their investment

among offspring [11]. If all of their offspring have a similar probability of survival, parents can

partition their investment equally. However, if some offspring have a higher probability of sur-

vival than others, parents can preferentially favour such competitive offspring or, on the con-

trary, the marginal offspring with a lower probability of survival. Such preferential investment

implies that there might be a parent-offspring conflict [23] and sibling rivalry [24,25]. There-

fore, under certain conditions, the optimal investment tactic should be determined by the sum

of the fitness of all the family members. For example, if the reduction in the litter size suffi-

ciently enhances the fitness of other family members, the marginal offspring’s inclusive fitness

can be best served by dying [26]. An extreme example of this preferential investment can

be seen in cases of selective infanticide or selective siblicide of the most vulnerable young

(reviewed in [27]).

Selective litter reduction (i.e. size-dependent natural mortality of the marginal offspring)

can operate in all polytocous mammals. Sibling rivalry intensifies as resource availability

declines, and thus a reduction of the litter can increase with decreasing availability of resources

during lactation [11,15]. Nevertheless, it remains unknown whether and how this tactic is

influenced by resource limitations prior to female reproduction. To address this issue, we

examined the optimization of parental investment, including litter size, in lactating house
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mice, Mus musculus, exposed to experimental, pre-breeding food restriction (FR). The house

mouse is an ideal candidate for investigating this aim for three reasons. First, the reproductive

adaptability of the house mouse is probably the most extreme among mammals [28]. Second,

female mice regularly face resource limitations in the wild [29]. Third, the litter reduction is a

predominant strategy used in this species to stabilize the energy burdens of lactation [30–32].

This study is a follow-up to our previous article [33] in which we investigated the effect of

experimental, pre-breeding FR on the sex allocation in female mice. We observed a signifi-

cantly lower proportion of fertile females in the food-restricted (FR) than in the ad libitum
(AL)-fed group. However, at the same time, the FR mice tended to produce larger litters (with

a higher proportion of daughters) than the AL-fed controls. In addition, we observed that the

offspring of the FR mothers suffered substantially less from pre-weaning mortality than those

of the AL-fed mothers. Thus, the effect of pre-breeding FR persisted during gestation and even

during lactation when we fed both groups ad libitum. To understand the mechanisms underly-

ing the optimization of parental investment, involving selective litter reduction, in the present

study, we focused on those mouse families (consisting of mothers and their dependent off-

spring), in which we observed litter reduction (the death of one or more offspring during the

lactation period). In the analyses, we used unpublished data from the lactation period together

with a subset of our formerly published data [33].

Assuming that pre-breeding food restriction would signal unpredictable food availability,

we hypothesized that the optimization of parental investment would be more effective in the

FR mice than in the AL-fed controls. First, we checked whether the litter size would vary

depending on the pre-breeding feeding treatment and the occurrence of litter reduction. Fur-

ther, to evaluate fitness optimization, we examined the families with litter reduction for rela-

tionships between maternal and offspring condition, and offspring mortality. We predicted

that, in comparison to the AL-fed mice, in the FR mice: (1) offspring mortality would be more

selective and hence generally lower; and (2) litter reduction would maintain the optimum con-

dition of the mother, and thus would improve the condition and survival of her remaining

offspring.

Materials and methods

Ethics statement

The animals were cared for in accordance with the principles of the Guide for the Care and

Use of Laboratory Animals and the project (Ref. No. 11291/02-30/300) was approved by the

Ethical Commission for Animal Experiments of the Ministry of Education, Youth and Sports

of the Czech Republic. Animal handling was performed with the utmost care to avoid unneces-

sary distress. Together with our vet, we regularly checked the health status and mortality of

animals throughout the experiment (once a day during the period of intermittent feeding, and

at least every fourth day during the lactation period). There were no unexpected deaths of ani-

mals. We performed no procedures that would require the use of analgesics and anaesthetics.

At weaning (day 21), the mothers and their (21 day old) offspring were euthanized by asphyxi-

ation with carbon dioxide.

Experimental setup and data collection

We used 152 adult (60–80 day old), sexually mature, virgin, female, outbred CD-1 (ICR) mice

(Faculty of Medicine, Masaryk University, Czech Republic). The animals were housed individ-

ually in plastic cages (22 × 36 × 14 cm) with wood shavings for bedding, and were supplied

with a standard grain-based pellet diet (ST-1, Velas, a. s., Hrabanov, Lysá nad Labem, Czech

Republic) and water available ad libitum. The breeding females were provided with soft
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cellulose tissues as nesting material. The colony was maintained in a temperature controlled

room (24 ± 1˚C) with a 14:10-h light/dark cycle (lights on at 05:00 h).

We collected data in three independent, consecutive, experimental trials. In order to study

the effect of pre-breeding resource limitations, 77 randomly selected females were exposed to

experimental FR, in the form of the intermittent feeding regime (alternate-day fasting, which

consisted in total of four food deprivation and three ad libitum 24-h periods), during the week

before pairing. For the rest of the experiment, this group of FR females was fed ad libitum. In

contrast, the AL-fed control females were fed ad libitum at all times. At pairing, each female

was placed with a randomly selected adult male (60–80 day old; n = 152). The males were

removed from the cage after 10 days and the females were checked twice daily (at 08:00 and

17:00 h) for delivery. At birth, the pups were counted, individually marked (toe-clipping) and

sexed (via a visual inspection of the anogenital region).

During the lactation period, data collection started at birth (day 1) and was performed

every fourth day (5, 9, 13, 17, and 21 days of age) until weaning (day 21). On each data collec-

tion day, each mother and her remaining offspring were weighed by the same experimenter

(AD). Body weight was measured with a digital balance (model EMB 200–2; Kern & Sohn

GmbH, Germany; weighing accuracy of 0.01 g). To assess the impact of pre-breeding maternal

FR on pre-weaning offspring mortality, we first examined its effect on birth litter size and

weaning litter size. In the families with litter reduction (i.e. the death of one or more offspring

from day 1 to 21), we further investigated the effect of pre-breeding maternal FR on total litter

reduction (i.e. the proportion of all offspring deaths from day 1 to 21), and on the relationships

between maternal and offspring condition, and offspring mortality (see Fig 1). To account for

developmental dynamics (i.e. actual changes in maternal and offspring weight), we studied fit-

ness optimization, including offspring mortality (i.e. the proportion of offspring deaths), dur-

ing five lactation periods (I: day 1–5, II: day 6–9, III: day 10–13, IV: day 14–17, V: day 18–21).

In each period, we assessed (i) maternal condition via the mother’s prior weight and mater-

nal weight change, (ii) offspring condition via the individual offspring prior weight and weight

change, and (iii) offspring mortality via the probability of individual offspring death and by lit-

ter biomass change. (Both the maternal and offspring prior weights were measured on the last

day of a prior lactation period. For lactation period I, we used the data from day 1.) The mater-

nal and individual offspring weight change, and the litter biomass change were computed as:

DW ¼
W2� W1

W1

� �

� 100 ð%Þ

where ΔW represents the proportional change either of an individual’s body weight (i, ii) or of

the litter biomass (iii), and W1 denotes either an individual’s body weight (i, ii) or the litter bio-

mass (iii) on the first day and W2 on the last day of a particular lactation period. For all of

these variables, the greater the value the better the condition of the individual (i, ii) or the

smaller the reduction of the litter (iii).

Data analysis

All analyses were performed using the SAS System V 9.4 (SAS Institute, Cary, NC; for SAS

codes used in the analyses, see S1 Appendix). First of all, we used a t-test to evaluate the effect

of the feeding treatment on maternal weight at mating (i.e. on the day after the period of

food restriction) and on maternal delivery weight. Further, we aimed to determine the factors

that affected birth litter size and weaning litter size. To assess the impact of the feeding treat-

ment on the proportion of all offspring deaths and on the proportions of offspring deaths in

particular lactation periods (I–V), we used a χ2 contingency table analysis. To understand the
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optimization mechanisms, we examined, from the offspring’s birth to its death or weaning,

what factors affected maternal weight change, offspring weight change, and the probability of

offspring death.

A General Linear Mixed Model (GLMM) using PROC MIXED was applied in four models

to test the fixed effects that affected (a) birth litter size, (b) weaning litter size, (c) maternal

weight change, and (d) offspring weight change. We used a Generalized Linear Mixed Model

(GzLMM) with PROC GLIMMIX for logistic regression (fitted with a binomial distribution

for the error terms and a logit link function) in the fifth model to test the fixed effects that

affected (e) the probability of offspring death. The tested fixed effects are listed and defined in

Table 1; the models (a–e), in which they were tested, are indicated in the column Analysis.

Considering the interplay that exists between maternal and offspring condition, the probability

of offspring death was explicitly tested for the interactions between: mother’s prior weight and

offspring prior weight; maternal weight change and offspring weight change; mother’s prior

weight and offspring weight change; and maternal weight change and offspring prior weight.

To assess the impact of pre-breeding maternal FR, we tested all fixed effects, including the

interaction terms, nested within the class variable feeding treatment. To account for individual

variations among the subjects, we used the random effects experimental trial (a–e) and ID of

the mother (d, e). In addition, to account for the repeated measures and genetic relationships,

Fig 1. Schematic diagram of the experimental setup. The hypothesized effect of the pre-breeding feeding treatment of the

female (ad libitum–AL, food restriction–FR) on the optimization of her parental investment during lactation. Considering the

changes that may occur with time, we investigated this effect over the course of five equal lactation periods.

https://doi.org/10.1371/journal.pone.0173985.g001
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we tested the fixed effects within the class variables lactation period, ID of the mother, and ID

of the offspring in the REPEATED statement (c–e). Considering the optimization dynamics

(c–e), we evaluated the influence of the fixed effects on the last day of a particular lactation

period (I: day 5, II: day 9, III: day 13, IV: day 17, V: day 21). When the offspring died, it was

excluded from the analyses (c–e) in subsequent lactation period(s).

To determine the best model, we first included all the terms tested (see Table 1, column

Analysis) and then sequentially removed the non-significant ones on the basis of the “Fit Sta-

tistics” table, which provides AIC, AICC and BIC information criteria, all in “smaller-is-better”

form (as recommended by [34]). We subsequently evaluated the goodness-of-fit of the final

models via a visual inspection of the residuals’ normality, the randomness of the error terms,

and homoscedasticity. The significance of each fixed effect was assessed by an F-test. To evalu-

ate the differences within the class and the significance of each class level, we used a t-test. We

Table 1. Definition of the Fixed Effects Tested in the Analyses of (a) Birth Litter Size, (b) Weaning Lit-

ter Size, (c) Maternal Weight Change, (d) Offspring Weight Change, and (e) Probability of Offspring

Death.

Fixed effect Definition Analysis

Feeding treatment Class with two categories (ad libitum, food restriction) a–e

Litter biomass change Proportional change of litter biomass during a particular

lactation period1
c, d

Litter reduction Class with two categories (no, yes) a, b

Maternal delivery date Days from pairing to delivery a, b

Maternal delivery weight Mother’s weight on day 1 a, b

Maternal weight change Proportional change of the mother’s weight during a particular

lactation period1
d, e

Maternal weight change at

mating

Proportional change of the mother’s weight during the period of

food restriction2
a, b

Maternal weight change at

weaning

Proportional change of the mother’s weight from day 1 to 212 b

Maternal weight at mating Mother’s weight on the first day of pairing with a male a, b

Mother’s prior weight Mother’s weight on the last day of a prior lactation period3 d, e

Offspring sex Class with two categories (female, male) c–e

Offspring prior weight Offspring weight on the last day of a prior lactation period3 c, e

Offspring weight change Proportional change of offspring weight during a particular

lactation period1
c, e

Prior litter size Litter size on the last day of a prior lactation period3 c–e

Prior litter sex ratio Proportion of males in the litter on the last day of a prior lactation

period3
c–e

Secondary sex ratio Proportion of male births a, b

1Computational method for determining maternal and offspring weight change, and litter biomass change,

was described above.
2Maternal weight change at mating and at weaning was computed as:

DW ¼
W2� W1

W1

� �

� 100 ð%Þ

where ΔW represents the proportional change of the mother’s body weight, and W1 denotes

the mother’s body weight on the first day and W2 on the last day of a particular period

studied (the greater the value the better the condition of the mother).
3For lactation period I, we used the data from day 1.

https://doi.org/10.1371/journal.pone.0173985.t001
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assessed differences in litter size at birth and weaning among the experimental and control

families with and without litter reduction after a Tukey-Kramer adjustment for multiple com-

parisons. All cited P-values were two-tailed, with a significance level (α) set at 0.05. To account

for an unbalanced design with unequal numbers of AL-fed and FR mothers and their off-

spring, respectively, the within-class differences were indicated by least-squares (LS)-means

(or by logits for GzLMM) with standard errors (± S.E.). We visualized the relationships

between the continuous variables by plotting the predicted values of the dependent variable

(adjusted for the treatment and covariate effects) against the fixed effect with a predicted

regression line.

Results

In total, 72 of the 75 (96.00%) AL-fed and 65 of the 77 (84.42%) FR female mice littered suc-

cessfully. Of these, litter reduction occurred in 19 of the 72 (26.39%) AL-fed and in 24 of the

65 (36.92%) FR families. Altogether 56 of the 275 (20.36%) offspring of the AL-fed mothers

and 49 of the 351 (13.96%) offspring of the FR mothers died during the lactation period. We

observed the loss of the entire litter in 2 of the 19 (10.53%) AL-fed controls.

Pre-breeding FR decreased the weight of the females at mating (means ± S.E.; AL: 27.55 ±
0.33 g; FR: 24.51 ± 0.30 g; t135 = -6.80, P< 0.0001). However, the FR mice compensated for

this decrease during gestation; their delivery weights did not differ from those of the AL-fed

controls (AL: 38.17 ± 0.37 g; FR: 38.66 ± 0.35 g; t135 = 0.93, P = 0.35). None of the studied vari-

ables were affected by maternal weight change at mating, by maternal delivery weight, by

maternal delivery date, by offspring sex, by secondary sex ratio, or by prior litter sex ratio (for

their use in the models, see Table 1, column Analysis).

Litter size at birth and at weaning

The factors that affected birth litter size and weaning litter size are listed in Table 2. On aver-

age, birth litter size was smaller in the AL-fed than in the FR mothers (LS-means ± S.E.; AL:

13.16 ± 0.29; FR: 13.74 ± 0.29; Table 2). In both groups, a larger litter size at birth was associ-

ated with a later occurrence of litter reduction (Table 2; Fig 2A). We observed the most appar-

ent difference between the FR mice with litter reduction, who produced the largest litters, and

the AL-fed controls without litter reduction, who produced the smallest litters (t131 = 3.15,

P< 0.02; Fig 2A). Further, the AL-fed and FR mothers differed in birth litter size depending

on their weights at mating (Table 2). Whereas birth litter size increased with increasing mater-

nal weight in the AL-fed controls (t131 = 4.26, P< 0.0001), it was independent of maternal

weight in the FR mice (t131 = 0.98, P = 0.33).

Table 2. Final GLMM Models with Factors that Affected Birth Litter Size and Weaning Litter Size.

Dependent variable Fixed effect df (Num, Den) F-value P-value

Birth litter size Feeding treatment 1, 131 4.54 < 0.05

Litter reduction (Feeding treatment) 2, 131 4.09 < 0.02

Maternal weight at mating (Feeding treatment) 2, 131 9.56 < 0.0001

Weaning litter size1 Feeding treatment 1, 127 4.39 < 0.05

Litter reduction (Feeding treatment) 2, 127 4.95 < 0.01

Maternal weight at mating (Feeding treatment) 2, 127 9.90 < 0.0001

Maternal weight change at weaning (Feeding treatment) 2, 127 9.47 < 0.0001

1Two AL-fed controls were excluded from this analysis due to the loss of their entire litters.

https://doi.org/10.1371/journal.pone.0173985.t002
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Fig 2. Litter size at birth and at weaning. The effect of pre-breeding maternal feeding treatment (ad libitum–

AL; food restriction–FR) on litter size (a) at birth and (b) at weaning in the families with and without litter
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The effect of pre-breeding FR on litter size persisted until weaning, despite the reduction of

some litters during lactation. On average, weaning litter size was smaller in the AL-fed than in

the FR mothers (AL: 11.94 ± 0.31; FR: 12.74 ± 0.30; Table 2). In both groups, litter reduction

contributed to the variation in litter size at weaning (Table 2; Fig 2B). The FR mice without lit-

ter reduction weaned the largest litters, which substantially varied from the AL-fed controls

with litter reduction, who weaned the smallest litters (t127 = 3.22, P< 0.01; Fig 2B). Similarly

as at birth, pre-breeding FR also influenced the relationship between maternal weight at mat-

ing and litter size at weaning (Table 2). Weaning litter size increased with increasing maternal

weight in the AL-fed controls (t127 = 4.31, P< 0.0001), whereas it was independent of maternal

weight in the FR mice (t127 = 1.12, P = 0.26). On the other hand, in both groups, we found a

positive association between maternal weight change and litter size at weaning (Table 2). We

observed larger litters in the mice that had gained weight during lactation than in those that

had lost weight.

Litter reduction over lactation

In the families with litter reduction, we observed that total litter reduction (proportion of all

offspring deaths from day 1 to 21) was higher in the AL-fed than in the FR mice (χ2
1 = 4.53,

P< 0.05; Fig 3).

In both groups, the mortality of the young declined with age (Fig 4). With exception to lac-

tation period I, when offspring mortality (proportion of offspring deaths) was slightly lower

in the AL-fed than in the FR group, there was a consistent trend for higher offspring mortality

in the AL-fed than in the FR group in subsequent (II–V) lactation periods (Fig 4). However,

this difference was only significant for lactation periods III (χ2
1 = 4.54, P = 0.03; Fig 4) and V

(χ2
1 = 5.39, P = 0.02; Fig 4).

Fitness optimization in families with litter reduction

Maternal weight change. The factors that affected maternal weight change are listed in

Table 3. When comparing the groups, the AL-fed mothers, on average, gained more weight

than the FR mothers (AL: 1.40 ± 0.54%; FR: 0.84 ± 0.54%; Table 3). In both groups, maternal

weight change was positively associated with prior litter size (Table 3; Fig 5A). However, this

relationship was less pronounced in the AL-fed than in the FR mothers (AL: t420 = 6.99,

P< 0.0001; FR: t536 = 11.44, P< 0.0001; Fig 5A). Furthermore, the weight change of the AL-

fed and the FR mothers differed according to the weight change of their offspring (Table 3; Fig

5B). Whereas the weight change of the AL-fed mothers was independent of their offspring’s

weight change (t1231 = 0.10, P = 0.92; Fig 5B), the weight change of the FR mothers was posi-

tively associated with the weight change of their offspring (t1608 = 4.82, P< 0.0001; Fig 5B).

In addition, the weight change of the AL-fed and the FR mothers differed depending on litter

biomass change (Table 3; Fig 5C). Whereas the AL-fed mothers lost weight along with the

reduction of the litter (t790 = 4.89, P< 0.0001; Fig 5C), the FR mothers did not show such a

tendency (t768 = -0.12, P = 0.90; Fig 5C).

Offspring weight change. The factors that affected offspring weight change are listed in

Table 4. Unlike their mothers, the offspring of the AL-fed mothers, on average, gained less

weight than those of the FR mothers (AL: 45.24 ± 6.07%; FR: 53.23 ± 5.29%; Table 4). In both

groups, offspring weight change was positively associated with the prior litter size of the

reduction. Bars indicate LS-means ± S.E.; numbers above the bars indicate the sample size (*P < 0.05,

**P < 0.01).

https://doi.org/10.1371/journal.pone.0173985.g002
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mother (Table 4; Fig 6A). This relationship was, however, slightly less pronounced in the off-

spring of the AL-fed mothers in comparison to the offspring of the FR mothers (AL: t2254 =

4.24, P< 0.0001; FR: t592 = 10.72, P< 0.0001; Fig 6A). Moreover, in both groups, offspring

weight change also tended to be positively associated with maternal weight change (Table 4;

Fig 6B). Nevertheless, this association was only significant in the AL-fed group (AL: t2227 =

6.42, P< 0.0001; FR: t2198 = 0.56, P = 0.57; Fig 6B). In addition, the groups radically differed in

offspring weight change depending on litter biomass change (Table 4; Fig 6C). Along with the

reduction of the litter, the remaining offspring of the AL-fed mothers lost weight (t1206 = 6.10,

P< 0.0001; Fig 6C), whilst the remaining offspring of the FR mothers did not show such a

trend (t1571 = 0.94, P = 0.35; Fig 6C).

Probability of offspring death. The factors that affected the probability of offspring death

are listed in Table 5. On average, the probability of offspring death was higher in the AL-fed

than in the FR group (logits ± S.E.; AL: -4.21 ± 0.42; FR: -7.08 ± 0.70; Table 5). In addition, off-

spring survival in the AL-fed and in the FR mice was affected differently by prior litter size

(Table 5; Fig 7A), by the mother’s prior weight (Table 5; Fig 7B), by maternal weight change

(Table 5; Fig 7C), and by the offspring prior weight (Table 5; Fig 7D). The risk of offspring

mortality increased with decreasing size of the litter in the AL-fed group (t626 = -3.59, P<
0.001; Fig 7A), whilst it increased with increasing size of the litter in the FR group (t142 = -3.71,

P< 0.001; Fig 7A). In both groups, the risk of offspring mortality tended to increase with the

decreasing weight of the mother, however this trend was only significant in the FR mice (AL:

Fig 3. Total litter reduction. The effect of pre-breeding maternal feeding treatment (ad libitum–AL; food

restriction–FR) on total litter reduction (proportion of all offspring deaths from day 1 to 21); numbers above the

bars indicate the sample size (*P < 0.05).

https://doi.org/10.1371/journal.pone.0173985.g003
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t46 = 0.53, P = 0.60; FR: t156 = 8.31, P< 0.0001; Fig 7B). Further, the more weight the mother

had lost, the more the risk of offspring mortality increased in the AL-fed group (t198 = -3.96,

P< 0.001; Fig 7C), whilst this risk decreased in the FR group (t271 = 3.58, P< 0.001; Fig 7C).

In both groups, the probability of offspring death increased with the decreasing weight of the

offspring. Nevertheless, this effect was less pronounced in the AL-fed than in the FR group

(AL: t868 = -3.99, P< 0.0001; FR: t414 = -8.61, P< 0.0001; Fig 7D). Finally, offspring survival

was affected by the interaction between the maternal weight change and offspring prior weight

Fig 4. Dynamics of offspring mortality. The effect of pre-breeding maternal feeding treatment (ad libitum–AL; food restriction–FR) on the proportions of

offspring deaths in particular lactation periods; numbers above the bars indicate the sample size (*P < 0.05).

https://doi.org/10.1371/journal.pone.0173985.g004

Table 3. Final GLMM Model with Factors that Affected Maternal Weight Change.

Fixed effect df (Num, Den) F-value P-value

Feeding treatment 1, 776 21.54 < 0.0001

Prior litter size (Feeding treatment) 2, 472 90.56 < 0.0001

Offspring weight change (Feeding treatment) 2, 1401 11.63 < 0.0001

Litter biomass change (Feeding treatment) 2, 779 11.98 < 0.0001

https://doi.org/10.1371/journal.pone.0173985.t003
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(Table 5; Fig 8). In both groups, the probability of offspring death increased with the increasing

weight loss of the mother and with the decreasing weight of the offspring. However, this

increase was less severe in the AL-fed group (t579 = 2.94, P< 0.01; Fig 8A) than in the FR

group (t933 = -3.14, P< 0.01; Fig 8B).

Discussion

This is the first study to focus on the role of pre-breeding resource limitations for the optimiza-

tion of female parental investment during the lactation period. We observed that the exposure

of female mice to pre-breeding FR improved the optimization of their litter size. The FR moth-

ers could therefore invest more efficiently in their offspring than the AL-fed mothers. As a

consequence of this, the offspring of the FR mothers were in better condition and suffered less

from pre-weaning mortality than those of the AL-fed mothers. Our results thus indicate, that

pre-breeding FR had wide-ranging long-term effects on parental investment and offspring

developmental success (i.e. increased growth and decreased mortality). These findings corre-

spond to previous studies [35–38] suggesting the potentially beneficial effect of FR on female

reproductive fitness. The complex optimization of litter size reflects the r-selected life-history,

which primarily involves the maximization of offspring numbers in an unpredictable environ-

ment. This parental investment strategy may therefore explain why we observed no effects of

offspring sex and litter sex ratio during the course of lactation.

The exposure of females to pre-breeding FR improved their parental efforts throughout

the whole period of lactation, as indicated by generally larger litters at birth and weaning

(see Fig 2). It is important to note that at both these stages the litter size was independent of

their weight at mating, despite FR causing a decrease in weight at mating. This may be caused

by either one of two reasons. First, the FR mothers might have been in a relatively better

Fig 5. Maternal weight change. The effect of pre-breeding maternal feeding treatment (ad libitum–AL; food

restriction–FR) on the relationships between maternal weight change and (a) prior litter size, (b) offspring

weight change, and (c) litter biomass change. Only the regression lines of the significant relationships are

shown.

https://doi.org/10.1371/journal.pone.0173985.g005

Table 4. Final GLMM Model with Factors that Affected Offspring Weight Change.

Fixed effect df (Num, Den) F-value P-value

Feeding treatment 1, 264 37.52 < 0.0001

Prior litter size (Feeding treatment) 2, 1034 66.46 < 0.0001

Maternal weight change (Feeding treatment) 2, 2232 20.75 < 0.0001

Litter biomass change (Feeding treatment) 2, 1373 19.02 < 0.0001

https://doi.org/10.1371/journal.pone.0173985.t004
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condition due to compensatory eating following the period of intermittent fasting (as sug-

gested by [33,39]). Second, they may have increased the size of their litters because of environ-

mental cues indicating a risky environment. The second possibility corresponds to both prior

theoretical assumptions [16–19] and empirical evidence [20,40]. Since the FR mice tended to

produce daughters, who were lighter and thus less expensive than sons (see [33]), another, not

mutually exclusive, explanation may be that they optimized their reproductive costs (as pre-

dicted by Myers sex allocation hypothesis: [41]). In addition, in both groups, we observed fam-

ilies with and without litter reduction (see Fig 2). This variability suggests that breeding

females “played” at least four different “bet-hedging” strategies (sensu “maximization of life-

time reproductive fitness”, p. 2963: [42]). In general, they had to consider whether to “play”

either a “safe bet-hedging” or a “risky bet-hedging” strategy, recognized by a small or a large

litter at birth, respectively. On the basis that pre-breeding FR of the mothers improved their

offspring’s survival during lactation (see Fig 3), we can infer that the “risky bet-hedging” strat-

egy, which encompassed the production of large litters, was more successful in those mice that

had encountered resource limitations (as predicted by [19]).

Fig 6. Offspring weight change. The effect of pre-breeding maternal feeding treatment (ad libitum–AL; food restriction–FR) on the

relationships between offspring weight change and (a) prior litter size, (b) maternal weight change, and (c) litter biomass change. Only the

regression lines of the significant relationships are shown.

https://doi.org/10.1371/journal.pone.0173985.g006

Table 5. Final GzLMM Model with Factors that Affected Probability of Offspring Death.

Fixed effect df (Num, Den) F-value P-value

Feeding treatment 1, 61.74 42.73 < 0.0001

Prior litter size (Feeding treatment) 2, 249.20 13.34 < 0.0001

Mother’s prior weight (Feeding treatment) 2, 73.89 34.56 < 0.0001

Maternal weight change (Feeding treatment) 2, 229.20 14.40 < 0.0001

Offspring prior weight (Feeding treatment) 2, 583.10 45.05 < 0.0001

Maternal weight change * Offspring prior weight (Feeding treatment) 2, 720.50 9.26 < 0.0001

https://doi.org/10.1371/journal.pone.0173985.t005
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Pre-breeding FR increased the occurrence of litter reduction in the FR mice, but at the

same time it also improved the survival of their offspring, as indicated by a lower (see Fig 3)

and more selective (size-dependent; Fig 7D) offspring mortality. These results support the con-

clusions of our previous study [33] and are in accordance with other studies [35,37] that have

shown the positive impact of pre-breeding maternal FR on offspring survival. The better con-

dition and survival of the offspring of the FR mice suggest that the FR-improved maternal

investment enhanced offspring competitiveness and viability. This effect increased with the

age of the offspring (see Fig 4). A breaking point in their development was likely lactation

period IV (day 14–17), during which the young mice started to consume solid food [30,43]. In

Fig 7. Probability of offspring death. The effect of pre-breeding maternal feeding treatment (ad libitum–AL;

food restriction–FR) on the relationships between the probability of offspring death and (a) prior litter size, (b)

mother’s prior weight, (c) maternal weight change, and (d) offspring prior weight. Only the regression lines of

the significant relationships are shown.

https://doi.org/10.1371/journal.pone.0173985.g007
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this period, in particular, the smaller offspring could face a decline in milk yield and a rise in

calorie expenditure on thermoregulation [44], which may have made them more vulnerable to

death due to increased sibling rivalry [25].

Consistent with most previous studies (reviewed in [45]), we observed no active killing of

young by their mothers. However, in both groups, we recorded neglected pups lying alone out-

side of the nest (usually in the corner of the cage), and also partly or completely eaten pups.

Thus, although we only observed signs of maternal cannibalism, it is very likely that some of

the offspring died due to selective (size-dependent) maternal infanticide. In any event, our

results generally indicate that the selective reduction of the litter helped the FR mothers to

maintain their own optimum condition, thereby improving the condition and, indirectly, the

survival of their remaining offspring (see Figs 5–8). Hence, our findings correspond to the

results of Drummond et al. [46] who showed that in rabbits, Oryctolagus cuniculus, litter

reduction improved the growth of the remaining young. Since in the AL-fed mothers litter

reduction was, on the contrary, associated with a gradual decline of maternal condition (see

Fig 5C) and offspring condition (see Fig 6C), it would seem that the role of litter reduction var-

ied according to the pre-breeding maternal condition. Whereas the FR females continuously

adjusted the size of their litters to stabilize the energy burdens of lactation, the litter reduction

in the AL-fed females was an inescapable consequence of “maternal optimism” (i.e. overem-

phasizing good conditions at the time of breeding, thereby incurring increased reproductive

costs during lactation: [26,47]). We can therefore infer that the selective reduction of the litter

may have facilitated the FR mice to optimize their inclusive fitness (as predicted by Hamilton’s

theory of kin selection: [48]).

A decline in the probability of offspring death with decreasing litter size (see Fig 7A) and

with increasing maternal weight (see Fig 7B) in the FR mice is in agreement with theoretical

predictions [10,11,24], as well as with previous empirical findings [30,31]. These results show

that pre-breeding FR stimulated lactating females to optimize resource allocation according to

their actual condition. In contrast, an inverse relationship between the probability of offspring

death and litter size in the AL-fed mice (see Fig 7A) supports our assumption of a gradual

Fig 8. Interaction of maternal weight change with offspring weight. The probability of offspring death depending on the interaction between

the maternal weight change and offspring prior weight (a) in the ad libitum (AL)-fed mothers, and (b) in the food-restricted (FR) mothers.

https://doi.org/10.1371/journal.pone.0173985.g008
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decline of maternal and offspring condition with increasing numbers of offspring. The FR-

induced dichotomy of reproductive tactics may also be partly responsible for the group-spe-

cific effect of maternal condition on offspring survival (see Fig 7C). As discussed above, the

food intake of lactating mice declines with decreasing litter size [49,50]. Therefore, a lower off-

spring mortality in lighter FR mice (see Fig 7C) may just reflect a reduction of their litters. On

the other hand, a higher offspring mortality in lighter AL-fed mice (see Fig 7C) most likely

reflects the selection of large litters [51] and “maternal optimism” [26,47], also as discussed

above. All of these effects (see Fig 7A–7C) may have influenced the offspring’s own condition

(see Fig 7D). It should be emphasized that unlike the young of the AL-fed mice, the young of

the FR mice substantially improved their chances of survival if they had gained weight (during

a particular lactation period). Furthermore, their survival improved with an increase in mater-

nal condition (see Fig 8), which suggests that the litter reduction was much more selective

(sensu “parentally biased favouritism”, p. 381: [52]) in the FR than in the AL-fed mice. Our

results thus indicate that the FR mothers had more control over sibling rivalry and their off-

spring’s development than the AL-fed controls.

As far as we are aware, our study is also the first to document a positive impact of pre-

breeding maternal FR on postnatal (pre-weaning) offspring growth. The lower weight gain of

the FR mothers also suggests that they expended more energy raising their young than the con-

trols. Our results (see Fig 5A and 5B) indicate that the FR mothers accommodated their food

intake to satisfy the actual energetic demands of their offspring [49–51,53]. The AL-fed moth-

ers, on the other hand, did not follow their offspring’s changing demands (see Fig 5B), favour-

ing their own condition over that of their offspring. To the best of our knowledge, a similar

transfer of reproductive costs to offspring has only ever been observed in female bighorn

sheep, Ovis canadensis [54]. The FR-modified relationship between maternal and offspring

condition (see Fig 6B) best reflects this dichotomy of female reproductive tactics. We observed

that as the maternal weight loss increased, the offspring of the FR mice lost weight significantly

less rapidly than those of the AL-fed controls. An alternative, not mutually exclusive, explana-

tion of the maternal effect on offspring weight is that the size-dependent mortality of the mar-

ginal offspring improved the growth of the remaining, heavier siblings.

One could argue that the positive association between offspring growth and litter size (see

Fig 6A) contradicts the classic offspring size-number trade-off [8,13]. Nevertheless, because

the females most likely decreased their food intake along with the reduction of the litter (see

Fig 5A), it is possible that this relationship stemmed from the reduction in resource allocation

[50,55,56]. An alternative explanation for this relationship may be the selection of large litters,

which is accompanied by increased milk production and offspring growth [51,57,58]. Again,

we saw that this effect was more intense for the offspring of the FR mothers.

We assume that the FR mothers expended greater parental investment than the AL-fed

mothers, since they had coped with pre-breeding FR and passed through strict selection for

successful reproduction [33]. Hence, the FR females may actually have been in a better condi-

tion than the controls over the whole lactation period [33,39]. This improvement in their con-

dition may be the result of compensatory food intake induced by the combined effect of

intermittent feeding and food deprivation before breeding. In addition, an extended period of

fasting followed by ad libitum eating could have triggered a cascade of biological processes that

improved their reproductive performance (including ovulation rate, implantation rate, embry-

onic survival, litter size, milk production, milk composition, and offspring development). A

number of previous studies have reported that the FR-induced weight loss promotes feeding

behaviour that results in a rapid regaining of weight to a specific body weight “set-point” (for

review, see [59]). The physiological mediator of this behaviour is mainly the orexigenic hor-

mone ghrelin, which stimulates appetite by acting on the hypothalamic arcuate nucleus [60].
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This region of the brain is also the target of the anorexigenic hormone leptin, whose produc-

tion increases with increasing weight gain [61], and which can promote maternal investment

[62]. It can therefore be inferred that as the adiposity of the FR females increased, leptin levels

raised and intensified their maternal care. The ghrelin-leptin system may thus have maintained

their energy balance. The weight regain-elevated leptin levels may also have improved the sur-

vival of the FR mice’s young, which French et al. [62] observed in the Siberian hamsters, Pho-
dopus sungorus. It also cannot be excluded that the improved postnatal somatic growth and

survival resulted from specific epigenetic processes induced by the FR-altered maternal physi-

ology and behaviour [63–65].

The ultimate reason for the FR-induced divergence of reproductive optima may be a state-

dependent life-history tactic, which involves the adjustment of offspring phenotypes to the

selective pressures that operate in unpredictable environments [66]. Hence, anticipating

changing food availability, the optimal reproductive tactic may be either a complete inhibition

of reproduction or an increase of parental investment, leading to the production of larger lit-

ters with strong, competitively successful offspring. This enormous plasticity of the reaction

norm may provide the key to the ecological success of the house mouse. It also suggests that

environmental uncertainty could play a critical role in its adaptive evolution [67].

Conclusions

Our study shows that pre-breeding FR stimulated lactating mice towards effective parental

investment. This resulted in a dichotomy of reproductive optima (see Fig 9 – summarizing dia-

gram). Exposing female mice to unpredictable food availability induced highly selective litter

reduction that improved their fitness prospects. In contrast, the control females fed ad libitum
produced litters of super-optimal size and thus incurred higher reproductive costs, including a

Fig 9. Mechanisms of fitness optimization. The impact of pre-breeding maternal feeding treatment (a: ad libitum–AL; b: food restriction–FR) on the

relationships between maternal condition (mother’s prior weight, maternal weight change), offspring condition (offspring prior weight, offspring weight

change), and offspring mortality (probability of offspring death, litter biomass change). The arrows indicate the directions of the significant effects of particular

relationships. Positive and negative relationships are respectively denoted with + and–. The scheme demonstrates that: (1) offspring condition was only

positively associated with maternal condition in the AL-fed mice; (2) maternal condition was only positively associated with offspring condition in the FR mice;

and (3) offspring mortality decreased with increasing maternal and offspring condition in both groups, but only in the AL-fed mice did their condition decline

with increasing offspring mortality.

https://doi.org/10.1371/journal.pone.0173985.g009
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greater reduction of their litters. We believe that our findings may have important implications

for the understanding of the mechanisms of life-history evolution, as well as potentially for ani-

mal breeding and for research into the negative effects of obesity on reproduction. To fully

evaluate the significance of these findings, future research should: (1) examine the influence of

environmental uncertainty on parental fitness in natural populations of mammals; (2) deter-

mine whether pre-breeding resource limitations can benefit caring parents and their depen-

dent offspring in a changeable environment; and (3) identify the genes and pathways involved

in the optimization of parental investment.
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