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Zolpidem (trade name Ambien) has attracted much interest as 
a sleep-inducing agent and also in research. Attention has been 
centered mainly on receptor binding and electrochemistry in the 
central nervous system which are briefly addressed herein. A novel 
integrated approach to mode of action is presented. The pathways 
to be discussed involve basicity, reduction potential, electrostatics, 
cell signaling, GABA receptor binding, electron transfer (ET), 
pharmacodynamics, structure activity relationships (SAR) and side 
effects. The highly conjugated pyridinium salt formed by protona-
tion of the amidine moiety is proposed to be the active form acting 
as an ET agent. Extrapolation of reduction potentials for related 
compounds supports the premise that zolpidem may act as an 
ET species in vivo. From recent literature reports, electrostatics is 
believed to play a significant role in drug action.

The pyridinium cation displays molecular electrostatic potential 
which may well play a role energetically or as a bridging mecha-
nism. An SAR analysis points to analogy with other physiologically 
active xenobiotics, namely benzodiazepines and paraquat in the 
conjugated iminium category. Inactivity of metabolites indicates 
that the parent is the active form of zolpidem. Absence of reac-
tive oxygen species and oxidative stress is in line with minor side 
effects. In contrast, generally, the prior literature contains essen-
tially no discussion of these fundamental biochemical relationships. 
Pharmacodynamics may play an important role. Concerning 
behavior at the blood-brain barrier, useful insight can be gained 
from investigations of the related cationic anesthetics that are 
structurally related to acetyl choline. Evidently, the neutral form 

of the drug penetrates the neuronal membrane, with the salt form 
operating at the receptor. The pathways of zolpidem have several 
clinical implications since the agent affects sedation, electroen-
cephalographic activity, oxidative metabolites and receptors in the 
central nervous system. The drug acts at the GABA(A) receptor 
benzodiazepine site, displaying high and intermediate affinities 
to various receptor regions. Structural features for tight binding 
were determined. The sedative and anticonvulsant activities are 
due to its action on the alpha-1-GABA(A) receptors. One of the 
common adverse responses to zolpidem is hallucinations. Proposed 
mechanisms comprise changes in the GABA(A) receptor, pharma-
codynamic interactions involving serotonin and neuronal-weak 
photon emission processes entailing redox phenomena. Reports 
cite cases of abuse with cravings based on anxiolytic and stimu-
lating actions. It is important to recognize that insight concerning 
processes at the fundamental, molecular level can translate into 
beneficial results involving both positive and adverse side effects. 
In order for this to occur, interdisciplinary interaction is neces-
sary. Suggestions are made for future research aimed at testing the 
various hypotheses.

Introduction

Zolpidem (Ambien) (Fig. 1) (tartrate salt) has attracted consid-
erable recent attention in connection with its widespread use as a 
preferential hypnotic with minor side effects. There has been the 
usual focus on receptor binding. In addition, since the brain is the 
major organ involved, many investigations have been devoted to 
electrochemical action involving the central nervous system (CNS). 
However, as with most other drugs, there is negligible focus on 
events at the fundamental level involving the translation of binding 
into physiological action. The present report provides an integrated 
approach consisting of drug basicity, receptor docking, electron 
transfer (ET), electrochemistry including reduction potential, elec-
trostatics and the CNS, cell signaling, pharmacodynamics, structure 
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cation incorporating the contributors Figures 2 and 3. Form Figure 3 
is the major one as a result of resonance stabilization by the aromatic 
pyridinium ion, which also should be a driving force for protonation. 
Presence of the highly conjugated pyridinium salt apparently has 
electrochemical consequences (see below). The importance of these 
structural features seems not to have been considered previously.

Reduction Potential

Except for redox enzymes, ease of electron uptake has attracted 
little attention, e.g., in the case of therapeutic drugs, even though it is 
an important property. Revealing electrochemical studies are reported 
for aromatic hydrocarbon analogs of Figure 3 that provide mechanistic 

activity relationships (SAR), side effects, medical implications and 
future research for hypothetical testing.

The preponderance of bioactive substances or their metabolites 
incorporate ET functionalities, which, we believe, play an important 
role in physiological responses. The main groups include quinones 
(or phenolic precursors), metal complexes (or complexors), aromatic 
nitro compounds (or reduced nitroso or hydroxylamine derivatives) 
and conjugated iminiums (or imines). The focus of the present 
proposal is the iminium category. There are two principal pathways 
that can result from ET, one being redox cycling with generation 
of reactive oxygen species (ROS) and oxidative stress (OS). We are 
concerned with the other route in which ET involves interaction 
with the CNS, resulting in this case in sedative effects. Drugs in 
other categories are cited for which there is also ET with little or no 
participation of ROS and OS.

Electron transfer is probably the most prevalent and important 
process in chemical transformation.1 The generality and unifying 
aspects are demonstrated by involvement in all areas of the physical 
and biological sciences. The term bioelectronome is applied to 
participation in the life sciences. Examples are receptor chemistry1 
and cell-signaling mechanism.2 Extensive evidence is documented 
supporting mode of action for anti-infective drugs,3 anticancer 
agents,4 carcinogens5 and major organ toxins.6-15

Since electrochemistry plays an important role in biofunctioning, 
including the CNS, more attention should be devoted to this area, 
particularly fundamental aspects. A neglected topic is determination 
of reduction potential which provides information concerning the 
feasibility of ET by exogenous agents. If the reduction potential is 
more positive than -0.5 V, then ET is a possibility in vivo. Requisite 
electron donors reside mainly in protein side chains in the form of 
disulfide, phenolic oxygen or conjugated amine species.

In the electrochemical category, studies demonstrate a role for 
electrostatic forces in a variety of areas. The term bioelectrostatics is a 
label used in the biochemical area in which widespread participation is 
documented.16 Energetics appears to play a significant role. Subjects 
addressed are enzymes, membranes, chromosomes, histamine, recep-
tors, the Hofmeister effect, plant chemistry and evolutionary 
development. A recent hypothesis proposes that electrostatic force 
is a factor in receptor-ligand action, based on the molecular electro-
static potential (MEP) associated with ions and dipoles.17 Energetics 
and bridging may be important actors. Application is also made to 
phosphate and sulfate anions in cell signaling,18 as well as to metal 
cations, such as Ca, Mg, Zn, Fe and Cu.19 There is appreciable 
research dealing with MEP in relation to DNA chemistry.20 Various 
other aspects of electrochemistry are addressed elsewhere.11

It should be emphasized that physiological activity of endogenous 
and exogenous agents is often complex and multifaceted. Knowledge 
of events at the basic molecular level can result in practical applica-
tion to medicine.

Basicity

The amidine structure possesses enhanced basicity due to reso-
nance stabilization of the protonated cation. Studies show that alkyl 
substituents enhance pKa (~12), whereas the phenyl group decreases 
the value to about 8.21 The unsaturated vinyl group should also act 
to decrease. Another factor comes into play in connection with the 
amidine present in Figure 1. Protonation yields a resonance-stabilized 

Figure 1. Zolpidem.

Figure 2. Protonated zolpidem (resonance contributor A).

Figure 3. Protonated zolpidem (resonance contributor B).
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due to its favorable reduction potential.6 The herbicide, like Figure 3, 
contains a highly conjugated iminium-like structure, making it part 
of one of the important ET classes.

Pharmacodynamics

This portion deals with the drug state, whether ionic or uncharged, 
in relation to migration and binding. Concerning behavior at the 
blood-brain barrier, useful insight can be gained from investigations 
of the related cationic anesthetics that are structurally similar to acetyl 
choline.24 The majority of these anesthetics have pKa values such 
that when aqueous solutions of their salts, e.g., hydrochlorides, are 
injected into the extracellular fluid, they will equilibrate so that the 
neutral form will readily penetrate through the neuronal membrane. 
Once inside, this form would again equilibrate to form the ionic, 
active species, which presumably can then interact with the putative 
receptor. Hence, a similar scenario may pertain to zolpidem base 
and the cation form. At the receptor site, attachment might occur in 
several ways. In one case, the charged form is involved by comparison 
with other polar entities, such as acetylcholine. In the other situa-
tion, the base is protonated at the binding domain, in keeping with 
the strong nature of the attachment. The requisite proton might 
be provided by unionized carboxyl of acidic amino acids or the 
acidic hydrogen of protonated amino acids. It may be relevant that 
a hydrogen bond with arginine, presumably in guanidinium form, 
was found involving a particular conformation of zolpidem in the 
GABA(A) receptor.25 In another report, Arg and Glu were designated 
important features for docking.26 Hence, in addition to zolpidem 
interaction with the guanidinium proton, the carboxyl of Glu might 
also be a source for salt formation.

Since the drug in ionic form is acting catalytically in ET, only a 
small amount is needed. Receptor site binding is usually not cova-
lent, allowing reversibility and escape of the ligand. Thus, the drug 
is eventually oxidized to inactive products (see metabolites) resulting 
in cessation of activity.

Electrostatics

This unifying theme, discussed in the Introduction, might also 
apply to zolpidem. In salt form the pyridinium cation possesses 
a strong molecular electrostatic potential which could influence 
drug action and side effects. There is prior mechanistic discussion 
of electrostatics in connection with various physiologically active 
N-containing organic cations, such as acetyl choline and zwitte-
rions of GABA and α-amino acids.17 In a critical analysis of the 
Hofmeister series dealing with various effects of ions, the most active 
was the ammonium type, and the most active anions were sulfate and 
phosphate.16 The association with involvement of these ions in cell 
signaling was pointed out. An investigation led to the conclusion that 
electrostatic forces play a significant role in the Hofmeister series.27

Electrochemistry in the CNS

Extensive literature exists in this category, part of which deals 
with electroencephalograph (EEG) activity. Zolpidem increases 
EEG beta frequencies, characterstic for BZs.28 The drug seems to 
amplify the relation between behavior and the EEG. A study of dose-
dependent EEG effects of zolpidem provides evidence for GABA(A) 
receptor subtype selectivity in vivo.29 EEG in relation to sleep was 
examined. The influences on sleep EEG are primarily mediated by 

insight. Biphenyl possesses a reduction potential of -2.05 V, and as 
expected, trans-stilbene (Fig. 4) has a more positive value of -1.64 
V.22 Thus, the vinyl link provides appreciable enhancement of about 
0.4 V. A report is available for relevant data on N-phenylpyridinium, 
a simple model for Figure 3, containing a figure of -0.84 V.23 The 
structure in Figure 3 incorporates a trans-pyridinium-benzene-vinyl 
arrangement (Fig. 5) quite similar to that of trans-stilbene. Hence, 
extending the conjugation in N-phenylpyridinium by insertion of a 
vinyl moiety to form the N-styrylpyridinium (Fig. 5) should positively 
increase the reduction potential by about 0.4 V. The bicyclic moiety 
results in enhancement due to restricted rotation. The aromatic 
methyl group has a very small negative effect.22 As a result, the esti-
mated reduction potential for Figure 3 would be about -0.4 V, which 
is within the range permitting ET in vivo. Positive charge in Figure 3 
would facilitate ease of electron uptake. Whether reduction potential 
is quite positive or less so may be a factor in whether electron loss from 
the ET functionality occurs to oxygen or by another route. Scheme 1 
provides more detail on the mode of action by zolpidem involving 
ET. This ET property might well play a role in the beneficial effects of 
zolpidem, as well as the undesirable side reactions (see below).

A related substance, 1,1'-dimethyl-4,4'-bipyridinium (paraquat), 
is able to participate in ET and redox cycling with formation of ROS, 

Figure 4. trans-Stilbene.

Figure 5. N-Styrylpyridinium.

Scheme 1. Mechanism of ET action.



www.landesbioscience.com             Oxidative Medicine and Cellular Longevity		  55

Zolpidem mechanism

drugs, as well as in toxicity. The adverse response is often a result 
of ROS generation, accompanied by OS, as a consequence of redox 
cycling entailing ET. However, there are not substantial findings for 
ROS formation from zolpidem. Toxicity of the drug is quite low54 
in contrast with higher levels for many other drugs, which appear 
to be related to ROS.6-15 Another relevant feature is causation of 
little GSH depletion by the drug, a sign of minor OS.55 Reports for 
other drugs exist in which ET appears to occur, but in the absence of 
appreciable formation of ROS. For example, amsacrine, a 9-anilino-
acridine derivative and anticancer agent, appears to exert its cytotoxic 
action by poisoning of cellular topoisomerase enzymes.55 Evidence 
indicates that the drug may act as an electron donor in ET reactions, 
perhaps involving DNA.

Other citations are 5,6-dimethylxanthenone-4-acetic acid 
(DMXAA) and flavone-8-acetic acid (FAA) which appear to be 
capable of ET as pyrylium-type species.56 There is little indication 
of ROS and OS. The anticancer agent DMXAA exhibits tumor anti-
vascular activity. A cell-signaling mechanism was proposed involving 
cytokine inducers that cause tumor necrosis.57 Administration of 
DMXAA or FAA results in the synthesis of TNF, in addition to 
various cytokines, chemokines and transcription factor.

Side Effects

One of the common adverse responses to zolpidem use is halluci-
nations.58-61 A proposed mechanism entails changes in the GABAA 
receptor.58 Another suggestion involves a pharmacodynamic inter-
action between serotonin reuptake inhibition and the drug.59 A 
novel concept of hallucination is based on natural bioluminescence 
and redox processes, in which there is a connection between the 
neuronal and weak photon emission processes.62 Synchronized 
electrical (redox) signals of neurons can be converted to photon 
signals by bioluminescent radical ROS and RNS involving signaling 
pathways.

alpha-1 GABA(A) receptors, and are distinct from changes induced 
by BZs.30 An EEG investigation was made in connection with sleep 
deprivation.31 After administration of zolpidem, power in certain 
HZ ranges and bands was reduced. The drug and sleep deprivation 
have different effects on the EEG power spectra. The sedative, unlike 
triazolam and zopiclone, had a much milder reducing effect on the 
frequency of hippocampal theta activity and suppressing effect on 
REM sleep.32 Various studies were carried out on the effects on 
CNS currents.33-41 A reduction of reticulate neuronal activity by the 
sedative was noted.42 Cerebellar Purkinje neurons are sensitive to 
enhancement of GABA by zolpidem.43

The drug markedly diminished the levels of cerebral cGMP in 
the rat.44 Findings are consistent with the hypothesis that omega 1/
omega 2 agonists, such as zolpidem, increase the frequency of open-
ings in the chloride ionophore, with GABA(A) receptor-dependent 
and -independent mechanisms.45 Subunit modulation of the GABA 
receptor chloride channel macromolecular complex is hypothesized 
to be responsible for sedative, anticonvulsant, anxiolytic and myore-
laxatant properties.46 We suggest involvement of ET and electrostatic 
properties of the drug.

How can ET influence events in the CNS? A moving electron 
possessing a negative charge generates an electrical field which can 
interact with mobile polar species in the CNS. For example, cations 
are attracted and anions are repelled, entailing participation of elec-
trostatic forces.

Receptors

The drug acts at the GABA(A) receptor BZ site. Receptor site 
affinities are shown in Table 1. The sedative and anticonvulsant 
activities are due to its action on the alpha-1-GABA(A) receptors. 
Structural features for high-affinity binding are provided in Table 2.

Cell Signaling

Investigations were carried out on signal transduction involving 
the zolpidem GABA binding site. Throughout most of the devel-
oping brain, GABAergic synapses are the first to become functional.48 
Several features of accompanying signaling change during develop-
ment, suggesting that signaling in the immature brain may play 
important roles in the growth of young neurons and establishment 
of networks. Synaptic currents were examined. GABAergic signaling 
to newborn neurons occurs in dentate gyrus.49 Synaptic currents 
in mature granule cells were more sensitive to GABA(A) receptor 
modulator zolpidem than in newborn cells.

Metabolites

A number of investigations are available dealing with metabolism 
of zolpidem. These mainly involve oxidative pathways catalyzed 
by cytochrome-type enzymes.50-53 The products are primarily 
carboxylic acids generated via alcohol intermediates. Metabolites 
display poor penetration into the brain and no significant hypnotic 
activity.53 These results provide support for the claim that the parent 
itself is the active agent.

ROS and OS

As pointed out in the Introduction, there is extensive evidence 
for participation of ET functionalities in the therapeutic action of 

Table 1  Receptor site and affinity

Receptor site	 Affinity	 Ref.
GABA(A)	 Various	 47
Alpha-1	 High	 47
Alpha-2	 Intermediate	 47
Alpha-3	 Intermediate	 47
Alpha-5	 None
Benzodiazepine Type 1	 High	 42

Table 2 � Receptor binding and SAR involving amino acid 
(AA) residues

AA residues	 Binding effect	 Ref.
Met	 Necessary	 26
Phe	 Necessary	 26
Gamma-2-subunit loop F	 Required for tight docking	 26 
(7AA stretch)
Glu, Thr, Arg	 Important for high affinity binding	 26
Arg	 Hydrogen bonding	 25
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Other Sedatives: SAR

In addition to zolpidem, other prominent sedatives include 
BZs and barbiturates. Inspection of the literature reveals unifying 
structural and mechanistic threads. In the case of BZ, there is struc-
tural similarity to zolpidem, both being highly conjugated imines, 
although, interestingly, literature reports usually emphasize differ-
ences. By focus on the protonated form of BZ (diazepam) (Fig. 6), 
the presence of two iminium structures is evident. Thus, both Figures 
3 and 6, are members of the important conjugated iminium ET cate-
gory noted in the Introduction. The BZ drugs influence the activity 
of all major areas in the CNS, which results in various electrical 
phenomena.11,64 Changes are induced in the electrically excitable 
properties of spinal neurons. Reduction potentials of various proto-
nated members fall within the physiologically active range. Hence, 
ET reactions might be a contributing factor. Correlations exist 
involving reduction potential, structure and drug activity. According 
to theoretical calculations, electronic effects and ET play important 
roles in the biochemical behavior.

In relation to barbiturates, although structurally similarity is not 
close, there is unity in relation to generation of an ET precursor from 
phenobarbital, namely a catechol.7 This class blocks ion channels, 
and affects membrane potentials and synaptic neurotransmission. 
Metabolic studies reveal aromatic hydroxylation as an important 
pathway leading to phenols and a catechol. The catechol group under-
goes redox cycling with the corresponding o-quinone involving ET.

Clinical Aspects

Studies involving clinical pharmacology deal with sedative, anti-
convulsant, anxiolytic and myorelaxant drug properties.65 Receptor 
interaction is addressed in an earlier section, as well as some side 
effects. Clinical studies on other side effects were performed in 
relation to decrease in performance, rebound effects, memory 
impairment, anaphylactic reaction, depression and dizziness. The 
pharmacokinetic profile is also available.

Hypothesis Evaluation

Experimental determination of the reduction potential of zolp-
idem and its salt should be made in order to test the hypothesis. It 
would be interesting to synthesize and test analogs of type (Fig. 7) in 
which X is O, S, NH, CH2, CR2, CO, SO2 and C = CH2. The addi-
tional fused ring would exert a favorable influence on ease of electron 
uptake in ET, due to near coplanarity of the polynuclear system, with 
resultant increased stabilization of the generated radical anion. On 
the other hand, these may be an adverse effect on critical features 
necessary for site binding. Another candidate is (Fig. 8) wherein salt 
formation results from intramolecular protonation.
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