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1 |  INTRODUCTION

Prostate cancer (PCa) is one of the most common cancers in 
males, and in 2020 is estimated to account for more than one 
in five new cancer diagnoses in men in the United States.1 
Although most PCas remain indolent, some show aggressive 

and metastatic phenotypes. For example, castration- resistant 
prostate cancer (CRPC) is the main cause of PCa death and 
has few therapeutic treatment options. The heterogeneous 
nature of PCa means that it is important that an accurate 
outcome prediction model is developed so that appropriate 
treatments can be applied and overtreatment can be avoided. 
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Abstract
In patients with prostate cancer (PCa), there is a high rate of overdiagnosis and fre-
quent overtreatment. Therefore, there is an urgent need for more accurate prediction 
of biochemical recurrence (BCR). DNA methylation regulation patterns play cru-
cial roles in tumorigenicity, progression, and treatment efficacy in PCa. However, 
the global relationship between epigenetic alterations, changes in mRNA levels, and 
pathologic phenotypes of PCa remain largely undefined. Here, we conducted a sys-
tematic analysis to identify global coexpression and comethylation modules in PCa. 
We identified coregulated methylation and expression modules and the relationships 
between epigenetic modifications, tumor progression, and the corresponding immune 
microenvironment in PCa. Our results show that DNA methyltransferases (DNMTs) 
are strongly associated with pathologic phenotypes and immune infiltration pat-
terns in PCa. We built a two- factor predictive model using the expression features of 
DNMT3B and DNMT1. The model was used to predict the BCR status of patients with 
PCa and achieved area under the receiver operating characteristic curve values of 0.70 
and 0.88 in the training and independent testing datasets, respectively.
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The Gleason score remains one of the most powerful prog-
nostic predictors for PCa. The Gleason grading system de-
fines five histological grades, with Gleason 1 representing 
the most differentiated PCa and Gleason 5 representing the 
least differentiated PCa. Many PCas harbor more than one 
Gleason pattern, so the final Gleason score represents the 
sum of the primary and secondary patterns and better cor-
relates with biological behavior and prognosis.2

The epigenetic machinery is composed of four main com-
ponents: DNA methylation, N6- methyladenosine (m6A) RNA 
modification, histone modification, and noncoding RNAs 
(ncRNAs). DNA methylation is one of the most common 
epigenetic events and is involved in various physiological 
and pathological processes, including genomic imprinting, 
X chromosome inactivation, tissue- specific gene expres-
sion, chromosome stability, transposable element repression, 
aging, and diseases including cancer.3,4 DNA methylation is 
a crucial epigenetic modification in mammalian cells and is 
catalyzed by the addition of a methyl group to the C- 5 posi-
tion of cytosine residues at CpG nucleotides by DNA meth-
yltransferases (DNMTs) to form 5mC.5 Methylated DNA is 
interpreted by readers, including methyl- CpG- binding domain 
(MBD) family proteins, Kaiso family proteins, and SET-  and 
Ring finger- associated (SRA) domain family proteins.6 DNA 
methylation can be further edited by ten- eleven transloca-
tion (TET) protein family proteins, which oxidize 5mC into 
5- hydroxymethylcytosine (5- hmC).7 DNA hypomethylation 
and hypermethylation events have been extensively described 
in carcinogenesis and tumor progression, including in PCa.8– 10 
Aberrant DNA methylation of GSTP1 and HOX family genes 
recurrently occurs in PCa.11,12 Additionally, DNA methylation 
markers can be easily detected in liquid biopsy samples, in-
cluding in urine and blood, making them excellent noninvasive 
biomarkers for both diagnosing and monitoring disease pro-
gression.13 Besides, DNMTS were shown to affect the immune 
response of variety of human cancer. Hypomethylating agents 
in breast cancer was shown to involve in upregulating class- I 
antigen presentation to potentiate CD8+ T cell responses.14 
Hypermethylation limited immune checkpoint blockade (CPB) 
immunotherapy by inhibiting interferon responses while global 
hypomethylation caused upregulation of PD- L1 and inhibitory 
cytokines, accompanied by epithelial- mesenchymal changes 
that can contribute to immunosuppression.15

Here, we focused on genes negatively regulated by pro-
moter methylation status. We also sought to identify epige-
netically regulated coexpression modules in patients with 
PCa using data from The Cancer Genome Atlas (TCGA) and 
weighted gene coexpression network analysis (WGCNA).16 
By combining methylation and expression profiles, we gained 
a better understanding of how DNA methylation participates 
in PCa carcinogenesis and modifies pathological phenotypes. 
We found that DNMT was strongly associated with patho-
logic phenotypes and immune infiltration patterns in PCa. 

We further built a predictive model using only DNMT3B and 
DNMT1 expression features. This model was used to pre-
dict the biochemical recurrence (BCR) status of patients with 
PCa and achieved area under the receiver operating charac-
teristic (ROC) curve values of 0.70 and 0.88 in the training 
and independent testing datasets, respectively.

2 |  MATERIALS AND METHODS

2.1 | Data processing and identification of 
methylation- regulated genes

Expression in FPKM (Fragments Per Kilobase of transcript 
per Million mapped reads), Illumina Human Methylation 450 
data and mutation profile from the Genomic Data Commons 
(GDC) TCGA prostate adenocarcinoma (PRAD) datasets 
were downloaded using the UCSC Xena Browser (https://
xenab rowser.net/datap ages/). Promoters were defined as re-
gions −2000 to +100 bp of transcription starting sites. Genes 
with an average FPKM value ≥1 and CpG sites with an aver-
age β value ≥0.1 were retained. To identify genes negatively 
regulated by promoter methylation levels, Pearson corre-
lation analysis was used to compare gene expression and 
promoter methylation levels across PCa samples. Negative 
regulation pairs were defined as having a p- value <0.05 and 
a correlation coefficient <0. Mean β values were used when 
there were multiple negatively regulated pairs per gene. A 
total of 4660 genes and corresponding promoter methylation 
information were used in the following analysis.

2.2 | Construction of weighted gene 
coexpression network

The networks for expression and methylation levels of se-
lected genes were constructed separately using the WGCNA 
package in R.16 An unsigned network, using the absolute 
Pearson correlation value for both mRNA expression and 
DNA methylation, was built and transformed into a weighted 
adjacency matrix. The power value was chosen based on 
scale- free topology criterion. A power value of 8 was cho-
sen to produce networks with a scale- free topology model fit 
>0.8. Automatic network construction using blockwiseMod-
ules with deepSplit = 4 identified 19 mRNA expression mod-
ules and 13 DNA methylation modules. ModulePreservation 
function implemented in WGCNA Bioconductor R package 
was applied to test preservation levels of the coexpressed and 
comethylation modules based on the preservation statistics 
Zsummary. Zsummary combines multiple statistics into a single 
overall measure of preservation that considers density and 
connectivity aspects of preservation using the following 
formula:

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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where Zdensity evaluated the connectedness of each gene within 
modules while Zconnectivity compared the connectivity patterns 
between genes of the same network. The higher the value of a 
Zsummary, the stronger the evidence that the module is preserved. 
Zsummary values >10 marked the most preservative modules.17– 19

2.3 | Assessment of tumor- infiltrating 
immune cells

Cell- type identification by estimating relative subsets of RNA 
transcripts (CIBERSORT) implemented support vector regres-
sion (SVR) method to improve deconvolution performance 
through a combination of feature selection and robust math-
ematical optimization techniques. Meanwhile, this algorithm 
was also proved to well characterizing cellular components in 
microarray or RNA- seq data derived from fresh, frozen, and 
fixed specimens.21 Thus, CIBERSORT was used to profile 
the infiltration levels of 22 different types of immune cells in 
each PCa sample.20 In detail, the LM22 leukocyte gene signa-
ture matrix, consisting of 22 immune cell types (naïve B cells, 
memory B cells, plasma cells, CD8+ T cells, naïve CD4+ T 
cells, resting memory CD4+ T cells, activated memory CD4+ 
T cells, follicular helper T cells, regulatory T cells [Tregs], 
gamma delta T cells, resting natural killer [NK] cells, activated 
NK cells, monocytes, M0 macrophages, M1 macrophages, M2 
macrophages, resting dendritic cells, activated dendritic cells, 
resting mast cells, activated mast cells, eosinophils, and neutro-
phils), was used to perform the analysis.

2.4 | Constitution of the 5- methylcytosine 
regulator- based risk model for BCR

To build a prognostic signature for BCR in PCa using 
5mC regulator expression, we randomly selected 70% of 
the TCGA data as the training set to build the model. BCR 
time and status of samples were directly extracted from the 
TCGA phenotype file. All the 22 genes that regulate DNA 
5mC modifications were subjected to the univariate cox re-
gression analysis to extract independent prognostic genes 
for BCR using survival package in R according to the cut-
off criterion of p- value <0.05. The independent prognostic 
5- methylcytosine (5mC) regulators were then selected as 
final model candidates. The least absolute shrinkage and 
selection operator (LASSO) Cox regression algorithm was 
used to calculate model coefficients using 10- fold cross- 
validation. The risk model was constructed as:

where expression
k
 is the expression value of the genes and 

coefficient
k
 is the corresponding LASSO Cox regression coef-

ficient. The remaining data were set as the validation set.

2.5 | Survival and ROC analysis

Kaplan– Meier analysis and univariate and multivariate Cox 
analyses were performed using the survival and survminer 
packages in R. ROC and time- dependent ROC were analyzed 
using pROC and timeROC, respectively.

2.6 | Differential expression analysis and 
functional enrichment analysis

The R package limma22 was used to identify genes that were 
significantly differentially expressed in samples from high-  
and low- risk groups. Differentially expressed genes were se-
lected with the threshold of |log fold change (FC)| > 1 and 
an adjusted p- value <0.01. From the gene set perspective, 
gene set enrichment analysis (GSEA) was used to detect sig-
nificant differences between high-  and low- risk groups using 
MSigDB hallmark gene sets (h.all.v7.0.symbols.gmt). GSEA 
was performed using the R package fgsea with 100 permuta-
tions for each analysis.23 Pathways with the top five smallest 
p- values for both positively and negatively enriched sets are 
shown in the results. The R package clusterProfiler was used 
to perform Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analyses 
for differentially expressed genes.24 A false discovery rate 
(FDR) adjusted p- value <0.05 was considered statistically 
significant for GO and KEGG pathway enrichment analyses.

2.7 | Construction of miRNA- 5mC regulator 
regulation network

The potential miRNA- 5mC regulator regulation relationships 
were retrieved from the online database miRNet.25 After then 
Pearson correlation analysis was applied between expression lev-
els of each potential pairs and those with correlation coefficient 
<−0.3 and p- value <0.01 were defined as the final candidates.

3 |  RESULTS

3.1 | Identification of coexpression and 
comethylation modules in PCa

A schematic diagram depicting the analysis pipeline of this 
study was shown in Figure 1. We used WGCNA to analyze 
expression data in 499 PCa samples. We found that 4660 genes 

Zsummary =

Zdensity + Zconnectivity

2

risk score =
∑

n

k=1
(expression

k
× coefficient

k
)
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could be hierarchically clustered into 20 coexpression mod-
ules and that 1305 genes could not be assigned to any modules 
(Table S1). A main feature of WGCNA is that it can be used 
to explore the relationship between coexpression modules and 
phenotypes. We collected clinical information from patients 
with PCa, including pathologic T and N stages, BCR status, 
Gleason score, and prostate- specific antigen (PSA) value, 
from TCGA. We then used Pearson correlation analysis to as-
sess the correlation between the eigengenes (the weighted av-
erage of the expression of all genes in a coexpression module) 
of each coexpression module and a selected trait (Figure 2A). 
Notably, patients with higher expression of cluster number 
15 genes (which included STMN1, CDCA8, RRM2, HJURP, 
POC1A, MCM2, HMGB2, TRIP13, PTTG1, BMP6, TCF19, 
KIFC1, CBX3, RFC2, DBF4, DNAJC2, PBK, MCM4, MKI67, 
CHEK1, LRR1, CDKN3, C16orf59, KPNA2, TK1, BIRC5, 
CBX2, RNASEH2A, UBE2C, DONSON, CHAF1B, MCM5, 
and KIF4A) were the most likely to encounter BCR, and the 
expression levels of these genes negatively correlated with 
the time of recurrence. Additionally, this cluster’s expres-
sion level was positively correlated with pathologic/clinical T 
stage, pathologic N stage, Gleason score, and PSA value. GO 
analysis showed that cluster 15 mainly included genes that 
participate in tumor cell growth and proliferation (Figure 2B). 
KEGG enrichment analysis showed that this cluster was en-
riched in DNA replication (adjusted p- value = 1.60e−7) and 
cell cycle (adjusted p- value = 1.19e−6) pathways.

The methylation pattern of the 4660 genes in the 20 coex-
pression modules was assessed using WGCNA. Thirteen com-
ethylation modules were identified, and 1781 genes did not form 
any clusters (Table S2). Correlation analysis between comethyl-
ation modules and pathologic traits revealed that hypermethyl-
ation of cluster number 10 gene promoters (including PRPF3, 
PPP2R5A, ANGEL2, TOMM20, SUPT7L, YIPF4, SOCS5, 
CCT4, PTCD3, C2orf47, NDUFAF3, RBM5, FAM208A, 
ZBTB11, GTPBP8, NCBP2, YTHDC1, TMA16, CCT5, CNOT6, 
MCUR1, NHLRC1, EIF2AK1, NDUFA4, ZSCAN21, MEST, 
PAXIP1, TNFRSF10A, UBE2V2, LYPLA1, ZNF517, CDC26, 

ODF2, SURF2, CCDC183- AS1, NRBF2, TBC1D12, TDRD1, 
CCDC90B, APPL2, UTP14C, EIF2AK4, RPS2, B3GNTL1, 
MED25, ZNF615, COMMD7, SNORA60, and DPM1) pre-
dicted a lower probability of BCR, and the methylation levels 
positively correlated with recurrence time. Also, the methyla-
tion levels of this cluster were negatively correlated with patho-
logic/clinical T stage, pathologic N stage, and Gleason score 
(Figure 2C). Hypermethylation of genes in this cluster also GO 
enrichment analysis showed that the genes in this cluster mainly 
participate in RNA and protein localization (Figure 2D).

3.2 | All coexpression modules were 
associated with expression of at least one 
5mC regulator

To understand the influence of DNA methylation on mRNA 
expression in PCa, we extracted the expression and copy- 
number data of 22 genes that regulate DNA 5mC. These 
genes include epigenetic writers (DNMTs such as DNMT1, 
DNMT3A, DNMT3B, and DNMT3L), readers (methyl- CpG- 
binding domain proteins such as MBD1, MBD2, MBD3, 
and MBD4, methyl- CpG- binding protein 2 [MECP2], and 
other reader genes including NEIL1, NTHL1, SMUG1, TDG, 
UHRF1, UHRF2, UNG, ZBTB33, ZBTB38, and ZBTB4), 
and erasers (TET family demethylases TET1, TET2, and 
TET3).4,26,27 Correlation analysis identified that all coex-
pression modules were associated with the expression of at 
least one 5mC regulator. 5mC regulator expression was more 
strongly associated with coexpression modules than with cor-
responding copy number variation (CNV) levels (Figure 3). 
This demonstrates that 5mC DNA modification has a broad 
impact on gene expression regulation in PCa.

Analysis of the association between 5mC regulators and com-
ethylation modules (Figure S1) revealed that very few modules 
were significantly correlated with 5mC regulator expression or 
CNV. This suggests that 5mC regulators had significantly less 
influence on promoter DNA methylation than on expression.

3.3 | Regulation of a coexpression module by 
its promoter comethylation module

To analyze the conservation between coexpression and co-
methylation networks in PCa, we assessed overlaps between 
the two datasets (Figure S2A). Z- summary statistics were used 
to measure conservation scores (Figure S2B,C). Conserved co-
expression and comethylation networks were selected based on 
Z- summary score and cross- tabulation overlapping p- values. 
Expression of coexpression cluster 4 was identified as being 
regulated by its promoter comethylation module, cluster 8. GO 
enrichment analysis of coexpression cluster 4 (Figure 4A) and 
comethylation cluster 8 (Figure 4B) showed that these modules 

F I G U R E  1  A schematic diagram depicting the analysis pipeline 
of this study
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were functionally related to the immune response and extra-
cellular matrix activity. Collectively, these results show that 
promoter methylation levels regulated expressions of genes 
functionally related to PCa immune response.

3.4 | DNA methylation regulates the 
infiltrating immune cells in PCa

Infiltrating immune cells play vital roles in PCa develop-
ment and immunotherapy.28,29 Therefore, it is important to 

know if tumor- infiltrating immune cells are regulated by 
DNA methylation. CIBERSORT was used to profile 22 
classes of tumor- infiltrating leukocytes (TILs) using PCa 
RNA- seq data. The proportion of each immune cell subset 
was correlated with 5mC regulators using Pearson correla-
tion (Figure 5A). Notably, 5mC regulators were significantly 
correlated with TILs. CD8+ T cells, Tregs, activated NK 
cells, and M2 macrophages were negatively correlated with 
5mC erasers. Naïve B cells, activated CD4+ memory T cells, 
and Tregs positively correlated with 5mC writers. Activated 
CD4+ memory T cells and Tregs showed an overall positive 

F I G U R E  2  (A) Heatmaps showing the correlation coefficients between the expression modules and selected pathologic and clinical 
phenotypes. (B) Gene Ontology (GO) enrichment results for the genes in coexpression module 15. (C) Heatmaps showing the correlation 
coefficients between methylation modules and selected pathologic and clinical phenotypes. (D) GO enrichment results for the genes in 
comethylation module 10
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correlation with 5mC readers, while other classes of TILs had 
diverse association patterns with readers.

We then checked for associations between TILs and co-
expression and comethylation modules (Figure  S3A,B). 
Coexpression and methylation modules closely correlated 
with TILs. Infiltration of naïve B cells and resting CD4+ 
memory T cells was most affected by coexpression modules. 
Coexpression module clusters 6, 9, 12, 18, and 19 were neg-
atively associated with infiltration and clusters 1, 2, 3, 4, 5, 
8, 10, 11, 13, 14, 16, and 17 were positively associated with 
infiltration. We combined genes with the same association 
patterns and GO enrichment analysis revealed that genes neg-
atively correlated with naïve B cell and resting CD4+ mem-
ory T- cell infiltration were enriched in protein localization. 
Genes positively correlated with naïve B cell and resting 
CD4+ memory T- cell infiltration were enriched in extracel-
lular matrix organization. Comethylation modules showed 

fewer associations with TILs than did the expression mod-
ules. Resting CD4+ memory T cells were the most affected 
by the comethylation modules.

3.5 | Higher 5mC regulator expression 
marks immunosuppressive microenvironments

Immune checkpoints (ICPs) inhibit immune system activa-
tion and play vital roles in immunomodulation. Immune CPB 
with antibodies targeting cytotoxic T- lymphocyte antigen- 4 
(CTLA- 4) and programmed death- 1/programmed cell death 
1 ligand 1 (PD1/PD- L1) have shown promising results in the 
treatment of various malignancies.30,31

Here, we investigated associations between ICP expres-
sion and 5mC regulators (Figure 5B). Twenty- one ICP genes 
were downloaded from the HisgAtlas database (http://biokb.

F I G U R E  3  Heatmaps showing the correlations between the expression and copy number variation of 5mC regulators and the coexpression 
modules identified in PCa, with + and * indicating correlation p- values of <0.05 and <0.01, respectively

F I G U R E  4  Gene Ontology (GO) enrichment plot for (A) coexpression module 4 and (B) comethylation module 8

http://biokb.ncpsb.org/HisgAtlas/index.php/Home/Browse/
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ncpsb.org/HisgA tlas/index.php/Home/Brows e/). Pairwise 
Pearson correlations between ICPs and 5mC regulators were 
calculated for the TCGA PCa data. Most 5mC regulators 
were significantly positively correlated with ICPs, indicating 
that the tumor microenvironment in patients with higher 5mC 
regulator is immunosuppressive (Figure  5B). For example, 
Tet methylcytosine dioxygenase 1 (TET1), Tet methylcyto-
sine dioxygenase 2 (TET2), and MECP2 were strongly asso-
ciated with CD160, an emerging ICP gene whose expression 
is strongly associated with NK cells and cytolytic CD8 T 
lymphocytes.32

3.6 | The predictive value of the 
DNMT3B and DNMT1 writer genes for 
PCa BCR

Pearson correlation analysis was used to assess the relation-
ships between 5mC regulator expression and pathologic phe-
notypes (Figure 5C). 5mC writers were positively correlated 
with pathologic/clinical T stage, pathologic N stage, Gleason 
score, and PSA value. Moreover, the higher the 5mC writer 
expression, the greater the probability of BCR.

To understand which 5mC methylation regulators con-
tribute most to predicting BCR in PCa, we performed uni-
variate Cox regression analysis using TCGA PCa datasets 
(Figure  6A). We found that higher expression levels of 11 
5mC regulators predicted a greater possibility and earlier 
time of BCR. Notably, three of the four methylation writers 
(except DNMT3L) significantly predicted BCR for patients 
with PCa (DNMT1: hazard ratio [HR]  =  1.41, 95% confi-
dence interval [CI] = 1.21– 1.64; DNMT3A: HR = 1.51, 95% 
CI = 1.25– 1.84; and DNMT3B: HR = 2.57, 95% CI = 1.94– 
3.39). By LASSO Cox regression algorithm we identified two 
writer genes, DNMT3B and DNMT1, and built a risk signature 

based on the lambda value with minimum CV error in the 
training set. We determined the score using DNMT3B and 
DNMT1 expression data the DNMT risk score. Coefficients 
obtained from the LASSO algorithm were used to calculate 
the DNMT risk score for the TCGA training dataset. The 
DNMT risk score formula was:

Kaplan– Meier survival analysis was performed in the 
training group to evaluate the DNMT risk score prognostic 
value for BCR. A higher DNMT risk score was associated 
with earlier BCR, with a p- value of 8.25E−05 in the train-
ing dataset (Figure 6B). The ROC curve generated from the 
training datasets achieved an area under the curve (AUC) of 
0.70 for BCR occurrence (Figure 6C). The time- dependent 
ROC curve is often used to study the diagnostic accuracy of 
biomarkers on the onset of a disease condition when the dis-
ease onset may occur at different times during the follow- up. 
Time- dependent ROC analysis showed AUC of 0.69 at year 
5 and 0.98 at year 10, respectively (Figure 6D). The DNMT 
risk score achieved a p- value of 0.0065 in the Kaplan– Meier 
analysis (Figure 6E) and an AUC of 0.88 for BCR in the val-
idation dataset (Figure  6F). Time- dependent ROC analysis 
showed AUC of 0.86 at year 5 and 0.67 at year 10 in the 
validation cohort (Figure 6G).

Univariate and multivariate Cox regression analyses 
were used to evaluate the independent prognostic value of 
the DNMT risk score for BCR (Figure 7A,B). Univariate 
analysis results indicated that higher DNMT risk scores 
were significantly correlated with poor prognosis. Other 
variables related to earlier BCR included Gleason score 
and PSA value. Multivariate analysis results showed that 
a higher DNMT risk score was independently associated 

risk score = 0.48 × DNMT3B + 0.04 × DNMT1

F I G U R E  5  Heatmap of the correlation between the expression of 5mC regulators and (A) tumor- infiltrating leukocytes (TILs), (B) immune 
checkpoint blockade (CPB) molecules, and (C) pathologic phenotypes, with + and * indicating correlation p- values of <0.05 and <0.01, 
respectively

http://biokb.ncpsb.org/HisgAtlas/index.php/Home/Browse/
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F I G U R E  6  (A) Univariate Cox regression analysis of 5mC DNA methylation regulators in biochemical recurrence (BCR) prediction. (B) 
Kaplan– Meier survival analysis revealed the significant prognostic value of the DNA methyltransferase (DNMT) risk score in predicting BCR in 
the training set. (C) Receiver operating characteristic (ROC) curve of the risk score for BCR in the training set. (D) Time- dependent ROC curve of 
the risk score for BCR at year 5 and 10 in the training set. (E) Kaplan- Meier survival analysis revealed significant prognostic value for the DNMT 
risk score in predicting BCR in the testing set. (F) ROC curve of the risk score for BCR in the testing set. (G) Time- dependent ROC curve of the 
risk score for BCR at year 5 and 10 in the testing set
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with a poorer prognosis in PCa patients including earlier 
BCR and a higher probability of recurrence. To compare 
DNMT risk score’s performance with standard factors in-
cluding PSA value, Gleason score and age, multivariate 
Cox regression analysis without DNMT risk score were 
built (Figure  7C). Model performance was improved by 
adding DNMT risk score to achieve a smaller global log- 
rank p- value (9.92e−8 vs. 1.26e−6).

Given the important functions of DNA methylation in 
tumorigenesis and development, we systematically inves-
tigated the relationships between BCR status and factors 
including DNMT risk score, age, Gleason score, and PSA 
value (Figure  7D). Wilcoxon testing indicated that the 
DNMT risk score, Gleason score, and PSA values signifi-
cantly differed with different BCR statuses in the training 
set.

These findings were validated using an independent 
validation dataset. Results of univariate and multivariate 
Cox regression analyses in the validation dataset suggested 
that the DNMT risk score had significant prognostic value 
(Figure 8A,B). Multivariate Cox regression analysis with 

DNMT risk score also outperformed than that without 
(global log- rank p- value 1.04e−4 vs. 1.35e−3). The DNMT 
risk score, along with well- recognized predictors including 
Gleason score and PSA value, significantly differed be-
tween BCR statuses in the validation dataset (Figure 8D). 
Taken together, these results indicate that features derived 
from 5mC regulators can serve as independent prognostic 
factors for BCR and provide supplemental information to 
classic pathological and biochemical prognostic indictors.

3.7 | Genes differentially expressed in 
DNMT risk score- defined high-  and low- risk 
groups function in different proliferation-  and 
metastasis- related pathways

To analyze whether related pathways were associated with 
the DNMT risk score, we identified genes that were dif-
ferentially expressed in the high-  and low- risk groups, as 
defined by the median DNMT risk score (Figure S4A,B). 
There were 807 genes that were differentially expressed 

F I G U R E  7  (A) Univariate Cox regression analysis of DNA methyltransferase (DNMT) risk score, prostate- specific antigen (PSA) value, 
Gleason score, and age for predicting biochemical recurrence (BCR) in the training set. (B) Multivariate- adjusted Cox regression analysis of 
DNMT risk score, PSA value, Gleason score, and age for predicting BCR in the training set. (C). Multivariate- adjusted Cox regression analysis of 
PSA value, Gleason score, and age for predicting BCR in the training set. (D) Distribution of age, Gleason score, PSA value, and DNMT risk score 
across different BCR statuses in the training set
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in the high-  and low- risk groups (|logFC|  >  1, adjusted 
p- value <0.01). Of these genes, 714 were more highly ex-
pressed in the high- risk group, and 93 were more highly 
expressed in the low- risk group. We performed GSEA for 
the differentially expressed genes (Figure S4C) and found 
that these genes were mainly related to proliferation and 
metastasis.

3.8 | Regulation mechanisms of 5mC 
regulators in PCa

Since expression of 5mC regulators was significantly as-
sociated with infiltrating immune cells, ICP activities, and 
pathologic phenotypes, we thus further investigated regu-
lation mechanisms of 5mC regulators. Mutational land-
scape indicated 5mC regulators were very conservative 
during PCa’s tumorigenesis and progression (Figure 9A). 
miRNAs regulated gene expression post- transcriptionally 
by imperfectly binding target mRNAs associated with the 

multiprotein RNA induced silencing complex (RISC).33 
By combing both database information and expression 
profiles, we identified three miRNAs, including hsa- mir- 
130a, hsa- mir- 145, and hsa- mir- 17, that showed negative 
regulation potentials with 5mC readers (ZBTB33, ZBTB4, 
and UNG, Figure 9B– E).

4 |  DISCUSSION

Previous studies have suggested that changes in nucleotide 
sequences and epigenetic modifications can confer growth 
advantage in tumor cells and promote cancer develop-
ment.34 Additionally, the interplay between genetic and 
epigenetic abnormalities contributes to cancer initiation and 
progression.

In this study, we conducted a comprehensive analysis 
to identify the association between DNA methylation and 
the prognosis of patients with PCa. We used PCa data-
sets with clinical information, and DNA methylation and 

F I G U R E  8  (A) Univariate Cox regression analysis of DNA methyltransferase (DNMT) risk score, prostate- specific antigen (PSA) value, 
Gleason score, and age for predicting biochemical recurrence (BCR) in the testing set. (B) Multivariate- adjusted Cox regression analysis of DNMT 
risk score, PSA value, Gleason score, and age for predicting BCR in the testing set. (C) Multivariate- adjusted Cox regression analysis of PSA 
value, Gleason score, and age for predicting BCR in the testing set. (D) Age, Gleason score, PSA value, and DNMT risk score distributions across 
different BCR statuses in the testing set
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F I G U R E  9  (A) Oncoprint of mutational profiles of the 22 5mC regulators. Scatter plots showing negative associations between (B) hsa- mir- 
130a and ZBTB33, (C) hsa- mir- 145 and ZBTB33, (D) hsa- mir- 17 and ZBTB34, (E) hsa- mir- 145 and UNG
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expression data from the TCGA. We first identified gene- 
methylation pairs by examining coregulation patterns in 
the PCa samples.

WGCNA of differentially expressed genes identified 
a cluster of genes whose high expression is associated 
with several malignant features of PCa. Functional anal-
ysis revealed genes in this cluster mainly associated with 
tumor cell growth and proliferation. This cluster involved 
minichromosome maintenance (MCM) family members 
(MCM2, MCM4, and MCM5) responsible for DNA syn-
thesis. Recent studies suggested that dysregulated MCMs 
lead to tumor initiation, progression, and chemoresis-
tance via modulating the cell cycle and DNA replication 
stress.35 CHECK1 in this cluster is crucial to control speed 
in the cell cycle. Aberrant expression of CHECK1 will 
bring cell proliferation and, eventually, carcinogenesis.36 
Overexpression of cell- cycle related genes was demon-
strated in various tumor types, including PCa and showed 
positive correlations with tumor grades. Notably, these 
genes were associated with an increase in the risk of le-
thal PCa.37 Our analysis suggested upregulation of cell 
cycle and proliferation- related genes associated with higher 
pathologic T stages, clinical T stages, pathologic N stages, 
Gleason scores, and PSA values. Higher levels of gene ex-
pression in this category could also predict earlier BCR and 
a higher probability of BCR. Furthermore, comethylation 
analysis also identified a cluster of genes in which hyper-
methylation predicted a lower probability of BCR. Genes in 
this cluster predominantly functioned in RNA and protein 
localization. We identified CCT4 and CCT5 in this cluster, 
which encode a type II chaperonin to fold newly synthe-
sized or misfolded proteins. Previous studies reported that 
the upregulation of CCT subunits in various cancers and 
chaperonin is an oncogenic factor.38,39 CCT2 positive breast 
cancer cells were more invasive and had a higher prolifera-
tive index.40 Our result suggested that hypermethylation of 
localization- related genes may also serve as indicators for 
better prognosis in PCa.

All coexpression modules were associated with the ex-
pression levels of 5mC regulators. However, levels of com-
ethylation modules revealed very few associations with 5mC 
regulator expression or CNV. This may be explained by the 
fact that the expression level and methylation level of genes 
were influenced by complex factors. For example, other 
forms of epigenetic changes including modification of his-
tone proteins, chemical modification, and chromatin remod-
eling changes also play vital roles. Another probability is that 
DNA methylation changes in other regions like gene bodies 
were also of vital importance. Moen et al. found that tumors 
with unmethylated MGMT promoter and high gene body 
methylation maintained a high MGMT expression, which in-
dicated a positive correlation between gene body methylation 
levels with its expressions.41

Tumor- infiltrating immune cells play vital roles in PCa 
development and immunotherapy.28,29 Aberrant methyla-
tion of immune- related genes was significantly associated 
with tumorigenesis and prognostics of various tumor types. 
Methylation of LAG3 was strongly correlated with its expres-
sion and infiltrations of distinct immune cells in clear cell renal 
cell carcinoma.42 DNA methylation profiling was reported to 
have the ability to reflect tumor microenvironments and in 
particular, T lymphocyte infiltrations of the breast cancer.43 
The above studies suggested possible regulation relationships 
between methylation modification and immune environments. 
Therefore, we next focused on analyzing 22 5mC regulators 
genes and their associations with 22 classes of TILs in PCa. 
We found that 5mC regulators were significantly correlated 
with TILs. CD8+ T cells, Tregs, activated NK cells, and 
M2 macrophages were negatively correlated with 5mC eras-
ers. Naïve B cells activated CD4+ memory T cells, and Tregs 
were positively associated with 5mC writers. Activated CD4+ 
memory T cells and Tregs showed an overall positive correla-
tion with 5mC readers. Our findings indicated that besides 
affecting gene expression profiles of tumor cells, DNA meth-
ylation can also impact on tumor immune microenvironment.

BCR is defined as increasing serum PSA levels follow-
ing radical prostatectomy and is an indicator of disease, in-
cluding either local recurrence or metastasis to distant sites. 
Distinguishing patients with high BCR probability are cru-
cial for finding the correct timing to start treatment strategy, 
thus improving patients’ prognosis.44 Previous studies have 
investigated the potential of DNA methylation signatures as 
predictors for BCR in PCa patients. High C1orf114 meth-
ylation was found significantly associated with BCR, and a 
three- gene methylation signature (AOX1/C1orf114/HAPLN3) 
can predict time to BCR after RP.45 A four- gene LASSO 
prognostic model (4- G model) consisting of APC, CRIP3, 
HOXD3, and TGFb2 utilizing DNA methylation level was 
significantly associated with BCR.46 These prognostication 
models suggested that DNA methylation features can serve as 
a useful tool in risk stratification for BCR. However, previous 
researches focused on the predictive potentials of methylation 
levels for selective genesets. Here in this study, we consid-
ered the associations between methylation modification and 
BCR from the perspective of 5mC regulator expressions. 
We showed that 5mC writers were significantly correlated 
with clinical phenotypes, including BCR status, and we 
further built a risk model (the DNMT risk score) for BCR 
using the DNMT3B and DNMT1 5mC writers. Compared 
with traditional methylation markers, measuring expression 
levels of DNMT3B and DNMT1 are much more convenient 
and cost- effective. DNMT activity and protein levels are 
higher in PCa cell lines than in their nonneoplastic counter-
parts.47 Additionally, DNMT activity is higher in prostatic 
tissue cultures derived from PCa samples than in those de-
rived from benign prostatic hyperplasia tissue samples and 
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is significantly higher in cultures derived from PCa with 
Gleason scores ≥7 than in those derived from PCa with 
Gleason scores <7. Moreover, DNMT activity is higher in 
PCa cell lines with high tumorigenicity/aggressiveness than 
in cell lines with low tumorigenicity/aggressiveness.47

DNA methylation is a reversible biochemical process and 
DNMTs have long been investigated as treatment targets for 
cancers.48,49 Decitabine (DRUGBANK ID: DB01262) targets 
DNMT enzymes, specifically DNMT1, and is indicated for 
the treatment of patients with myelodysplastic syndromes.50 
Decitabine has been used in a clinical trial for treating patients 
with metastatic CRPC (Clini calTr ials.gov). Our results show 
that higher expression of DNMTs was associated with PCa 
BCR. This outcome may indicate that DNMT inhibitors have 
the potential to reduce BCR risk. Besides, our analysis iden-
tified broad positive associations between ICPs and DNMTs. 
Since inhibitors can effectively suppress DNMTs’ expression, 
our findings implied that DNMT inhibitors might also func-
tion in PCa immunotherapy by reducing ICPs expression. 
Nevertheless, the inferences above still need to be verified 
by though experiments and clinical trials. As one of the vital 
epigenetic regulation mechanisms, miRNAs showed reverse 
associations with several 5mC readers including ZBTB33, 
ZBTB4, and UNG, which demonstrated overall positive cor-
relations with ICPs. Since miRNAs are also potentially valu-
able therapeutic targets, miRNA mimic oligonucleotides or 
constructs reducing the expression of specific miRNAs may 
also help enhance the effect of immunotherapy.51

Most previous cancer analysis regarding methylation was 
focused on the promoter regions of specific genes. However, 
few researches focused on the global associations between 
DNA methylation, gene expressions, and pathologic pheno-
types of PCa. Here, we identified regulation relationships 
from the perspective of coexpression and comethylation mod-
ules. Expression patterns of DNA methylation modification- 
related enzymes were also profiled. Findings of our research 
can provide a more comprehensive view and serve as a com-
plement to existing researches. Nevertheless, we limited our 
study to genes negatively regulated by promoter methylation 
levels. Since gene expression is affected by complex networks, 
focusing only on single factors may miss other underlying 
mechanisms. Also, the size of samples with definite BCR sta-
tus and time is still limited in the TCGA cohort, which may 
lead to an unstable outcome of the prediction model. A larger 
independent PCa cohort with complete follow- up information 
was still needed to refine and validate our findings.

5 |  CONCLUSIONS

Here, we describe methylation regulation patterns in PCa at 
the gene and transcriptome levels. We show that 5mC regula-
tors participate in tumor cell proliferation and regulate the 

tumor immune microenvironment. 5mC regulator expression 
is closely associated with PCa clinical phenotypes, including 
tumor stages, Gleason scores, PSA levels, and BCR. Finally, 
we built a predictive model using only two features, DNMT3B 
and DNMT1 expression, and named it the DNMT risk score. 
This model achieved AUCs for predicting the BCR status of 
patients with PCa of 0.70 and 0.88 in the training and inde-
pendent testing datasets, respectively.
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