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Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of
disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal
layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation
task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-
pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms
consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In
addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem.
These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries.
The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain
more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future
efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

1. Background

Optical coherence tomography (OCT) is the optical equiva-
lent of ultrasonography, with the capability of capturing the
depth-resolved cross-sectional images of biological tissues
in vivo at near-histologic resolution [1]. Due to its noninva-
siveness and high resolution, in combination with the
characteristics of the eye and retinal anatomy, OCT has a
rapid development of clinical applications in ophthalmology
in recent years.

Quantitative analysis of retinal OCT image has been crit-
ical for reliable and efficient diagnosis of diseases such as glau-
coma, age-related macular degeneration, and macular edema
caused by diabetic retinopathy and for the evaluation of
development of diseases, medical treatment responses, drug
effectiveness, visual functions, and so forth [2–4]. Among
others [5–7], automatic and semiautomated measurement
of retinal layer thickness is considered as a class of key

quantitative analysis. Numerous research efforts have been
devoted to this topic [8–11], and these efforts have signifi-
cantly promoted the clinical understanding of ocular diseases
and improved the OCT technologies and their applications.

Retinal layer thickness measurement relies on accurate
OCT image segmentation. For many automated segmenta-
tion algorithms, edge detection is an essential foundation
[12–19], notwithstanding some methods resort to other fea-
tures of the images [18]. Literature shows that diverse types
of edge detection algorithms can be employed as a key step
in image segmentation. Table 1 summarizes the commonly
used algorithms for retinal OCT image segmentation, includ-
ing the Canny edge detector [12, 13], two-pass edge detection
method [14, 15], local mean gradient-based edge tracking
[16], peak detection method, Gaussian smoothing in combi-
nation with the Sobel kernel method [17, 18], and EdgeFlow
technique [19]. Based on the nature of the information
used in their algorithms, we can classify these different
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edge detection techniques into two categories, namely, the
intensity-based and texture-based methods. The former
category utilizes the intensity gradient in the images,
whereas the latter tracks the texture changes rather than
the intensity gradient.

Given the importance of edge detection for retinal image
segmentation and the diversity of edge detectors, a natural
question is which method gives the best edge detection out-
come for current application. To our best knowledge, there
is no study so far systematically evaluating the performance
of the edge detectors applied for OCT image analysis.
General performance evaluation of edge detection has long
been interesting many researchers, but prior studies have
not reached a unanimous conclusion yet because of the
complexity of the problem. According to Heath et al., the
challenge lies in that the edge detection performance depends
not only on the algorithms themselves but also on the images
applied to, the parameters used in the specific case, and the
evaluation metrics [20].

Our goal in this paper is to evaluate what type of edge
detectors best suit for retinal OCT image segmentation
with given equivalent parameters, when measured using
performance metrics that are meaningful for retinal layer
thickness quantification. To this end, we first collect the
commonly used edge detection methods in the literature
on OCT image analysis and choose the most representa-
tive ones for comparison. We then research the edge
detection performance evaluation literature to select the
most relevant performance metrics that are meaningful
for OCT image segmentation and adapt them when neces-
sary. Using these metrics, we examine which of the selected
edge detectors gives the best edge detection outcome when
they are applied to the OCT images that we have collected
from healthy subjects.

The remaining parts of the article are organized as fol-
lows. In the next section, we describe our research materials
and methods, including retinal OCT image data collection,
screening edge detectors for comparison by reviewing and
analyzing the edge detection techniques used in prior studies
on the retinal OCT image segmentation, and determining the
most relevant performance evaluation metrics. In the third
section, we present the comparison of the representative
advanced approaches to retinal OCT image edge detection
against different performance evaluation metrics. Finally,
we discuss the findings and research opportunities.

2. Materials and Methods

We conducted this study in accordance with the Tenets of the
World Medical Association’s Declaration of Helsinki [21].
Ethical approvals were obtained from the Ethical Review
Board of Southern Medical University, the Ethical Review
Board of Sun Yat-sen University, and the Research Ethical
Committee of Zhongshan Ophthalmic Center. After an
introduction about the purpose of the study and explanation
of the process and risks, the voluntary participants signed the
informed consent for this data collection.

2.1. Image Data Choice and Data Collection. In this article,
our goal is to evaluate the performance of edge detection
algorithms for retinal OCT image segmentation. Because of
their image dependence [20], edge detectors perform well
for other types of images but may not give as good results
when applied to retinal OCT image. Therefore, all interested
algorithms are tested on retinal OCT image in this study.

We collected the image data from 11 healthy volunteers
(age ranges from 21 to 29, 7 males) using Topcon 3D OCT-
2000 (Topcon Corporation, Tokyo, Japan) at Zhongshan
Ophthalmic Center, a tertiary specialized hospital affiliated
to Sun Yat-sen University, Guangzhou, China. Using 7 line
6.0 scanning mode to scan the macular area with a resolution
of 1024 A-scans, we obtained the raw retinal OCT images.
Due to the limitation of the software (software version:
8.20.003.04, Topcon Corporation, Tokyo, Japan), the raw
images saved into bmp files have a size of 759× 550 pixels.
As the best available from our OCT equipment, this resolu-
tion is above average within those of OCT images reported
in the most recent literature [3, 6, 7, 17–19]. Figure 1 shows
a typical OCT image in our dataset. In this image, the 6 layer
boundaries, namely, ILM, NFL-GCL, IPL-INL, OPL-ONL,
ONL-IPS, and RPE-choroid are readily observable.

2.2. Edge Detection Algorithms. Three criteria for our choice
of edge detectors for evaluation were

(1) to include the algorithms that have been most com-
monly used in the OCT image segmentation
literature,

(2) to give preference to the ones representing the state of
the art in edge detection, which were usually used to
detect more than 3 retinal layer boundaries,

Table 1: Summary of edge detection techniques involved in retinal OCT image segmentation studies.

Principles Edge detection algorithms Applications in OCT image analysis References

Intensity-based

Canny edge detector
To obtain global gradient information Yang et al. [12]

To extract global boundary Shijian et al. [13]

Two-pass edge detection algorithm To extract global boundary
Bagci et al. [14]

Bagci et al. [15]

Edge-tracking algorithm To detect ILM Rossant et al. [16]

Peak detection method
To detect the easily detected boundary ILM and OS/RPE

Cha and Han [17]

Gaussian smoothing + Sobel kernel Lang et al. [18]

Texture-based EdgeFlow technique To detect global boundary of retinal OCT image Niu et al. [19]
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(3) to include a diverse mix of algorithms utilizing
different image feature information.

Using these criteria, three algorithms reviewed in Table 1
were chosen for further analysis. They are the Canny edge
detector [21], two-pass algorithm [14, 15], and EdgeFlow
method [22]. The former two are based on the image inten-
sity gradient, whereas the last one is based on the image tex-
ture changes. We refer to the first two as the intensity-based
edge detection methods and the third as the texture-based
edge detection method. The principles of the three algo-
rithms will be outlined below. The rest three edge detection
methods, all intensity-based, were excluded from further
analysis for different reasons. Among them, the edge-
tracking algorithm based on the maximization of the local
mean gradient was used only to detect ILM [16]; the peak
detection method [17] and the Sobel kernel in combination
of Gaussian smoothing [18] only detect the easily detectable
boundaries ILM and OS/RPE.

2.2.1. Canny Edge Detector. The Canny edge detection algo-
rithm [23] is now generally regarded as the “standard” for
edge detection in the field of digital image processing ([24],
Chapter 10). The Canny edge detector works in a multistep
process to detect a wide range of edges in images. At first,
the image is smoothed using a linear Gaussian filter. Then,
a 2D first derivative operator is utilized on the smoothed
image to compute the derivatives in both the vertical and
the horizontal orientations. The gradient magnitude is calcu-
lated as the root sum of squares of the derivatives in two
orthogonal directions and the gradient phase as the arctan-
gent of their ratio. Candidate edge pixels are identified as
the pixels that survive after a thinning process called non-
maximal suppression. In this process, the edge strength of
each candidate edge pixel is set to zero if its gradient magni-
tude is not larger than the gradient magnitude of the two
adjacent pixels in the gradient direction, and the pixel whose
gradient magnitude is the local maximum is preserved. At

last, hysteresis thresholding is used to eliminate weak edge
points and track the possible edge pixels. In this step,
double-threshold T1 and T2 with T2>T1 are applied; all
candidate edge pixels below the lower threshold T1 are set
to zero, and all pixels above the lower threshold T1 can
be connected to any pixels above the higher threshold T2
through a chain of edge pixels which are labeled as edge
pixels. The hysteresis helps in ensuring that the noisy edges
are not broken into multiple edge fragments. In the Canny
edge detection algorithm, three parameters are incorpo-
rated, which play a decisive role for detecting the result.
One is the width of Gaussian filter (i.e., standard deviation
of the Gaussian, σ). An increase in the width of Gaussian
filter reduces the detector’s sensitivity to noise, but blurs
the image and results in loss of finer edge details. The other
two are the lower threshold (T1) and the higher threshold
(T2), respectively. The higher threshold should be set rea-
sonably high and the lower threshold quite low for good
detection results, because if it is too high, the lower thresh-
old causes edge fragments and if too low, the higher thresh-
old increases false alarms and undesirable edge fragments
in the edge detection output.

2.2.2. Two-Pass Edge Detection Algorithm. Two-pass edge
detection algorithm is designed exclusively for detection of
retinal layer in OCT images by Bagci et al. [14, 15]. The
feature of edges in retinal OCT image, extending along the
horizontal direction with a gentle up and downslope, was
taken into account in the algorithm. The edge detection
kernel L(x, y) is based on the first derivative of Gaussian in
the vertical direction:

L x, y = −p
x

πσ2 e
− x2+y2 /2σ2 1

The parameter p determines the polarity of edges and
takes values either 1 or −1. The edge detection kernel is
applied twice with alternating values of p. On the first pass,
the boundaries between each pair of adjacent bright and dark

NFL-GCL
ILM

IPL-INL
OPL-ONL

RPE-choroid
ONL-IPS

Figure 1: The retinal layers in a representative cross-sectional SD-OCT image. The region from the top layer ILM to the bottom layer RPE is
of interest in this study and most clinical applications. Six layer boundaries are marked: ILM= the inner limiting membrane; NFL-GCL= the
boundary between retinal nerve fiber layer and ganglion cell layer; IPL-INL = the boundary between inner plexiform layer and inner nuclear
layer; OPL-ONL= the boundary between outer plexiform layer and outer nuclear layer; ONL-IPS = the boundary between outer nuclear layer
and inner photoreceptor segment; RPE-choroid = the boundary between retinal pigment epithelium and choroid.
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regions, with bright on the top, such as NFL-GCL, IPL-INL,
and OPL-ONL, are extracted with p = 1. On the second pass,
boundaries between each pair of adjacent bright and dark
regions, with dark on the anterior, such as ILM, INL-OPL,
and ONL-IPS, were detected with p = −1. The peak values
are marked as edges, using nonmaximal suppression and
hysteresis thresholding. Satisfactory results can be obtained
by adjusting the value of σ.

2.2.3. EdgeFlow Technique. The EdgeFlow technique is a
novel boundary detection scheme proposed by Ma and
Manjunath [22]. The technique for boundary detection
based on EdgeFlow utilizes a predictive coding model to
characterize the direction of change in color (intensity of
grey image) and texture at each image location at a given
scale and constructs an EdgeFlow vector. By propagating
the EdgeFlow vectors, the boundaries can be detected at
image locations which encounter two opposite directions
of flow in the stable state. Differing from intensity-based
detection methods that focus on finding the local gradient
maximum, EdgeFlow technique computes the directions of
edge energy according to intensity or texture in an image
and associated probabilities. The edge energy and corre-
sponding probabilities obtained from different image attri-
butes are pooled together to form a single edge field for
boundary detection:

E s, θ = 〠
a∈A

Ea s, θ ⋅ ω a ,  〠
a∈A

ω a = 1,

P s, θ = 〠
a∈A

Pa s, θ ⋅ ω a ,
2

where Ea s, θ and Pa s, θ represent the energy and proba-
bility of the EdgeFlow computed from image attribute a,
a ∈ intensity/color, texture ; ω a is the weighting coeffi-
cient associated with image attribute a. The edge flow direc-
tion is estimated as follows:

Θ s = arg max
θ

〠
θ≤θ′<θ+π

P s, θ′ 3

The EdgeFlow vector is then defined as

F s = 〠
Θ s ≤θ<Θ s +π

E s, θ ⋅ exp jθ , 4

where F s is a complex number with its magnitude repre-
senting the resulting edge energy and phase representing
the flow direction. After the EdgeFlow vector of an image is
computed, boundary detection can be performed by propa-
gating the EdgeFlow vector and identifying the locations
where two opposite flow directions encounter each other.
The scheme facilitates integration of intensity and texture
into a single framework for boundary detection.

2.3. Performance Evaluation Using Ground Truth. According
to Heath et al. [20], edge detection performance evaluation
can be classified into theoretical and empirical approaches.
The former uses pure mathematical analysis without the

algorithms ever being applied to an image. It has major lim-
itation for not being able to deal with the complexity of
modern edge detection algorithms. The latter can be fur-
ther classified into (1) evaluation using ground truth and
(2) evaluation without ground truth. Our goal in this
study is to examine how different edge detectors give the
best results for OCT retinal layer segmentation. Ulti-
mately, we hope to identify the most reliable and efficient
edge detectors to help doctors automate the measurement
of retinal layer thickness in order to make quantitatively
informed medical decisions. Our human vision systems
are the most complex and efficient machine for image analy-
sis, including edge detection. Therefore, for our intended
application, the most appropriate evaluation approach
should be evaluation using ground truth, which measures
the difference between the algorithm-detected edges and the
human-detected edges.

Due to the importance of edge detector performance
evaluation using ground truth, researchers have developed
numerous metrics. These metrics can be largely classified
into three categories. The first category, which we refer to
as the edge presence accuracy metrics (EPAM), focuses on
to which extent the detected edges coincide with the ground
truth without considering location shift. EPAM include
mainly four metrics [25–28], namely, true positive rate, false
positive rate, false negative rate, and total edge detection
accuracy. The first three, respectively, measure the ratio of
true edge pixels, falsely detected edge pixels, and missed edge
pixels to the number of total edge pixels in the ground truth,
and the fourth is the ratio between the total true edge pixels
and true nonedge pixels and the total number of pixels in
the region of interest. The second category, which we refer
to as the edge location accuracy metrics (ELAM), focuses
on the extent of edge shifts [29] introduced by the edge
detection algorithms as compared to the ground truth.
Metrics in this category include Hausdorff’s distance [30],
which measures the similarity between two images, and
mean localization deviation (MLD). The third category takes
into account both location accuracy and edge presence.
Typical metrics include figure of merit (FOM) [31] and its
expanded version (expanded FOM) [32] and multifeature
quality measurement [25].

2.3.1. Criteria for Performance Evaluation Metrics. OCT ret-
inal layer segmentation aims to automate retinal layer thick-
ness measurement in order to free ophthalmologists from
laborious manual tracing of the layer boundaries. The ideal
layer edge detector would give the same thickness measures
to those from ground truth specified by human observers.
However, even experts could not arrive at the same segmen-
tation for a given retinal OCT image [33]. This is because
manual segmentation is subject to human subjectiveness.
The ground truth used for the evaluation is not really the ulti-
mate truth. Thus, it is important to note that the traditional
edge presence accuracy metrics, the probabilities of true
positive, false positive (spurious edges), and missing edge,
cannot offer the complete evaluation of edge detector per-
formance. We propose that the performance metrics need
to meet the criteria as follows:
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(1) To measure the edge presence accuracy by calculat-
ing the rates of true positive, false positive, true
negative, and false negative (missing)

(2) To measure edge location accuracy by calculating the
signed and unsigned edge shift distance

(3) To allow edge shift when calculating edge presence
accuracy

(4) To examine the computational costs.

2.3.2. Evaluation Metrics for this Study. Based on our analysis
of existing performance metrics in the literature and the
metric criteria discussed previously, we choose the figure
of merit (FOM, Pratt) [31], true positive rate (TPR), false
positive rate (FPR), accuracy (ACC), and mean localization
deviation (MLD) [34] as the basis to develop our procedure
for comprehensive evaluation of the chosen edge detectors.
In the paragraphs to follow, we outline the principles of
these metrics.

(1) Pratt’s Figure of Merit. FOM [31] is a classical metric
utilized by numerous researchers for evaluating the perfor-
mance of edge detection algorithms [25, 26, 32, 35, 36].
The definition of the FOM is given by

FOM = 1
max N I,NA

〠
NA

i=1

1
1 + αd2 i

, 5

where NI and NA represent the number of ideal and actual
detected edge pixels, d i denotes the distance between the
ith detected edge pixel and its correct position, and α is the
scaling constant (normally set at 1/9) that is applied to pro-
vide a relative penalty between smeared edges and isolated,
but offset, edges.

(2) Edge Presence Accuracy. The criteria on which the FOM
of Pratt is based include missed valid edges, localization
errors, and false alarms. Different configurations of detected
edges may yield equal FOM value [35]. In order to decom-
pose the sources of difference, Yin et al. [27] developed three
metrics (TPR, FPR, and ACC) that are defined as follows.

True positive rate (TPR):

TPR = TP
TP + FN

= TP
N I

6

False positive rate (FPR):

FPR = FP
FP + TN

= FP
N −NI

7

Accuracy (ACC):

ACC =
TP + TN

TP + FP + TN + FN
=
TP + TN

N
8

In these equations, TP (true positive) and TN (true neg-
ative) represent the numbers of correctly detected edge pixels
and nonedge pixels. FP (false positive) is the number of pixels

not belonging to edge but recognized as one by the algorithm,
and FN (false negative) is the number of pixels belonging to
edge but failed to be recognized by the algorithm. N is the
total number of pixels within the ROI of the image, and NI
is the number of ideal edge pixels.

Given the large number (N−NI) of nonboundary pixels in
the images, FPR calculated in the form of (7) is close to zero,
making the metrics insensitive to the change of edge detec-
tion algorithms. We redefined it as

FPR =
FP

FP + TP
=

FP
NA

, 9

where NA denotes the number of pixels of the actually
detected edges.

(3) Edge Location Accuracy Metrics. It is known that some
image processing procedures cause the shift of detected edges
([29], Chapter 3, p. 56). In order to characterize the extent to
which the results from edge detection algorithms deviate
from the ground truth, we introduce the location accuracy
metrics, the mean localization deviation (MLD) in the
context of OCT image analysis:

MLD =
1
N I

〠
N I

1
Nb

〠
Nb

d i , 10

whereNb is the number of edge pixels in searching neighbor-
hood of a ground truth edge pixel, N I the number of pixels in
the ideal edge, and d i the Euclidean distance of the current
edge pixel in ground truth and edge pixels in searching
neighborhood. For the retinal OCT images, we limited the
searching neighborhood to be within 3 pixels of the true edge
along each A-scan.

(4) Adjusted TPR, FPR, and ACC. Some procedures of
image processing can introduce edge shift ([29], Chapter 3,
p. 56–74). As a result, the detected edge may not match the
position of actual edge. As the goal of retinal OCT image seg-
mentation is to extract the contours of retinal layer bound-
aries and measure the thicknesses of different retinal layers,
small and constant shifts do not have effective impact when
the layer thicknesses are of the only interest. Therefore, edge
pixels in the neighborhood detected by the algorithms may
be accepted into true positive edge pixels when calculating
the edge presence metrics. In this case, FOM, the true positive
rate, and false positive rate and accuracy measures need also
to be adjusted. We define these adjusted metrics as FOMADJ,
TPRADJ, FPRADJ, and ACCADJ:

FOMADJ =
1

max N I,NA
〠
NA

i=1

1
1 + αdADJ

2 i
,

TPRADJ =
TPADJ
N I

,

FPRADJ =
FPADJ
N I

,

ACCADJ =
TPADJ + TNADJ

N
,

11
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where NI and NA represent the number of ideal and actual
detected edge pixels, dADJ i is the distance between the ith
detected edge pixel and its correct position, TPADJ is the
number of edge pixels detected by an algorithm that are
considered as edges within the neighborhood of the ground
truth, FPADJ is the number of false positive pixels after the
neighborhood searching and edge pixel adjustment, and
TNADJ equals TN as it is not affected by the neighborhood
adjustment. These adjusted metrics allowing the edge shift
can better reflect the amount of detected edge points.

2.3.3. Evaluation Procedure. The major steps for performance
measurement include the preparation of ground truth, the
preprocessing of OCT images, the application of edge
detectors with appropriate parameters to obtain the near
optimal outcome for each detector, and using the perfor-
mance metrics to evaluate the goodness of edge detectors
against the ground truth. Figure 2 summarizes the flow of
performance evaluation.

(1) Ground Truth Preparation. We asked an expert observer
to manually delineate the edges for representative retinal
OCT images to form a base dataset of ground truth, as noted
by Iref in Figure 2. Because the ILM and RPE are the outer
boundaries of the retinal structure and they are strong edges
that can usually be reliably detected, we define the images
between ILM and RPE (included) as the region of interest
(ROI). Only those edges within the ROI are extracted for
comparison with the ground truth.

(2) Image Preprocessing. Before applying the computer algo-
rithm for each edge detector, we conducted necessary image
preprocessing. Due to constructive or destructive interfer-
ence of the light waves from the object, spectral domain
retinal OCT images suffer from the inherit speckle noise
[37], which decreases the quality of image and causes unreli-
able retinal layer segmentation. In order to improve the
quality of edge detection, preprocessing becomes a necessary
step. We first converted the raw OCT image bmp files into
gray-scale images and cropped the images to the region of
interest (ROI, 200 by 400 pixels) in this study. The literatures
have suggested the use of filters like mean, median, and
Gaussian [38–40] for noise removal. We choose median
filtering to remove the speckle noise. The original retinal
OCT image and the denoised image are shown in Figure 3.

(3) Edge Detection. We randomly chose 8 images from our
database of raw OCT retinal images and apply the three edge
detectors. As discussed earlier, the edge detection outcomes
may be influenced not only by the algorithm itself but also
by the input parameters [20]. We varied the parameters
systematically to obtain the optimal possible edge outcomes
for each of the edge detection algorithms.

(4) Performance Evaluation. In edge detection performance
evaluation step, we compared the edge detection outcomes
from the three computer algorithms against the human man-
ually traced retinal layer boundaries. We applied the metrics
that were broadly used in the literature and relevant to our
specific research context and purpose. We also applied the

Edges extracted by Canny
edge detector

Edges extracted by two-pass
edge detection algorithm

Edges extracted by EdgeFlow
edge detection technique

Retinal boundaries
by expert observer

Ground truth (Iref)Denoised image

Raw OCT Quantitative 
analysis 1

Quantitative 
analysis 2 

Quantitative 
analysis 3 

markedimage (Iraw)

Figure 2: Procedures of performance evaluation of edge detectors. The ground truth of OCT retinal layer boundaries is labeled by an expert
observer. Raw OCT images are firstly denoised and then applied with three automatic edge detection algorithms (i.e., Canny, two-pass, and
EdgeFlow) to obtain the algorithm-detected boundaries, which are compared with the ground truth.
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adjusted metrics developed and discussed in the previous
section. Finally, we examined the evaluation outcomes in
terms of both differences and relationships.

3. Experiments and Results

We implemented all the data analysis in MATLAB R2012a
(The Mathworks Inc., MA, USA) on a personal computer
running Windows 7 operating system with an 3.60GHz
Intel® Core™ i7 CPU and 4GB of memory. The raw image
data was acquired and stored into bmp files. Data in the
intermediate analysis steps were computed and stored in
the double precision data format in order to minimize digiti-
zation errors. Three edge detection algorithms were carefully
coded and double checked for the correctness.

3.1. Edge Detection

3.1.1. Input Parameters. Input parameters can significantly
influence the resulting edge quality for given edge detection
algorithm [20]. In selecting values for these parameters, we
are interested in finding the set that provides good edge
detection accuracy, that is, the boundaries coinciding the
six retinal layers as shown in Figure 1 with high signal-to-
noise ratio. In terms of performance evaluation metrics, good
parameters give the high values of FOM, TPR, ACC, and
their adjusted forms and lower values of FPR and MLD.
Through applying the three detection methods with multiple
sets of parameters on OCT retinal images (n = 21), the edge
detection results were obtained and compared. By observing
the outcomes, we chose the parameter set for each algorithm
as follows. In Canny edge detection, the best result can be
obtained by setting the width of the Gaussian filter σ = 3,
the lower threshold T1 = 0 005, and the upper threshold
T2 = 0 1; for two-pass edge detection algorithm, the width
of Gaussian σ = 3, consistent with Bagci et al. [14], the lower
threshold T1 = 0 005, and the upper threshold T2 = 0 15,
similar to those for Canny edge detector; for the EdgeFlow
algorithm, we followed Ma and Manjunath [22] and chose
the equal weighting coefficients for intensity and texture, that
is, ω(intensity) =ω(texture) = 0.5.

3.1.2. Edge Detection Results. Figure 4(a) shows an original
retinal OCT image. Figures 4(b), 4(c), and 4(d) show the
edge detection outcomes from the Canny edge detector,
two-pass edge detection technique, and EdgeFlow algorithm,

respectively. From these edge detection results, six retinal
layer boundaries of our interest are readily identifiable,
although with some noises caused by false positives and
boundary breakages caused by the false negatives.

For our purpose in this study, we were mainly interested
in how the three edge detectors performed in detecting the 6
retinal layer boundaries, which were also the key information
in the literatures for retinal layer thickness measurement
[8–11]. We defined the region of interest (ROI) to be the area
between the ILM and RPE that are the most outer boundaries
of the retinal structure. Figure 5(a) is the OCT retinal image
with overlaid ground truth edges marked by an expert
observer. Figures 5(b), 5(c), and 5(d) show the edges within
ROI detected by the three algorithms, which will be the basis
of performance evaluation in the next section. Visually, the
result from the Canny edge detector in Figure 5(b) shows a
well-defined six boundaries, although with some breakages
and noises. The result from the two-pass method shown in
Figure 5(c) gives more than 6 layers in some locations, but
in general, the six layer boundaries of interest are very clear
with less breakages compared to those in Figure 5(b). The
result from EdgeFlow algorithm depicted in Figure 5(d)
shows more breakages and more noises, although all 6 layer
boundaries are still recognizable.

3.2. Performance Evaluation. To quantify the performance
of the three edge detectors, we use three sets of measure-
ments discussed in Materials and Methods. The first set
of metrics include FOM, TPR, FPR, and ACC, which have
been broadly used in the literature [20, 25–28, 30–32]
when evaluating edge detectors on images other than the
OCT retinal images. In order to calculate TPR, FPR, and
ACC, we use the ground truth as a template to screen the
coincided edge pixels from the three edge detection algo-
rithms. Figure 6 shows the edge points overlapping with
the manually traced edges (ground truth).

The calculated performance metrics are summarized in
Table 2. Based on the mean values of FOM for the three edge
detectors, it seems that the best performer is the two-pass
method. Table 3 summarizes the results of the statistical
analysis. Two-sample t-tests confirmed the impression that
two-pass method significantly outperforms both the Canny
edge detector (p = 1 19e − 6), and EdgeFlow (p = 5 28e − 4)
in terms of FOM. In addition, the EdgeFlow algorithm
outperforms the Canny edge detector (p = 4 65e − 3). The

(a) (b)

Figure 3: Median filtering of the retinal OCT image. (a) Raw retinal OCT image and (b) the denoised image.
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TPR for two-pass is also significantly higher than that
for Canny (p = 4 29e − 4) and that for the EdgeFlow
method (p = 0 0058). The same pattern occurs when mea-
sured with ACC. ACC for the two-pass method is signifi-
cantly higher than that for the Canny (p = 3 15e − 3) and

EdgeFlow method (p = 5 61e − 4). On the other hand,
FPR for two-pass method is significantly lower than that
for Canny (p = 0 00024) and EdgeFlow (p = 2 73e − 04).
All the metrics suggest that two-pass method is the best
among the three. However, Canny and EdgeFlow methods

(a) (b)

(c) (d)

Figure 5: Edge extraction in ROI, from human observer and three algorithms. (a) Retinal layer boundaries marked by a human observer,
(b) edges within ROI for the Canny edge detector, (c) edges within ROI for two-pass edge detection algorithm, and (d) edge within ROI
for EdgeFlow technique.

(a) (b)

(c) (d)

Figure 4: Detection results from three edge detection methods. (a) Original retinal OCT image, (b) Canny detector, (c) two-pass edge
detection algorithm, and (d) EdgeFlow edge detection technique.
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are not significantly different when measured using TPR
(p = 0 2045), FPR (p = 0 3727), or ACC (p = 0 3304).

However, when comparing Figures 5(b), 5(c), and 5(d)
and Figures 6(b), 6(c), and 6(d) one by one, the Canny edge
detector results in much less edge pixels on locations of the
ground truth, although its outcome seems good as well in
Figure 5(b). This suggests that the Canny edge detector intro-
duced edge shifts and resulted and lower performance score
in Tables 2 and 3. To examine the possibility, we calculated
the mean localization deviation (MLD) for the three edge
detectors. The results in Table 4 indeed show the largest

mean value of MLD for the Canny edge detector. Two-
sample t-tests (Table 5) confirmed that the MLD value
for the Canny edge detector is significantly higher than
that for the two-pass edge detection algorithm (p = 0 04)

(a) (b)

(c) (d)

Figure 6: Edge pixels from three edge detectors overlapping with the ground truth. (a) The ground truth edges marked by human observer.
(b) The true positive points obtained by Canny edge detector. (c) The true positive points obtained by two-pass edge detection algorithm.
(d) The true positive points obtained by EdgeFlow technique.

Table 2: Performance evaluation using metrics FOM, TPR, FPR, and ACC.

Edge detectors FOM TPR FPR ACC

Canny edge detector 0.36± 0.0865 0.22± 0.0816 0.75± 0.0881 0.98± 0.0026
Two-pass edge detection algorithm 0.67± 0.0726 0.41± 0.0968 0.57± 0.1182 0.98± 0.0033
EdgeFlow technique 0.50± 0.0942 0.27± 0.0875 0.79± 0.094 0.97± 0.0027

Table 3: Two-sample t-test on comparison of the edge detection performance.

Samples FOM TPR FPR ACC

Canny and two-pass
H0: m(c)>m(t) H0: m(c)>m(t) H0: m(c)<m(t) H0: m(c)>m(t)

p = 1 19e − 06 p = 4 29e − 04 p = 0 0024 p = 3 15e − 03

Canny and EdgeFlow
H0: m(c)>m(e) H0: m(c) =m(e) H0: m(c) =m(e) H0: m(c) =m(e)

p = 4 65e − 03 p = 0 2045 p = 0 3727 p = 0 3304

Two-pass and EdgeFlow
H0: m(t)<m(e) H0: m(t)<m(e) H0: m(t)>m(e) H0: m(t)<m(e)

p = 5 2769e − 04 p = 0 0058 p = 2 73e − 04 p = 5 6127e − 04

Table 4: Mean localization deviation (MLD).

Canny edge detector
Two-pass edge

detection
EdgeFlow
technique

1.27± 0.3340 1.02± 0.2484 1.05± 0.1831
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and almost significantly higher than that for the EdgeFlow
method (p = 0 058).

For OCT retinal image layer thickness measurement, if
the edge shift is within a small range and to the same direc-
tion, the outcome may not be significantly influenced. There-
fore, we examine how the edge detectors perform when
measured with a second set of metrics; the adjusted measures
include FOMADJ, TPRADJ, FPRADJ, and ACCADJ, which were
developed in Materials and Methods. Figure 7(a) is the
ground truth edges; Figures 7(b), 7(c), and 7(d), respectively,
show detected edge pixels within 2 pixels searching neigh-
borhood corresponding to its ground truth edge for the
three edge detectors. Visually, the outcome for Canny edge
detector is much improved when compared to that in
Figure 6(b); the edges for EdgeFlow method are much noisy.
Quantitative metrics for the edge detectors based on Figure 7
are summarized in Table 6.

The results for FOM, TPR, ACC, and FPR after the
adjustment (Table 6) are all better than those before the
adjustment (Table 2). This finding is reasonable in that the

false alarm reduces, and FOM, TPR, and ACC increase, when
more detected pixels are considered as correct edge. Note
that in both tables, the higher values for FOM, TPR, and
ACC mean the better performance, whereas for FPR, the
lower the value, the better the performance.

Detailed statistical analysis on the performance of
three edge detectors measured with the adjusted metrics
is summarized in Table 5. For FOMADJ measure, the
two-pass is again significantly better than both Canny
edge detector (p = 4 41e − 11) and the EdgeFlow method
(p = 2 61e − 6); EdgeFlow is also significantly better than
Canny (p = 8 13e − 7). When measured with TPRADJ,
FPRADJ, and ACCADJ, Canny does not differ significantly
from the two-pass method (p = 0 3933, p = 0 4613, and
p = 0 4175, resp.); a similar pattern (except for TPRADJ)
occurs for Canny and the EdgeFlow method (p = 0 01945,
p = 0 1471, and p = 0 1635, resp.). However, these measures
show that the two-pass method is significantly better than
the EdgeFlow technique (p = 8 1322e − 05, p = 2 41e − 04,
and p = 3 2125e − 05, resp.).

Table 5: Two-sample t-test on the adjusted performance metrics and MLD.

Samples FOMADJ TPRADJ FPRADJ ACCADJ MLD

Canny and two-pass
H0: m(c)>m(t) H0: m(c) =m(t) H0: m(c) =m(t) H0: m(c) =m(t) H0: m(c)<m(t)

p = 4 41e − 11 p = 0 3933 p = 0 4613 p = 0 4175 p = 0 04003

Canny and EdgeFlow
H0: m(c)>m(e) H0: m(c)<m(e) H0: m(c) =m(e) H0: m(c) =m(e) H0: m(c)<m(e)

p = 8 13e − 07 p = 0 01945 p = 0 1471 p = 0 1635 p = 0 0581

Two-pass and EdgeFlow
H0: m(t)<m(e) H0: m(t)<m(e) H0: m(t)>m(e) H0: m(t)<m(e) H0: m(t) =m(e)

p = 2 6132e − 06 p = 8 1322e − 05 p = 2 41e − 04 p = 3 2125e − 05 p = 0 1074

(a) (b)

(c) (d)

Figure 7: Edges for the adjusted performance metrics. (a) The ground truth edges, (b) the edge pixels for Canny edge detector, (c) the edge
pixels for the two-pass edge detection algorithm, and (d) the edge pixels for the EdgeFlow technique.
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Finally, we noticed in our experiments that the EdgeFlow
technique took much longer time for each edge detection
task. When the time was measured for processing a sample
of OCT retinal images (200 by 400 pixels in the ROI), the
average computational time is 2.77± 1.24 seconds, 3.85±
0.18 seconds, and 467.66± 1.33 seconds, respectively, for
two-pass, Canny, and EdgeFlow methods, confirming that
the EdgeFlow approach took a significantly larger amount
of time than the other two algorithms.

4. Discussion and Conclusions

In this study, we intended to search for the edge detectors
that best suit for the OCT retinal image segmentation task.
With the analysis of literature and our experiment, we have
identified the most promising candidate algorithms, namely,
Canny edge detector, the two-pass method, and the Edge-
Flow technique. Using the performance evaluation metrics
(FOM, TPR, FPR, and ACC) and their adjusted versions
(FOMADJ, TPRADJ, FPRADJ, and ACCADJ), we examined the
three methods applied to the realistic OCT retinal images.
Our results show that the two-pass method consistently
outperforms the other two. In addition, the MLD metrics
shows that the two-pass method caused smaller edge shifting
problem. Although the computational cost for the two-pass
method is slightly higher than the Canny edge detector, it is
over 100 times lower than that for the EdgeFlow technique.
Based on the above analysis and findings, we conclude that
the two-pass method is among the three the best approach
to edge detection for the OCT retinal layer image segmenta-
tion task. Furthermore, the outperformance of two-pass
method measured by the original and adjusted metrics and
the advantage of Canny edge detector over EdgeFlow tech-
nique in terms of FOMADJ and TPRADJ and MLD lead to
another conclusion that the intensity-based edge detectors
outperform the texture-based edge detector for OCT retinal
image analysis.

The findings in the study suggest that it is critical to use
the most appropriate algorithms to detect the retinal layer
boundaries in the OCT images in order to automate the
quantitative analysis of retinal OCT images. Combined with
the findings in the literature that EdgeFlow method signifi-
cantly outperformed Canny algorithm in texture segregation
tasks [22], this study offers support to the idea that the per-
formance of edge detectors is image property dependent
[20] as both Canny and two-pass methods surpass EdgeFlow
in the current application. In line with this thought and find-
ings, it is necessary argue that the best performer for normal
retinal OCT images also work best for pathological retinal
images. Additionally, the intensity-gradient based methods
(two-pass and Canny algorithms) outperforming texture-

based method (EdgeFlow) might suggest that the OCT
images contain more intensity gradient changes than texture
changes along the longitudinal direction. The relative weight
of intensity and texture information in OCT retinal image
warrants further study in the future.

With the development of OCT technologies and their
applications in the field of ophthalmology, more and more
data is readily available. Extracting meaningful information
from the ever-increasing volume of clinical data reliably
and efficiently forms the basis for modern medical decision
making and research. Reliable and efficient OCT retinal
image segmentation will contribute to the development of
this trend. Future research efforts would need to overcome
several limitations in this study. First, the input parameters
used in our experiments were selected over a relatively small
sample space and the decisions on the “optimal” parameters
were subject to human subjectiveness. Although it is almost
impossible to identify the absolutely optimal input parame-
ters for each edge detector [20], the choice of optimal input
parameters may be improved by conducting a large number
of experiments and averaging opinions from more expert
viewers. The second limitation in our study is the use of a sin-
gle expert observer to define the ground truth. Individual
subjectiveness may be reduced by averaging across multiple
decisions for the ground truth. Moreover, our data were all
collected from voluntary healthy subjects. If the edge detec-
tors perform differently for different types of images, it is nec-
essary to examine how they perform on pathological retinal
images in future studies.
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