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Objective: To develop an automated polypoidal choroidal vasculopathy (PCV) screen-
ing model to distinguish PCV from wet age-related macular degeneration (wet
AMD).

Methods: A retrospective review of spectral domain optical coherence tomography
(SD-OCT) imageswas undertaken. The included SD-OCT imageswere classified into two
distinct categories (PCV or wet AMD) prior to the development of the PCV screening
model. The automateddetectionof PCVusing thedevelopedmodelwas comparedwith
the results of gold-standard fundus fluorescein angiography and indocyanine green
(FFA + ICG) angiography. A framework of SHapley Additive exPlanations was used to
interpret the results from the model.

Results: A total of 2334 SD-OCT images were enrolled for training purposes, and an
additional 1171 SD-OCT images were used for external validation. The ResNet atten-
tion model yielded superior performance with average area under the curve values of
0.8 and 0.81 for the training and external validation data sets, respectively. The sensitiv-
ity/specificity calculated at a patient level was 100%/60% and 85%/71% for the training
and external validation data sets, respectively.

Conclusions:Aconventional FFA+ ICG investigation to differentiate PCV fromwetAMD
requires intense health care resources and adversely affects patients. A deep learning
algorithm is proposed to automatically distinguish PCV from wet AMD. The developed
algorithmexhibited promising performance for further development into an alternative
PCV screening tool. Enhancement of the model’s performance with additional data is
neededprior to implementationof this diagnostic tool in real-world clinical practice. The
invisibility of disease signs within SD-OCT images is themain limitation of the proposed
model.

Translational Relevance: Basic research of deep learning algorithms was applied to
differentiate PCV from wet AMD based on OCT images, benefiting a diagnosis process
and minimizing a risk of ICG angiogram.

Introduction

Age-related macular degeneration (AMD) is a
leading cause of vision impairment and loss among
older adults. It is classified into dry or wet AMD.
Wet AMD is often taken to be synonymous with
exudative AMD, although not entirely so. Currently,
neovascular AMD (nvAMD) can either be exudative

or nonexudative. It is characterized by hemorrhage
or exudate from leakage of abnormal vessels in
the macular area (serosanguinous maculopathy).
Polypoidal choroidal vasculopathy (PCV) presents
with clinical features similar to those found in wet
AMD. It is increasingly considered a subtype of
wet AMD. Both PCV and wet AMD conditions are
associated with frequent relapse and require long-
term follow-up treatment with intravitreous injections
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Figure 1. Characteristics of serosanguinous maculopathy obser
ved by SD-OCT.

of anti–vascular endothelial growth factor (anti-
VEGF).1,2 A significantly higher prevalence of PCV
is found in many East Asian countries compared to
Caucasian populations.3,4

Ophthalmic imaging technologies are widely used
for diagnosis of macular diseases, including spectral
domain optical coherence tomography (SD-OCT)
and simultaneous fundus fluorescein and indocyanine
green (FFA + ICG) angiogram. SD-OCT images are
commonly used to diagnose AMD. The three main
findings of SD-OCT in macular diseases are pigment
epithelial detachment (PED), subretinal fluid (SRF),
and intraretinal fluid, which is typically referred to as
cystoid macular edema (CME) in the macular area
(diabetic macular edema, a common term for macular
edema caused by diabetic retinopathy, is closely related
to CME) (Fig. 1). All three of these features are
observed on SD-OCT images in both wet AMD and
PCV.

In clinical practice, PCV and wet AMD conditions
are closely related and share common characteristics
of serosanguinous maculopathy. Simultaneous FFA
+ ICG is considered the gold-standard investigation
for diagnosis of both conditions. The presence of a
hypercyanescence polypoidal lesion in the early phase
of ICG is required for a diagnosis of PCV. Although
the mainstay treatment for both diseases is intravitreal
anti-VEGF injections, it is important to differentiate
between wet AMD and PCV because laser photo-
dynamic therapy is an additional treatment for PCV.
In addition to FFA + ICG being an invasive and

time-consuming investigation, patients are also at
significant risk of anaphylactic shock or rental
shutdown with a relatively less risk of dye-related
allergy or kidney injury. In contrast, SD-OCT is nonin-
vasive, fast, less expensive, and more practical for use
in routine clinical practice. Wet AMD and PCV share
very similar characteristics on SD-OCT images, but
PCV also shows sharp variable notching or peak PED,
double-hump PED, and branching vascular networks
(BVNs). A thumb-like polyp containing hyperreflec-
tive rings with or without internal hyporeflective lumen
is also observed.5 Clinical interpretation of SD-OCT
for PCV screening could reach a sensitivity of 89% to
95% and a specificity of 85% to 93%.6,7

Artificial intelligence (AI) or specifically deep
learning (DL) models are a promising tool for
helping ophthalmologists with screening, diagnosis,
and recommending proper treatment. Development
and use of an automated system to distinguish wet
AMD from PCV using SD-OCT images is less expen-
sive, safer, and less time-consuming than using FFA +
ICG. It would also help to compensate for the scarcity
of retinal specialists in a rural area and lessen the
need for referrals to secondary or tertiary care hospi-
tals. Using such a system, cases could be properly
diagnosed and treated early, and patients who need to
be referred could be referred based on evidence of a
strong diagnostic suspicion.

In this study, we proposed automated detection of
PCV based solely on SD-OCT segment photographs
using deep learning algorithms. Several deep convo-
lutional neural networks with advanced techniques
were thoroughly investigated to enhance the model’s
performance. We relied on standard network archi-
tectures with a transfer learning technique and a
simplified version of standard networks with an
attention technique. A cross-validation technique was
used when training these models in order to guaran-
tee performance stability. Finally, a framework of
SHapley Additive exPlanations (SHAP)8 was imple-
mented for interpreting results from the proposed
models.

Model experiments with data application, an evalu-
ation process, and the SHAP explainable framework
distinguish our work from others. Our main contri-
bution is applying several deep learning models with
advanced techniques to differentiate PCV from wet
AMD using SD-OCT images. In addition, we intro-
duced evaluation performance at the patient level by
taking multiple cross-sectional images from the same
person into account. To the best of our knowledge,
no previous study has trained similar deep learning
algorithms using Thai population data. Finally, we
adopted the SHAP framework to better understand the
model’s functionality.
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RelatedWork

In recent years, AI has been applied to various
domains, including health care (medicine), and specif-
ically in ophthalmology. Several novel algorithms
have been applied to various tasks such as disease
diagnosis in ophthalmology, as described in several
previous studies.9–20 Most of these algorithms were
introduced to automatically detect and differentiate
macular diseases, such as AMD.21 A large number
of medical images combined with automated image
analysis yielded a satisfactory result from the devel-
oped models that was near equal to the results from
human evaluation. Fundus photographs and SD-OCT
are among the most common imaging tests to diagnose
retinal diseases.

A fundus photograph is normally used to document
and sometimes diagnose certain eye conditions,
including macular diseases such as AMD and PCV.
An automated prediagnosis of AMD using typical
machine learning models to detect an appearance of
a drusen from fundus images was proposed.22 Even
though machine learning methods perform relatively
well, a lot of effort is needed to sufficiently train
them to identify important features. To address this,
deep learning models, especially convolutional neural
networks (CNNs) and their variations, have gained
popularity over the past few years. A custom-designed
CNN was employed to automatically and accurately
diagnose AMD at an early stage.23 Another deep
convolutional neural network–based model was intro-
duced to predict exudative AMD based on fundus
images.24 In addition, DeepSeeNet25 and its exten-
sion26 were proposed to detect individual AMD risk
factors, which were further used to classify different
disease severity stages. Similar works by Burlina et
al.,27 Grassmann et al.,28 and Liu et al.29 used CNN-
based models to perform this task. Another pool of
research work relied on a transfer learning concept that
applied knowledge learned from one task to another
task. The networks fully trained on a standard large
data set were fine-tuned with a retina image data set,
as proposed in previous studies.30–34

An ophthalmologist typically uses SD-OCT for a
certain diagnosis by observing the macula’s distinc-
tive layers to map the abnormal characteristic and
measure the central retinal thickness. In an early era
of advanced AI, the traditional machine learning
method, coupled with specific techniques, was imple-
mented to detect different stages of disease based
on SD-OCT images.35–38 Other research set forth to
identify and segment specific macular fluid from SD-
OCT images using a CNN-based autoencoder.39,40 In

addition, a large pool of work relied on deep neural
networks to classify input SD-OCT images into differ-
ent abnormalities, such as AMD versus normal. Some
of these works trained CNNs from a completely blank
network,41–44 while others relied on the transfer learn-
ing method.45–50 Additional complicated techniques
were considered when training deep neural networks,
such as segmenting retina components51-53 and incor-
porating a novel residual unit subsuming atrous separa-
ble convolution.54 In addition, an attention technique55
was adopted for automated retinal image localization
and recognition. For example, Fang et al.56 introduced
a novel lesion-aware convolutional neural network
(LACNN) using a soft attention map to identify lesion
location within SD-OCT images. Mishra et al.57 devel-
oped multilevel CNNs with dual-attention, while Wu
et al.58 focused on specific parts of an image in the
model. A novel joint-attention network consisting of
a supervised encoding network and an unsupervised
attention network was introduced.59

Although various models have been proposed to
distinguish types of AMD, very few studies have
focused on the detection of PCV. Most PCV-related
works aimed to automate segmentation of PED or to
quantify measurement of PED volume. Optical coher-
ence tomography angiography (OCTA) and multi-
ple image systems were used to evaluate the three-
dimensional characteristics of polypoidal structures,
BVNs, and PCV.60 Another work by Xu et al.61
introduced dual-stage deep neural networks for PED
segmentation in PCV. Recent work has been proposed
to directly diagnose PCV disease. Yang et al.62 distin-
guish normal nvAMD from PCV using ICG angiogra-
phy images. Xu et al.63 used a bimodality convolutional
neural network to differentiate AMD from PCV using
fundus and SD-OCT images.

Methodology

This study developed and validated an automated
detection system to categorize a given SD-OCT image
as either PCV or wet AMD.Multiple deep CNNs were
implemented to compare with the findings of retinal
specialists, which was considered the gold-standard
evaluation method. The end-to-end flow process chart
of our proposed system is illustrated in Figure 2.
This retrospective cross-sectional study included SD-
OCT imaging of patients who attended the outpatient
department of the Department of Ophthalmology of
the Faculty of Medicine Siriraj Hospital, Mahidol
University, Bangkok, Thailand, from August 2019 to
April 2021. The protocol for this study was approved
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Figure 2. End-to-end flow process chart.

by the Siriraj Institutional Review Board (approval
no. 176/2563(IRB1)), and the requirement to obtain
written informed consent was waived due to the retro-
spective nature of the study.

Data Collection Process andData Preparation

A retrospective review of chart records was
performed, and SD-OCT images were collected and
preprocessed. Macular SD-OCT images were routinely
processed via a cross-sectional scan by SPECTRALIS
(Heidelberg Engineering, Heidelberg, Germany).
Twenty-five horizontal raster scans covered the center
of the fovea, 20 × 20 degrees horizontally and verti-
cally. Automatic real time averaging was employed
with an enhanced depth imaging feature turned off.
These images were extracted and saved as JPEG files
with no patient name or identification. An example of
a cross-sectional scan of an SD-OCT image is shown
in Figure 1.

These cross-sectional SD-OCT images were
manually classified and labeled as either PCV or wet
AMD by retinal subspecialists. Several images of the
SD-OCT scan that did not have abnormal lesions were
excluded from the study. Poor-quality images were also
eliminated prior to training of themodels. All SD-OCT
scans in the PCV training group were from confirmed
cases of PCV by FFA + ICG. Diagnosis of PCV was
based on EVEREST diagnostic criteria: the presence
of focal subretinal hyperfluorescence on ICG within
the first 6 minutes plus one of the following criteria.
These criteria included nodular appearance of polyp(s)
on stereoscopic fundus examination, hypofluorescent
halo around nodule(s), presence of a branching vascu-

lar network, pulsation of polyp(s) on dynamic ICG,
orange subretinal nodules on color fundus photogra-
phy, or massive submacular hemorrhage (4-disc areas
in size).64

The first set of collected data (set 1) was used
to develop CNNs whose performance was internally
verified. It was then divided into three groups to create
training, validation, and test data sets with approxi-
mately 80%, 10%, and 10% for each set, respectively.
The second data set (set 2) was collected for external
validation. The selected model with fine-tuned parame-
ters obtained from the model development process was
evaluated using the external validation set. The catego-
rization of images into different groups is summarized
in Table 1.

Model Development and Verification

CNNs generally yield superior performance in
computer vision and image-processing tasks.65 Several
experiments among various choices of networks and
techniques were performed to identify a suitable model
architecture and relevant parameters. The accuracy of
the developed systems was repeatedly evaluated until
the desired level of performance was achieved. A cross-
validation technique was employed to enhance model
performance and verify model stability.

Regarding the transfer learning technique, we
retrieved the standard VGG16 and ResNet50 source
models with pretrained weights based on the ImageNet
data set. The pretrained models were fine-tuned for our
specific task to identify PCV and wet AMD charac-
teristics. Specifically, only the fully connected layers
or the head of the networks was fine-tuned while the
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Table 1. Number of SD-OCT Images and Corresponding Subjects (Patient Eyes) in the Model Development and
External Validation Data Sets

Set 1: Model Development, n

Type Training Validation Testing Set 2: External Validation, n

PCV n_image 954 106 155 721
n_subject 55 6 9 46

Wet AMD n_image 949 105 65 450
n_subject 62 7 5 31

Total n_image 1903 211 220 1171
n_subject 117 13 14 77

remaining layers were frozen. Using transfer learning,
full standard models were developed using much less
computational power and computation time.

Simplified standard models were also used to fully
train the networks. With smaller and simpler networks,
weights in the wholemodel were able to be trained from
scratch. In this work, a joint-attention ResNet-50 was
implemented with the use of the simplified ResNet-50.
We also trained the Optic-Net54 consisting of a resid-
ual unit subsuming atrous separable convolution, as
well as a novel building block based on our data, and
further improved it with attention blocks. The joint-
attentionOptic-Net was also implemented in this work.
In summary, we considered four groups of simplified
models, which included ResNet,66 ResNet with atten-
tion,55 Optic-Net,54 and joint-attention Optic-Net.59

From our experiments, the best network was
selected based on the average performance between
the validation and test sets. The selected network was
then further evaluated using the external validation
data set. The probability threshold, defined as thresh-
old_i to differentiate between two classes (i.e., PCV
and wet AMD), was fine-tuned to yield the highest
performance at an image level. Then, multiple evalu-
ation metrics were computed based on the findings
of the models on external validation. A confusion
matrix was constructed, whereas sensitivity (recall),
specificity, overall accuracy, and F1 were also calcu-
lated, with PCV diagnosis considered a positive class.
Receiver operating characteristic curves and area under
the receiver operating characteristic (AUC) curve were
also generated and calculated. AUC was mainly used
when comparing among different models with various
parameters, whereas F1 score was employed to fine-
tune the probability threshold.

Several cross-sectional SD-OCT images of each
patient’s scan were generated as input data for
the networks. In addition to image-based evaluation
metrics, patient-based metrics were also computed
by considering all cross-sectional images extracted

from the same eye of the same patient. The patient-
level threshold, defined as threshold_p, to classify two
distinct classes was also fine-tuned. Finally, the selected
model with optimized thresholds was subjected to the
external validation process.

In order to better understand how the proposed
models made predictions, we adopted a unified frame-
work named SHAP for interpreting the results. The
SHAP value was inspired mainly from the well-known
Shapley value in game theory to identify a feature
importance value. Applying this technique to an image
classification task like ours, each pixel was assigned
an estimated SHAP value. Pixels with positive SHAP
values represent the increasing probability of the class
of interest, while negative SHAP values suggest a
reduced probability.

Results

Multiple models were extensively tested and
compared to obtain the desired performance, as well
as verify their generalizability. Considering all data
folds, the average AUC of the validation and test sets
in set 1 data was computed to enhance the reliability of
the reported results. As shown in Table 2, the ResNet
with attention model yielded the highest average AUC.
Hence, this model was selected for external validation,
the result of which showed 0.81 AUC (Fig. 3).

Using the selected model, we fine-tuned the proba-
bility threshold based on the test set in set 1 data to
achieve the highest F1 score. After varying the thresh-
old_i, the 0.75 threshold was found to yield the highest
F1 score of 0.66. This fine-tuned probability thresh-
old was then used to verify the model’s performance
during external validation (Table 3). We also evaluated
the results from a patient perspective by considering all
SD-OCT images generated from the same patient. The
mean prediction score between predicted PCV and wet
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Table 2. AUC Performance and the Average AUC of Experimented Models on Set 1 Data

Model Type Model Validation AUC Testing AUC
Average of Validation

and Testing AUC

Transfer learninga VGG16 0.72 0.67 0.69
ResNet50 0.55 0.60 0.58

Simplified networksb ResNet 0.82 0.73 0.77
ResNet with attention 0.82 0.77 0.80
Optic-Net 0.75 0.76 0.75
Joint-attention Optic-Net 0.73 0.81 0.77

aTransfer learning with the full standard networks pretrained on ImageNet data.
bSimplified version of standard networks training from scratch.

Figure 3. The AUC from external validation of the best-performing
model.

AMD was computed for each patient eye. As a result,
setting threshold_p at 0.32 yielded the best performance
with the highest F1 score. In other words, if the mean
prediction score considering all images was greater
than 0.32, we diagnosed this patient eye as having PCV.
Finally, we tested the preferred model with the fine-
tuned thresholds using the external validation set, as
shown in Table 3.

In addition, we computed the SHAP value by
using the ResNet with an attention model, which
provides superior performance based on our experi-
ments. According to multiple images predicted to be
PCV, we observed pixels with large positive SHAP
values (red-labeled pixels) clustered at high peak PED

(Fig. 4A) with a probability of 1.0 and pixels with some
positive SHAP values scattered at notching PED (Fig.
4B) with a probability of 0.48. A nonspecific SD-OCT
image of SRF without PED, which could be observed
in both wet AMD and PCV, showed a low number
of pixels with positive SHAP values (Fig. 4C) with a
probability of 0.45. In contrast to the PCV images, a
far lower number of pixels with positive SHAP values
(probability 0.06) could be observed on wet AMD-
classified images (Fig. 4D).

Discussion

In this study, CNNs to differentiate PCV from
wet AMD using cross-sectional SD-OCT images
were proposed. Four simplified networks with more
advanced techniques, including ResNet, ResNet with
attention, Optic-Net, and a joint-attention Optic-
Net, could enhance model performance beyond the
traditional transfer learning technique. The attention
mechanism was adopted in order to specify the area of
interest that was essentially related to our task. These
models achieved reasonably desirable AUC values
ranging from 0.76 to 0.80 in training data.

Compared to previous work, we adopted various
advanced techniques in terms of both network archi-
tecture and the validation mechanism in order to
differentiate PCV from wet AMD. In our study, the
attention technique enhanced the model’s performance

Table 3. Diagnostic Performance of the ResNet Attention Model With Fine-Tuned Parameters in the Test Set of
the Model Development Part (Set 1) and in the External Validation Part (Set 2)

Data Image-Level Performance Patient-Level Performance

AUC F1 Score Sensitivity Specificity F1 Score Sensitivity Specificity

Test set in model development data 0.77 0.66 0.66 0.74 0.83 1.00 0.60
External validation 0.81 0.76 0.69 0.79 0.83 0.85 0.71
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Figure 4. SHAP values on SD-OCT images when applying the ResNet attention model.

compared to traditional supervised learning CNNs.
However, Optic-Net did not outperform the residual
attention networks. Complicated networks typically
require large data sets in order to learn hidden insights
and perform well. The observed inferior performance
of the more advanced Optic-Net architecture in our
study can likely be explained by the small size of our
data set.

To our knowledge, no prior work has focused
on PCV identification in the Thai population. Since
data collection in a medical domain related to human
subjects is always challenging, a relatively small data
set was included and analyzed in this study. A study
fromYang et al.62 used AI models trained on a publicly
available AI platform to diagnose PCV based on ICG
images. AI performance was comparable to retinal
specialists for diagnosing PCV from ICG images with
an accuracy of 0.83. To the best of our knowledge, only
two studies have used OCT images in training the AI
model to detect PCV. Xu et al.63 proposed the model,
which takes simultaneously the fundus image and the
OCT image as a bimodal input and categorizes it as
a four-way output: wet AMD (excluding PCV), dry
AMD (atrophic AMD and early stage AMD), PCV,
and normal. The OCT-based model alone reached
an accuracy of 83.2%, and the bimodal DL model

combining fundus and OCT images had an improve-
ment in accuracy of 87.4%. Another study from Chou
et al.67 showed a comparable result. They proposed a
bimodal model with an ensemble stacking technique,
combining color fundus photographs (CFPs) and clini-
cal features of OCT biomarkers to distinguish between
PCV and nvAMD with an accuracy of 83.67%, sensi-
tivity of 80.76%, and specificity of 84.72%. In our
proposed system, we evaluated the model at a patient
level, which was relatively more suitable for a clini-
cal application. We relied solely on OCT images
without taking fundus images into consideration. Since
only a small data set was available, a cross-validation
technique was implemented to enhance model stabil-
ity. We selected the best model based on the average
AUC value between validation and test sets in order to
strengthen the reliability of the model. The AUC from
external validation is similar to the average AUC corre-
sponding to the model development data. This implies
a desirable level of generalizability of the model.

According to the observed SHAP values, polyp
lesions in PCV are observed underneath the retinal
pigment epithelium (RPE) layer, so RPE bulging and
peak, steep slope PED, or notching PED at the lesion
site are observed on SD-OCT images. Pixels with
large positive SHAP values clustered at the steep
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slope of PED (Fig. 4A) indicated specific features
with a high possibility of PCV diagnosis, while pixels
with extremely low positive SHAP values (Fig. 4D)
indicated a high possibility of a wet AMD diagnosis.
However, inferior performance of the algorithm was
still observed in some SD-OCT images of PCV with
prominent notching PED (Fig. 4B).

Main limitations in differentiating SD-OCT images
of serosanguinous macula lesions were that only a few
cuts of SD-OCT scans that passed through the polyp
lesion sites and showed a high positive SHAP value
result were retrieved. Frommany other cuts in the same
patient, polypoidal lesions were not obviously seen
on SD-OCT images. These cuts may have exhibited
intraretinal fluid, subretinal fluid, or nonspecific PED,
which gave unreliable SHAP values and decreased the
performance of automated algorithms (Fig. 4C). To
enhance the performance of the algorithm, fine-turning
different thresholds at a patient level with additional
data could better differentiate those with polyp lesions
detected.

In medical practice, multiple cross-sectional SD-
OCT images are generally obtained. All of these scans
should be collectively considered in order to make a
clear diagnosis. We provided the final prediction at a
patient level in clinical practice at a threshold_p cutoff
of 0.32. With the small patient-level threshold, there is
a lower chance that wet AMD will be diagnosed. Our
proposed method provided a desirable patient-level
performance at a sensitivity of 0.85 and a specificity
of 0.71 based on the external validation. As expected,
higher sensitivity for detecting PCVwas observedwhen
applying the patient-level threshold compared to the
image-level threshold.

Combined multimodal retinal imaging techniques
and noninvasive retinal investigations (e.g., OCT
angiogram) were employed to identify polypoidal
lesions to aid PCV diagnosis without the need for
invasive FFA + ICG.68–71 However, variable sensitiv-
ity was observed in detecting polypoidal lesions in
OCTA due to an obscured flow signal by a pigment
epithelial layer in the retina or by dense hemorrhage
overlying the polypoidal lesions. The main advantage
of our proposedmodel is that deep learning algorithms
are used to differentiate PCV from wet AMD using
cross-sectional SD-OCT images only. Our algorithm
yielded promising performance of deep learning based
on the use of only a small sample size. The main limita-
tions include limited data and data quality, which are
common problems in the medical field, especially in
relatively new practical applications like PCV identi-
fication. When a model is implemented in clinical
practice, the new data can be used to continuously
improve the model.

Conclusion

An automated detection system to differentiate
PCV from wet AMD using SD-OCT images was
proposed in this study. The typical transfer learning
techniques with standard networks were compared
with more advanced techniques, as well as with novel
network architectures. The residual attention networks
provided superior performance at an image level based
on a limited amount of locally collected data. Further
analysis at a patient level performed better, which
portends the possible benefit of this technology in real-
world clinical practice. The SHAP value technique was
also implemented for interpretation purposes. Using
the available data, a promising performance of the
proposed model and an explanation regarding how it
interprets data were both achieved. The collection of
additional data to further train the model may enhance
model performance.
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