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Abstract: In this study, we used single-cell transcriptomic analysis to identify new specific biomarkers
for nucleus pulposus (NP) and inner annulus fibrosis (iAF) cells, and to define cell populations within
non-degenerating (nD) and degenerating (D) human intervertebral discs (IVD) of the same individual.
Cluster analysis based on differential gene expression delineated 14 cell clusters. Gene expression
profiles at single-cell resolution revealed the potential functional differences linked to degeneration,
and among NP and iAF subpopulations. GO and KEGG analyses discovered molecular functions,
biological processes, and transcription factors linked to cell type and degeneration state. We propose
two lists of biomarkers, one as specific cell type, including C2orf40, MGP, MSMP, CD44, EIF1,
LGALS1, RGCC, EPYC, HILPDA, ACAN, MT1F, CHI3L1, ID1, ID3 and TMED2. The second list
proposes predictive IVD degeneration genes, including MT1G, SPP1, HMGA1, FN1, FBXO2, SPARC,
VIM, CTGF, MGST1, TAF1D, CAPS, SPTSSB, S100A1, CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MGP,
SLPI, DCN, MT-ND2, MTCYB, ADIRF, FRZB, CLEC3A, UPP1, S100A2, PRG4, COL2A1, SOD2 and
MT2A. Protein and mRNA expression of MGST1, vimentin, SOD2 and SYF2 (p29) genes validated our
scRNA-seq findings. Our data provide new insights into disc cells phenotypes and biomarkers of
IVD degeneration that could improve diagnostic and therapeutic options.

Keywords: single cell RNA sequencing; intervertebral disc; cartilage; disc degeneration; chondrocytes;
senescence; cell biology; transcription factors

1. Introduction

Intervertebral disc (IVD) degeneration and associated low back pain is a chronic
pathophysiological condition experienced by ~80% of individuals at some time in their
lifespan. It is a global health problem with increasing socioeconomic cost [1–6] for which
there are no disease-modifying therapies. The IVD is a fibro-cartilaginous, physiologically
avascular tissue with poor self-renewing capacity [7–12]. Structurally, IVDs are divided
into distinct zones of cartilaginous endplates, the inner and outer annulus fibrosus (iAF
and oAF), and the central nucleus pulposus (NP), each with characteristic cell populations,
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biochemical and biomechanical properties [13]. Metabolic dysregulation of the cells plays
a pivotal role in the pathobiology and results in alterations in extracellular matrix (ECM)
composition throughout the IVD compartments [3,13,14].

Currently described in the literature are a number of IVD cell biomarkers, including
Col1a1, Col4, Lam1 and Thy1 for AF cells [15–22], and Krt8, Krt18, Krt19, Ca12, ACAN, Col1a2,
Col2a1, Tie2+ and Gd2+ for NP cells [17,23–28]. However, a lack of information on how the
cells [29] and biochemical markers vary in health and disease prevents us from effectively
targeting the progression of IVD degeneration. Informative, transcriptomic profiles of cells
from degenerating (D) and non-degenerating (nD) IVDs have relied either on bulk RNA
sequencing, microarray-based approaches [30–36], or animal studies [18,28,37–42]. These
findings are not always translatable because of interspecies differences and large variability
observed when cell populations are pooled, averaging out important changes [33,43–49].
Our goal was to define transcriptional profiles of the cell populations found in D and nD
adult human IVD tissue that could provide insight into disease etiology and treatment
options. We aimed also to identify novel cell-type specific biomarkers for iAF and NP
cells. Our study provides a valuable resource for further investigation to better elucidate
phenotypes of NP and iAF cells with defined markers and molecular signatures related to
IVD degeneration. Deepening our knowledge of IVD cell heterogeneity in D and nD tissue
may shed light on the pathogenesis and potentially aid in the development of diagnostic
and therapeutic options in the future.

2. Results
2.1. Cellular Heterogeneity of Human Intervertebral Disc Cells

Single-cell gene expression analysis can improve assessment of transcriptomic varia-
tion of individual cell populations hidden in bulk analysis. We used scRNA-seq of human
NP and iAF cells from D and nD IVDs of the same individual to avoid confounding fac-
tors such as genetic background, age, sex, and lifestyle of separate individuals [50]. In
total, we analyzed, 13,736 scRNA-seq profiles (Figure 1A, Table S1 and Supplemental
Figure S1A–F), divided between 3131 (iAFnD), 3092 (iAFD), 3867 (NPnD) and 3646 (NPD)
individual cells at a median sequencing depth of 43,000 reads/cell. The number of cells
passing filtering allowed for reliable detection of gene classes (Figure 1A). The R pack-
age, Seurat [51,52] and Uniform manifold approximation and projection (UMAP) [53],
was used to cluster and visualize all cells together (iAFnD, iAFD, NPnD and NPD)
based on their transcriptional similarity. Unsupervised UMAP analysis revealed four-
teen transcriptionally distinct subpopulations (Figure 1B), all expressing disc cell mark-
ers such as collagen and aggrecan. Next, we compared gene expression levels in the
identified clusters to determine cluster marker genes. Known and novel DEGs were
found, including SOD2, FRZB, CHI3L1, SYF2 (cluster 0), FGFBP2, CLEC3A, OGN, C2orf40
(cluster 1), MT1G, MT1H, MT1F, MT1X (cluster 2), CXCL8, G0S2, CCL20 (cluster 3),
CTGF, ID1, COL2A1, COL11A1 (cluster 4), FRZB, PLA2G2A, CHRDL2, SPTSSB (clus-
ter 5), MSMP, S100A2, TNFRSF11B (cluster 6), TMSB4X, CYTL1, LGALS1 (cluster 7),
COL2A1, COL11A1, SLPI, SPARC (cluster 8), CTGF, CYR61, COL1A2 (cluster 9), PPP3CA,
CTNNB1, PPP1CB (cluster 10), DDIT3, HSPA5, NUPR1 (cluster 11), MMP3, COMP, CHI3L2
(cluster 12), and HIST1H4C, TUBA1B, TMSB4X (cluster 13) (Figure 1C). Significantly
DEGs were defined as a log fold change >0.25 and p < 5.4 × 10−24. The most signifi-
cant DEGs in the clusters (0–13) were SOD2 (LogFC = 0.42), FGFBP2 (LogFC = 0.79), MT1G
(LogFC = 1.69), CXCL8 (LogFC = 1.46), CTGF (LogFC = 1.58), FRZB (LogFC = 1.56), MSMP
(LogFC = 1.74), TMSB4X (LogFC = 1.72), COL2A1 (LogFC = 1.48), CTGF (LogFC = 2.36),
PPP3CA (LogFC = 1.16), DDIT3 (LogFC = 1.01), MMP3 (LogFC = 1.52) and HIST1H4C
(LogFC = 2.38) (Table S2 and Supplemental Figure S2). Taken together, these results reveal
the overall pattern of transcriptomic profiles of human NP and iAF cells at the single-
cell level.
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Figure 1. Single-cell RNA sequencing reveals heterogeneity of the human disc cells. (A) Schematic 
overview of the workflow of isolating and analyzing iAF and NP cells from human non-degenerat-
ing (nD) and degenerating (D) discs. (B) UMAP plot showing the unbiased classification of 3.131 
iAFnD, 3.867 NPnD, 3.092 iAFD and 3.646 NPD. Cells are clustered according to transcriptome sim-
ilarity in 2D space. Each dot represents one cell, colored by cluster. UMAP plot revealed that cells 
in the human disc are present in 14 unique clusters (0–13). (C) Heat map showing the top marker 
genes of each cluster (0–13) as determined by Seurat analysis. Expression of genes is represented 
using a z-score value in which red indicates higher expression and blue indicates lower expression. 

2.2. Identification of Distinct Cell Populations in NP and iAF of Non-Degenerating and 
Degenerating Discs 

Figure 1. Single-cell RNA sequencing reveals heterogeneity of the human disc cells. (A) Schematic
overview of the workflow of isolating and analyzing iAF and NP cells from human non-degenerating
(nD) and degenerating (D) discs. (B) UMAP plot showing the unbiased classification of 3.131 iAFnD,
3.867 NPnD, 3.092 iAFD and 3.646 NPD. Cells are clustered according to transcriptome similarity
in 2D space. Each dot represents one cell, colored by cluster. UMAP plot revealed that cells in the
human disc are present in 14 unique clusters (0–13). (C) Heat map showing the top marker genes
of each cluster (0–13) as determined by Seurat analysis. Expression of genes is represented using a
z-score value in which red indicates higher expression and blue indicates lower expression.

2.2. Identification of Distinct Cell Populations in NP and iAF of Non-Degenerating and
Degenerating Discs

We next analyzed how the number of cells assigned to each cluster varied with
degeneration and IVD region. This analysis determines the number of cells present in each
cluster and indicates if the variation is cell-type specific or linked to IVD degeneration. The
analysis did not detect any pure region-specific clusters. However, clusters 6, 7, 11 and 13
contained 13.05–49.24% more cells in tissue from NPnD compared to tissue from iAFnD.
We observed a similar increase in cell numbers when comparing iAFD to NPD in clusters
5, 8 and 9 (20.28–54.81%) and in NPD clusters 0, 3, 6–7, 10 and 13 (10.94–174.22%) when
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comparing to AFD. Clusters 0, 2, 3, 6, 10, 12 and 13 contained 9.33% to 63.56% more cells
in tissue from NPD tissue compared to the number from NPnD tissue. For iAFD tissue,
clusters 2–3, 6 and 9–13 contained 6.63–59.79% more cells than tissue from iAFnD. A 3.44%
to 31.84% lower number of cells was found in clusters 0–1, 4–5 and 7–8 of iAFD tissue
compared to iAFnD tissue. Finally, the number of cells in clusters 1, 4–5, 7–9 and 11 was
10.69–67.05% lower in NPD compared to NPnD (Figure 2A–E and Tables S3–S6).
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Figure 2. Single-cell RNA profiling and transcriptional changes correlated with cell type and IVD 
degeneration. Unsupervised UMAP clustering showing the change in cell distribution of the 14 dif-
ferent clusters for (A) NPnD, (B) NPD, (C) iAFnD and (D) iAFD. (E) Variations in cell proportion of 
the 14 different clusters between the samples. (F) QuSAGE analysis of cell population specific dif-
ferential expression colored by statistically significant normalized enrichment scores. The main dis-
covered IVD cell functions were presented in heatmaps in (a) matrix regulation, (b) response to 
stress and inflammation, (c) cell cycle and (d) metal binding. (G) Heatmap showing grade-related 
TFs in the identified 14 cell clusters. 

2.3. Intervertebral Disc Cell Markers 
To study the differences between NP and iAF cells, we compared DEGs in each clus-

ter. The majority of DEGs (695/719 genes in total) were shared between the two cell types 
with a Pearson correlation r = 0.86 (Figure 3A). However, some DEGs showed opposite 
expression in the two cell types. For example, genes related to senescence and oxidative 
stress (C2orf40, MT1F and HIF-1α) and extracellular matrix regulation (PRELP, EPYC and 
CHI3L1) were expressed at a significantly higher level in iAF cells. Opposite and distinct 
transcript expression with a higher expression in NP compared to iAF was observed for 
genes associated with initiation of mRNA translation (EIF1), cell-cycle progression 
(RGCC) and pathophysiology of arthritis (LGALS1). Moreover, comparison of NP and iAF 
cells showed that some genes present a similar trend but with a higher expression in one 

Figure 2. Single-cell RNA profiling and transcriptional changes correlated with cell type and IVD
degeneration. Unsupervised UMAP clustering showing the change in cell distribution of the 14
different clusters for (A) NPnD, (B) NPD, (C) iAFnD and (D) iAFD. (E) Variations in cell proportion
of the 14 different clusters between the samples. (F) QuSAGE analysis of cell population specific
differential expression colored by statistically significant normalized enrichment scores. The main
discovered IVD cell functions were presented in heatmaps in (a) matrix regulation, (b) response to
stress and inflammation, (c) cell cycle and (d) metal binding. (G) Heatmap showing grade-related
TFs in the identified 14 cell clusters.

The function of the clusters and gene-set activity can be predicted based on published
papers applying IVD cells to single-cell sequencing [48,49,54–56] and using Quantitative
Set Analysis for Gene Expression (QuSAGE) [57]. Pathway enrichment analysis allowed
us to classify the cell clusters into four major groups. Group 1 with clusters 1 and 4–9 is
implicated in matrix regulation, showing higher activation of ECM regulation, connective
tissue development, calcium regulation and collagen biogenesis pathways (Figure 2F(a)).
Group 2 with clusters 3, 6, 9 and 11–12 is implicated in response to stress and inflammation,
including the pathways, acute inflammatory response, regulation of innate immune re-
sponse and toll-like receptor signaling (Figure 2F(b)). Group 3 with clusters 6, 10–11 and 13
showed an activation of pathways involved in cell-cycle regulation, senescence, cell-cycle
G1S and G2M phase transition and cyclin-associated events (Figure 2F(c)). Group 4 with
clusters 2 and 3 is implicated in metal ion binding and metal ion homeostasis and transition
pathways (Figure 2F(d)).
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It is important to highlight that IVD cells within a single cluster can to a minor extent
contribute to functions in more than one of the four groups. Cell clusters contributing to
only 1 of the 4 groups are 1, 2, 4, 5, 7, 8, 10 and 13. However, clusters 3, 6, 9, 11 and 12
contribute to pathways in more than one group. The main function of cluster 3 is in metal
binding, but it is also implicated in response to stress and inflammation. Cluster 6 is mainly
implicated in cell-cycle regulation and is also implicated in activation of matrix regulation,
and in response to stress and inflammation. The main function of cluster 9 is in matrix
regulation, but it is also implicated in response to stress and inflammation. Cluster 11
has a main function in cell-cycle regulation and is also implicated in response to stress
and inflammation. Cluster 12’s main function is in response to stress and inflammation,
although it is also implicated in matrix regulation (Figure 2F(a–d) and Table S7). We further
linked transcription factor expression (TF) to the identified cell populations. Most cell
clusters in NPnD and iAFnD showed high activation of JUND, SOX8, FOXF1 and no
activation for DDIT3, HMGA1 and NFKB1. The top enriched TFs linked to degeneration
were FOXA3, STAT1, MEF2A, HMGA2 and RELA. Of interest, we observed an opposite TF
enrichment with degeneration in NP and iAF cells. Clusters 0–3, 5–6 and 10–12 showed
higher expression of RUNX2, FOSL1, RELB, BHLHE40, ATF30 and XBP1 in iAFD and
NPD compared with iAFnD and NPnD, respectively. The similar pattern of TF activation
indicates common pathways implicated in IVD degeneration in both cell types (Figure 2G).

2.3. Intervertebral Disc Cell Markers

To study the differences between NP and iAF cells, we compared DEGs in each cluster.
The majority of DEGs (695/719 genes in total) were shared between the two cell types
with a Pearson correlation r = 0.86 (Figure 3A). However, some DEGs showed opposite
expression in the two cell types. For example, genes related to senescence and oxidative
stress (C2orf40, MT1F and HIF-1α) and extracellular matrix regulation (PRELP, EPYC and
CHI3L1) were expressed at a significantly higher level in iAF cells. Opposite and distinct
transcript expression with a higher expression in NP compared to iAF was observed
for genes associated with initiation of mRNA translation (EIF1), cell-cycle progression
(RGCC) and pathophysiology of arthritis (LGALS1). Moreover, comparison of NP and
iAF cells showed that some genes present a similar trend but with a higher expression in
one cell type compared to the other. As an example, a lower MGP gene expression was
pronounced in NP (logFC.NP = −1.03 and logFC.iAF = −0.43), while a higher expression of
PLA2GA was pronounced in AF (logFC.NP = 0.12 and logFC.iAF = 1.37) (Tables S8 and S9).
Since the expression profile of all cells in a tissue sample is an aggregate of the profiles
in the populations present, it might not be reflected in individual clusters. Correlational
analysis between DEGs in NP and iAF cell in each of the 14 clusters (0–13) revealed positive
correlations in all clusters (Pearson correlations ranging from r = 0.65–0.9) (Figure 3B–O),
indicating an overall similar transcriptional profile in NP and iAF cells within the identified
clusters. Significantly, DEGs between NP and iAF were, however, found in clusters 0–11
while none were found in clusters 12 and 13. The list of genes generated with the highest
expression level in NP compared with iAF were specific to clusters 0–5 and include MGP,
MSMP, CHI3L1, C20rf40, ID1, ID3 and TMED2. These genes are associated with functions
in matrix deposition, cytokine expression, cell growth, proliferation and senescence [58–61].
Interestingly, we found that mitochondrial and oxidative stress specific genes MT-ND1-4,
MT-CO1-3, MT-CYB, MT-ATP6, SOD2, BNIP3, HIF1a and PGK1 were lower in clusters
0–5, 7–9 and 11 of NP cells. Cell matrix genes COL2A1, COL3A1, COL6A2, COL9A2,
COL9A3, COL11A1, ACTG1, SPARC, OGN, SCRG1, stimulators of chondrogenesis, LECT1
and CTGF also showed a lower expression in NP cells in clusters 2, 4 and 5 as mentioned
above, whereas cytokines and genes related to inflammation, CP, MMP3, MT1G, MT1X,
MT1E, MIF and LCN2 were lower in NP cells only in clusters 0 to 5. Only one DEG was
found in cluster 6, ENO1, involved in processes such as growth control, hypoxia tolerance
and allergic responses [62–64] and in cluster 10, EIF4B, required for mRNA binding to
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ribosomes [65] (Figure 3B–O and Table S7). All together, these findings suggest novel DEGs
that could serve as potential NP and iAF cell-biomarker panels.
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per cluster. Scatter plots showing correlational analysis between DEGs in iAF and NP cells (A) all 
together and (B–O) in each of the 14 clusters (0–13). Pearson correlation coefficients (r) between iAF 
and NP were calculated using the log fold change (logFC) values of genes that are differentially 
expressed in cell type. 
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Pseudotime trajectory of both NP and iAF clusters showed a branched (bifurcated) trajec-
tory. NP clusters (4–9 and 13) were dispersed at the start and the root of the trajectory, 
and clusters 0–3 and 10–13 were distributed in the middle and later periods. Pseudotime 
trajectory condition, showing the dispersion of NPnD and NPD cells, revealed a homol-
ogy between clusters 4–9 and 13 and nD subpopulations. NPD clusters 0–3 and 10–13 were 
distributed at the same period of the trajectory (Figure 4A). In iAFnD, cells in clusters 0–
2 and 10–13 were mainly distributed at the end of the trajectory. Additionally, in iAFD 
subpopulations linked to degeneration existed mainly at the start of the trajectory, mim-
icking the distribution of clusters 3–9 (Figure 4B). These findings highlight the heteroge-
neity and role of clusters in the progression and pathogenesis of IVD degeneration. The 
similar pattern of the identified clusters and their respective degenerative state in NPD 
and iAFD suggests a potential role of these clusters in the process of IVD degeneration.  

The UMAP learning technique for dimension reduction was used to identify expres-
sion patterns of genes strongly linked to IVD degeneration (Tables S12 and S13). Differ-
ences in gene expression in iAF and NP cells of nD (iAFnD, NPnD) and D (iAFD, NPD) 

Figure 3. Correlation between changes in gene expression in iAF and NP cells from total RNA and
per cluster. Scatter plots showing correlational analysis between DEGs in iAF and NP cells (A) all
together and (B–O) in each of the 14 clusters (0–13). Pearson correlation coefficients (r) between
iAF and NP were calculated using the log fold change (logFC) values of genes that are differentially
expressed in cell type.

2.4. Cell Type Specific and Common Intervertebral Disc Degeneration Markers

Monocle is a single-cell trajectory analysis that orders whole-transcriptomic profiles
of single cells along an artificial temporal curve (pseudotime axis) [66]. Monocle trajec-
tory analysis was used to characterize processes of degeneration by resolving the spatial
organization of different subpopulations in iAFnD, NPnD, iAFD and NPD (Figure 4A,B).
Pseudotime trajectory of both NP and iAF clusters showed a branched (bifurcated) tra-
jectory. NP clusters (4–9 and 13) were dispersed at the start and the root of the trajectory,
and clusters 0–3 and 10–13 were distributed in the middle and later periods. Pseudotime
trajectory condition, showing the dispersion of NPnD and NPD cells, revealed a homology
between clusters 4–9 and 13 and nD subpopulations. NPD clusters 0–3 and 10–13 were
distributed at the same period of the trajectory (Figure 4A). In iAFnD, cells in clusters
0–2 and 10–13 were mainly distributed at the end of the trajectory. Additionally, in iAFD
subpopulations linked to degeneration existed mainly at the start of the trajectory, mimick-
ing the distribution of clusters 3–9 (Figure 4B). These findings highlight the heterogeneity
and role of clusters in the progression and pathogenesis of IVD degeneration. The similar
pattern of the identified clusters and their respective degenerative state in NPD and iAFD
suggests a potential role of these clusters in the process of IVD degeneration.
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Figure 4. DEGs in iAF and NP cells from nD and D discs. Monocle method reconstruction of pseudo-
time trajectory axis and pseudospace trajectory for (A) NPnD vs. NPD and (B) iAFnD vs. iAFD 
defined cell clusters along the progression of IVD degeneration. Volcano plot depicting differen-
tially expressed genes in D compared with nD (C) iAF and (D) NP cells. Red, grey and blue circles 
represent upregulated, non-differentially expressed and downregulated genes, respectively. 

Figure 4. DEGs in iAF and NP cells from nD and D discs. Monocle method reconstruction of
pseudotime trajectory axis and pseudospace trajectory for (A) NPnD vs. NPD and (B) iAFnD
vs. iAFD defined cell clusters along the progression of IVD degeneration. Volcano plot depicting
differentially expressed genes in D compared with nD (C) iAF and (D) NP cells. Red, grey and blue
circles represent upregulated, non-differentially expressed and downregulated genes, respectively.
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The UMAP learning technique for dimension reduction was used to identify expres-
sion patterns of genes strongly linked to IVD degeneration (Tables S12 and S13). Differences
in gene expression in iAF and NP cells of nD (iAFnD, NPnD) and D (iAFD, NPD) discs
is visualized in the volcano plots (Figure 4C,D). We identified a group of genes linked
to degeneration common between the two cell types and a group of genes showing spe-
cific expression in the cell types. Genes including MT1G, SPP1, HMGA1, FN1, UPP1,
S100A2, PRG4, SOD2 and MT2A, which are mainly involved in cellular responses to stress,
skeletal system development, extracellular matrix organisation, collagen catabolism and
inflammation were highly expressed in both cell types from D compared with nD tissue.
In addition, mitochondrial genes associated with responses to oxidative stress (MT-CYB,
MT-ND2), genes involved in extracellular matrix organisation (SPARC, VIM, CTGF) and
genes with roles in inflammatory responses, ions transport and in preventing tissue damage
by limiting protease activity (SPTSSB, S100A1, MGP and DCN) [67,68] showed a similar
expression decrease in iAFD and NPD when compared to iAFnD and NPnD, suggesting a
common change that occurs during IVD degeneration. Several genes including MGST1,
PLA2G2A, MT1F, EPYC and CHI3L1 showed higher expression only in iAF cells with
degeneration, while C2orf40, SLPI and COL11A1 showed lower expression only in NPD
cells. Finally, we observed a specific increase in the expression of SYF2 (p29) for NPD
and a decrease in TAF1D for iAFD when compared, respectively, with NPnD and AFnD
(Figure 4C,D). Together, this provides a comprehensive picture of IVD cell heterogeneity, in
D and nD tissue.

2.5. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis
Revealed Enriched Pathways in the Identified Cell Subpopulations

Understanding intercellular networks of communication can help elucidate potential
targets for therapy in a cell-type-specific manner. ScRNA-seq provides a unique starting
point for deciphering molecular functions and biological process interactions according
to IVD degeneration status and cell type. To investigate the molecular functions and the
biological processes of the identified cell clusters, we performed GO [69] and KEGG [70]
analysis. In our study, we identified DEGs that showed a significant abundance change
(Fc >0.25 and p < 5.4 × 10−24) in NP and iAF cells from D compared to nD discs. We
carried out an enrichment analysis for Gene Ontology (with an FDR of 0.02). The most
interesting differences in biological process between NP and iAF cells from nD discs were
found in clusters 10 and 4, showing higher activation in NPnD of actin cytoskeleton and
collagen fibril organization, cell death and intrinsic signalling pathways in response to
oxidative stress, interleukin 8 production and fibroblasts’ proliferation pathways (Figure 5A
and Table S18). In degenerating tissue, higher activity in NPD was observed in clusters
0, 9 and 12 for innate immune response activation and in clusters 4 and 7–9 for collagen
metabolic processes, apoptotic cell clearance and regeneration processes (Figure 5B and
Table S18). Molecular functions of cytokine activity, cytokine receptor binding and metal
cluster binding were enriched in clusters 1, 4, 6, 9–10 and 13 in iAFnD compared to NPnD
(Figure 5E and Table S19), while antioxidant activity, collagen and matrix binding molecular
functions were higher in NPD clusters 1, 4–6 and 8–10 (Figure 5F and Table S19). KEGG
analysis between NPnD and iAFnD cells showed a significant enrichment of p53 (1, 4, 5
and 10 clusters) and toll-like receptor (8–9 and 11–12 clusters) signalling pathways in NPnD
(Figure 5I and Table S22). When we compared iAFD to NPD we observed an upregulation
of ECM receptor interactions, cell cycle and calcium regulation pathways in clusters 4, 7–9
and higher activation of chemokine and toll-like receptor signalling pathways in clusters
2–3, 6, 8 and 10–12 of NPD cells (Figure 5J and Table S22).
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Figure 5. GO term and KEGG analysis of DEGs between NP and iAF cells from nD and D IVDs. 
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functions (E–H) and KEGG (I–L) pathways per cluster (0–13) in iAFnD vs. NPnD (A,E,I), iAFD vs. 
NPD (B,F,J), iAFnD vs. iAFD (C,G,K) and NPnD vs. NPD (D,H,L) cell populations. Upregulated 
genes in each cluster were used for the analysis. Complete GO terms and KEGG lists are shown in 
the supplemental Tables S14–S22. 
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IVD cell biomarkers, and we classified them according to their expression at the single-
cell level. To validate the observed differences between NPnD and AFnD, we verified 
mRNA expression of MSMP, C2orf40, SLPI and EPYC genes. SYF2 (p29), MT1F FGFBP2, 
S100B and TAF1D were used to confirm the changes between NPD and AFD. The RT-
qPCR results for CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MT-ND2, MT-CYB, CTGF, 
MT2A, UPP1, HMGA1, TAF1D, CAPS, SLPI, SPTSSB, SOD2, MGST1, PRG4, MT1G, 
S100A2, VIM, ADIRF, FRZB, CLEC3A, COL2A1, S100A1 and FBXO2 were used to evaluate 
potential biomarkers of IVD degeneration. The genes selected to determine a difference 
between iAFnD and NPnD cells were not significantly different in RT-qPCR (Figure 6A). 
However, mRNA expression of SYF2 (p29), MT1F and TAF1D reproduced a significant 
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Figure 5. GO term and KEGG analysis of DEGs between NP and iAF cells from nD and D IVDs.
Heatmap representations depicting the differences in affected biological processes (A–D), molecular
functions (E–H) and KEGG (I–L) pathways per cluster (0–13) in iAFnD vs. NPnD (A,E,I), iAFD vs.
NPD (B,F,J), iAFnD vs. iAFD (C,G,K) and NPnD vs. NPD (D,H,L) cell populations. Upregulated
genes in each cluster were used for the analysis. Complete GO terms and KEGG lists are shown in
the Supplemental Tables S14–S22.

In addition, biological processes identified as enriched with degeneration for both cell
types and in all clusters were acute inflammatory response, collagen catabolic processes
and ECM disassembly, while processes such as collagen fibril organization, chondroitin
sulfate biosynthetic processes and ECM assembly were downregulated in most cell clusters
(Figure 5C,D). These fall mainly within an increase with degeneration in the molecular
functions of antioxidant and cytokines activity, ECM and cytokine binding (Figure 5G,H).
KEGG analysis was performed to show the function of identified DEGs between the nD
and D groups. Interestingly, cytokine–cytokine and ECM receptor interaction, p53, WNT
and toll-like receptor pathways were enriched mainly in iAFD (Figure 5K and Table S20)
and NPD (Figure 5L and Table S21) compared to iAFnD and NPnD cell clusters. A detailed
description of the 10 first GO terms with a positive correlation to IVD degeneration is
expressed for each cluster and in each cell type, iAF in Tables S14 and S15, and NP cells in
Tables S16 and S17. In this analysis, the identified biological processes and molecular func-
tions are directly related to cell-cycle regulation, cytokine secretion and extracellular matrix
synthesis, and are relevant to the progression of IVD degeneration. All together, these
results revealed the major pathways involved in the pathogenesis of disc degeneration.
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2.6. Quantitative Assessment Using RT-qPCR of Genes Identified by scRNA-Seq

Bulk RT-qPCR allowed us to evaluate the capacity of cluster-specific genes to trans-
late in bulk RNA content of five separate individuals. We compared the expression of
a selected list of genes according to their pattern of expression and their relevance to
IVD degeneration, oxidative stress and cell senescence. Thus, we selected 33 genes as
potential IVD cell biomarkers, and we classified them according to their expression at
the single-cell level. To validate the observed differences between NPnD and AFnD,
we verified mRNA expression of MSMP, C2orf40, SLPI and EPYC genes. SYF2 (p29),
MT1F FGFBP2, S100B and TAF1D were used to confirm the changes between NPD and
AFD. The RT-qPCR results for CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MT-ND2, MT-
CYB, CTGF, MT2A, UPP1, HMGA1, TAF1D, CAPS, SLPI, SPTSSB, SOD2, MGST1, PRG4,
MT1G, S100A2, VIM, ADIRF, FRZB, CLEC3A, COL2A1, S100A1 and FBXO2 were used to
evaluate potential biomarkers of IVD degeneration. The genes selected to determine a
difference between iAFnD and NPnD cells were not significantly different in RT-qPCR
(Figure 6A). However, mRNA expression of SYF2 (p29), MT1F and TAF1D reproduced a
significant difference (increase or decrease) as observed with scRNA when we compared
NPD to iAFD cells (Figure 6B).

In iAF cells, mRNA expression of CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MT-ND2,
MT-CYB, CTGF and TAF1D in relation to degeneration failed to reproduce scRNA-seq
findings (Figure 6C). When we compared NPD to NPnD, a significant increase in NPD
was confirmed for MT2A and TAF1D and validated scRNA results, while significance
was not reached for UPP1, HMGA1, CAPS, SLPI and SPTSSB (Figure 6D). In addition,
mRNA expression of SOD2, MGST, PRG4, MT1G and S100A2 showed a common trend
of increase (Figure 6E) or decrease (VIM, ADIRF, FRZB, CLEC3A, COL2A1, S100A1 and
FBXO2) in expression when we compared iAFD and NPD to iAFnD and NPnD, respectively.
Significance was reached for the common biomarkers SOD2, MGST1, S100A2, VIM, ADIRF,
S100A1 (Figure 6F). Cell proportion represents the percentage of cells expressing the gene
of interest (Figure 6A–F).

To evaluate the effect that the number of clusters expressing a specific gene as observed
by scRNA will have on translatability to RT-qPCR analysis, we grouped genes showing
similar pattern of expression in all NP and iAF clusters (20 genes; Group 1) and genes with
opposite expression in clusters of the two cell types (13 genes; Group 2) (Tables S24 and S25).
Correlating the RT-qPCR results of the selected genes with cell type and the number of
cell subpopulations expressing the genes indicated that RT-qPCR could validate 15.78%
(3/19 genes) in NP and 14.28% (2/14 genes) in iAF cells of the genes having similar pattern
of expression in all the 14 identified clusters. The genes showing opposite expression in the
14 clusters in NP and iAF cells by scRNA-seq could be confirmed in 28.57% (4/14 genes)
for NP and 26.321% (5/19 genes) for iAF cells (Table S25).

2.7. Expression of Selected Markers Identified by scRNA-seq and Validated by RT-qPCR at the
Protein Level

To further validate the transcriptional changes revealed by scRNA-seq analysis, we
performed quantitative immunofluorescence and Western blotting for selected proteins
including SOD2, vimentin, p29 (SYF2) and MGST (Figure 7–10). We surveyed their
expression on histological sections of NP and iAF cell pellets following 21 days of
culture to investigate stability and validity of the observed transcriptional changes.
Representative gene(s) from RT-qPCR were selected: Group 1 (vimentin, SYF2 (p29) and
MGST-1) and Group 2 (SOD2).
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Figure 6. RT-PCR validation of DEGs identified from transcriptome analysis. Representative 
UMAPs and graphs highlighting the gene expression differences of MSMP, C2orf40, SLPI and EPYC 
between NPnD and iAFnD in (A); SYF2, MT1F, FGFBP2, TAF1D and EPYC between NPD and iAFD 
in (B). RT-PCR validation of IVD degeneration selected DEGs in the transcriptome data of CHI3L2, 
PLA2G2A, TNRSF11B and FGFBP2 showing an increase or MT-ND2, MT-CYB, CTGF and TAF1D 
showing a decrease in iAFD (C) when compared to iAFnD cells from discs of the same individual. 
mRNA expression of MT2A, UPP1, HMGA1 and TAF1D (increase) and CAPS, SLPI and SPTSSB 
(decrease) in NPD compared with NPnD (D). Validation of common degeneration markers by RT-
qPCR showing an increase or a decrease with degeneration NPD (E) and AFD (F). The values were 
calculated using the 2−∆∆Ct method: * p < 0.05, ** p < 0.01 and **** p < 0.0001. 

Figure 6. RT-PCR validation of DEGs identified from transcriptome analysis. Representative UMAPs
and graphs highlighting the gene expression differences of MSMP, C2orf40, SLPI and EPYC between
NPnD and iAFnD in (A); SYF2, MT1F, FGFBP2, TAF1D and EPYC between NPD and iAFD in (B).
RT-PCR validation of IVD degeneration selected DEGs in the transcriptome data of CHI3L2, PLA2G2A,
TNRSF11B and FGFBP2 showing an increase or MT-ND2, MT-CYB, CTGF and TAF1D showing a
decrease in iAFD (C) when compared to iAFnD cells from discs of the same individual. mRNA
expression of MT2A, UPP1, HMGA1 and TAF1D (increase) and CAPS, SLPI and SPTSSB (decrease) in
NPD compared with NPnD (D). Validation of common degeneration markers by RT-qPCR showing
an increase or a decrease with degeneration NPD (E) and AFD (F). The values were calculated using
the 2−∆∆Ct method: * p < 0.05, ** p < 0.01 and **** p < 0.0001.



Int. J. Mol. Sci. 2022, 23, 3993 19 of 36Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 22 of 39 
 

 

 
Figure 7. Validation of selected cell type and degeneration markers. (A) UMAP highlighting SOD2 
gene expression at the single-cell level in iAF and NP nD and D discs of the same individual. (B) 
Western Blot analysis of cell lysates from 5 additional individuals normalized to GAPDH (n = 5). 
(C) Immunohistochemistry staining of SOD2 (in green), Dapi (in blue) and merged images of cells 
from 5 additional individuals (scale = 100 µm, n = 5 biological replicates). Graphs are presented as 
mean ± SEM. * p < 0.05 

Figure 7. Validation of selected cell type and degeneration markers. (A) UMAP highlighting SOD2
gene expression at the single-cell level in iAF and NP nD and D discs of the same individual.
(B) Western Blot analysis of cell lysates from 5 additional individuals normalized to GAPDH (n = 5).
(C) Immunohistochemistry staining of SOD2 (in green), Dapi (in blue) and merged images of cells
from 5 additional individuals (scale = 100 µm, n = 5 biological replicates). Graphs are presented as
mean ± SEM. * p < 0.05.
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Examination of UMAP visualisation confirmed that expression of the antioxidant
enzyme located in the mitochondrial matrix SOD2 is enriched in cells of degenerating NP
and iAF discs. (Figure 7A. Western blotting and quantification of SOD2 showed a 0.23-fold
(p < 0.05) and 0.34-fold (p < 0.05) higher expression in iAFD and NPD cells, respectively,
compared to cells from nD IVDs (Figure 7B). Interestingly and consistent with our scRNA-
sequencing analysis and Western Blot results, representative immunohistochemistry images
of SOD2 showed a qualitative increase in both NPD and iAFD cells when compared to cells
from nD tissue (Figure 7C).

Based on previous vimentin expression in human IVDs, we postulated that the UMAP
plot would be enriched for vimentin specific to NPnD and iAFnD cells compared with
cells from degenerating discs [71,72], which we confirmed (Figure 8A). Furthermore, the
lower expression related to degeneration was also reflected by the immunoblot result of
vimentin. Quantification of the signal intensity demonstrated a significantly lower vimentin
expression (–0.36- fold relative intensity, p < 0.05) in iAFnD cells relative to iAFD cells and
in NPnD cells compared with NPD cells (−0.32-fold relative intensity, p < 0.05) (Figure 8B).
Finally, representative immunohistochemistry images of vimentin confirmed lower levels
in relation to degeneration in NP and iAF cells (Figure 8C).

UMAP visualisation revealed that expression of the p29 gene is specifically enriched
in NPD cells. (Figure 9A). Western blotting and quantification of p29 showed a 0.24-fold
(p < 0.05) and 0.26-fold (p < 0.05) higher expression in NPD cells compared with NPnD and
iAFD, respectively. No significant change was observed between NP and iAF cells from
nD discs. (Figure 9B). Consistent with our scRNA-seq analysis and Western blot results,
representative photomicrographs of p29 staining show qualitatively higher expression in
NPD cells when compared either to NPnD or iAFD cells (Figure 9C).

Although there is no clear enrichment in the UMAP plot, MGST1 has previously been
identified as a hub gene in the pathological process of osteoarthritis [73], and the mRNA has
been shown to be highly expressed in human iAF cells from degenerating IVDs [74]. Here,
immunoblot results showed a significant difference at the protein level between cells from
nD and D discs (Figure 10A). The iAF cells from degenerating IVDs had a 0.28-fold higher
relative intensity, (p < 0.05) than cells from non-degenerating IVDs, whereas a 0.38-fold
higher relative intensity (p < 0.05) was observed in NP cells of nD compared to D tissue,
(Figure 10B). Finally, representative immunohistochemistry images of MGST1 showed a
higher signal in concert with degeneration in NP and iAF cells with similar expression
between the two cell types, which is consistent with our scRNA-seq findings (Figure 10C).
Together, the validation of selected genes confirmed that scRNA-seq can generate results
that are quantitatively stable and reproductible at the mRNA and protein-level but must be
validated for each candidate.
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Figure 8. Validation of selected cell type and degeneration markers. (A) UMAP highlighting vi-
mentin gene expression at the single-cell level in iAF and NP nD and D discs of the same individual. 
(B) Western Blot analysis of cell lysates from 5 additional individuals normalized to GAPDH (n = 
5). (C) Immunohistochemistry staining of vimentin (in green), Dapi (in blue) and merged images of 
cells from 5 additional individuals (scale = 100 µm, n = 5 biological replicates). Graphs are presented 
as mean ± SEM. * p < 0.05 

Figure 8. Validation of selected cell type and degeneration markers. (A) UMAP highlighting vimentin
gene expression at the single-cell level in iAF and NP nD and D discs of the same individual.
(B) Western Blot analysis of cell lysates from 5 additional individuals normalized to GAPDH (n = 5).
(C) Immunohistochemistry staining of vimentin (in green), Dapi (in blue) and merged images of cells
from 5 additional individuals (scale = 100 µm, n = 5 biological replicates). Graphs are presented as
mean ± SEM. * p < 0.05.
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Figure 9. Validation of selected cell type and degeneration markers. (A) UMAP highlighting p29 
gene expression at the single-cell level in iAF and NP nD and D discs of the same individual. (B) 
Western Blot analysis of cell lysates from 5 additional individuals normalized to GAPDH (n = 5). 
(C) Immunohistochemistry staining of p29 (in green), Dapi (in blue) and merged images of cells 
from 5 additional individuals (scale = 100 µm, n = 5 biological replicates). Graphs are presented as 
mean ± SEM. * p < 0.05, ** p < 0.01. 

Figure 9. Validation of selected cell type and degeneration markers. (A) UMAP highlighting p29
gene expression at the single-cell level in iAF and NP nD and D discs of the same individual.
(B) Western Blot analysis of cell lysates from 5 additional individuals normalized to GAPDH (n = 5).
(C) Immunohistochemistry staining of p29 (in green), Dapi (in blue) and merged images of cells
from 5 additional individuals (scale = 100 µm, n = 5 biological replicates). Graphs are presented as
mean ± SEM. * p < 0.05, ** p < 0.01.
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Figure 10. Validation of selected cell type and degeneration markers. (A) UMAP highlighting 
MGST-1 gene expression at the single cell level in iAF and NP nD and D discs of the same individual. 
(B) Western Blot analysis of cell lysates from 5 additional individuals normalized to GAPDH (n = 
5). (C) Immunohistochemistry staining of MGST-1 (in green), Dapi (in blue) and merged images of 
cells from 5 additional individuals (scale = 100 µm, n = 5 biological replicates). Graphs are presented 
as mean ± SEM. * p < 0.05 

3. Discussion 

Figure 10. Validation of selected cell type and degeneration markers. (A) UMAP highlighting MGST-
1 gene expression at the single cell level in iAF and NP nD and D discs of the same individual.
(B) Western Blot analysis of cell lysates from 5 additional individuals normalized to GAPDH (n = 5).
(C) Immunohistochemistry staining of MGST-1 (in green), Dapi (in blue) and merged images of cells
from 5 additional individuals (scale = 100 µm, n = 5 biological replicates). Graphs are presented as
mean ± SEM. * p < 0.05.
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3. Discussion

Although there are very promising cell-based regenerative therapy and ongoing clini-
cal trials to delay or regenerate degenerating IVDs [75–78], a more profound understanding
of the pathophysiology and cell types involved is required [79]. In this study, scRNA-seq
was applied to cells from D (Thompson Grade III–V) and non-degenerating (Thompson
Grade I–II) discs of the same individual [80]. The deep transcriptomic data from >13,500
individual cells provided a comprehensive resource for the understanding and multidi-
mensional characterization of the cells. The focus and strength of our analysis were the
exploration of NP and iAF cells as a source of biomarkers with a potential to contribute to
IVD degeneration. To avoid inter-donor variability observed in genome-wide association
studies or other large-scale evaluations based on cell pooling and population averaging
technologies [33,43–49,81], the present study provides the first scRNA-seq database com-
parison between cells of non-degenerating and degenerating human discs from the same
individual. Validation of scRNA-seq expression profiling highlights potential markers that
can be identified also by bulk RT-qPCR, immunohistochemistry and Western Blot.

3.1. Cell Clusters in NP and iAF Tissue

ScRNA-seq identified 14 putative cell subsets shared by non-degenerating and degen-
erating discs with distinct patterns of DEGs linked to cell type and degeneration. Previous
studies were not performed using tissue obtained from the same human, but rather using
animal tissue [17,28,38,39,82], monolayer expanded cultures [81], a group of different indi-
viduals [27,83] or surgically resected tissue with limited ability to discriminate between
NP and iAF tissue [84,85]. Shortfalls in their use, for transcriptome-based analysis, were
evident from interspecies differences in gene expression [40,84], cell phenotype changes
following monolayer expansion, processing with the difficulty to clearly demarcate NP and
iAF tissue in every patient sample and the underlying disease leading to surgery such as
disc herniation and spondylolisthesis [43,86,87].

We reported transcriptomic heterogeneity and potential functional differences at the
single-cell level between NP and iAF cells and between cells from degenerating and non-
degenerating tissue. Among the clusters characterized, six shared a similar increase with
degeneration in the percentage of cell proportion between NP and iAF, while five clusters
showed a similar decrease in the number of cells in degenerating discs. These subpopu-
lations showed significant expression of genes involved in matrix regulation, response to
stress and inflammation, cell cycle and metal binding. Similar cell subpopulations were
identified by scRNA-seq analysis in human NP cells [48,49,54,81] and in OA [55,88].

To quantitatively assign cellular identity in each cluster, we performed QuSAGE by
correlating cluster transcriptome to GO and Reactome pathway databases. Cell clusters 4
and 7–9 were highly correlated with matrix regulation related pathways, while cell clusters
0–2, 5 and 11 showed negative regulation of the same pathways. The observed upregulation
of cell cycle pathways in clusters 6 and 10–13 suggest that these populations may play
a pivotal role in IVD cell senescence and apoptosis. These findings were in accordance
with previous studies reporting a profound change in metabolic processes in disc cells
linked to IVD degeneration [89,90]. Although no scRNA-seq and cell cluster annotation had
previously been performed in iAF cells from degenerating and non-degenerating IVD tissue,
our results are generally in agreement with previous studies of NP cells [48,49,54–56].

3.2. Differences between NP and iAF

Significantly, DEGs were found in NP and iAF cells in most clusters (0–11). We discov-
ered potential biomarkers showing higher expression in NP cells such as C2orf40, MGP,
MSMP, CHI3L1, LGALS1, ID1, ID3 and TMED. C2orf40 (also called esophageal cancer-
related gene 4 (ECRG4)) encodes a secreted protein with a suggested role as a marker of
differentiated articular chondrocytes and in cartilage destruction [91]. MGP is linked to ab-
normal calcium deposition in cartilage, HILPDA stimulates the expression of cytokines, and
MSMP is a chemoattractant protein that may influence inflammation [58,60,61,92]. Further-
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more, expression of several mitochondrial, oxidative stress, cell matrix and inflammation
related genes such as MT-ND2, MT-ND3, MT-ND4, MT-CO1, MT-CO2, MT-CO3 MT-CYB,
SOD2, BNIP3, HIF-1α, PGK1, COL6A2, COL2A1, COL9A2, COL9A3, ACTG1, SPARC, OGN,
SCRG1, LECT1, CTGF, PPIB, CP, MMP3, MT1G, MT1X, MT1E, MIF and LCN2 showed
significantly lower NP-specific expression in the same cell clusters (0–11). HIF-1α and CTGF
expression has previously been suggested to play a determinant role in NP cell phenotype
and in the regulation of proteoglycan production [93–95]. Whereas mitochondrial genes
(MT-ND2 and MT-CYB as an example) are known for their roles in suppressing reactive
oxygen species and reducing cell susceptibility to oxidative stress [73,74,96]. We observed
higher gene expression in iAF cells of genes associated with senescence, oxidative stress and
extracellular matrix regulation such as MT1F, PLA2GA, EPYC, PRELP, C10orf10, FGFBP2
and CHI3L1. Metallothionin (MT1F), a gene that encodes a cytosolic protein product in-
volved in the management of oxidative stress in articular cartilage, was reported to be
highly expressed in the osteoarthritic cartilage and in cartilage from patients with necrosis
of the femoral head [97,98]. PRELP and CHI3L1 regulate synthesis and degradation of the
ECM, and they promote chondrocyte survival and proliferation [99–101]. The identified
genes presented in the complete list (Tables S9–S11) may serve as potential specific markers
for iAF and NP phenotypes.

3.3. Differences with Degeneration

The spatial distribution of the identified cell subpopulations in the NP and iAF cells
using pseudotime analysis was in line with their identified functions and respective de-
generation states. In fact, clusters responsible for cartilage development and regeneration,
connective tissue growth and regulation of chondrogenesis, cellular calcium and bone
development were mainly populating the start and the root of the trajectory, which is in
accordance with a non-degenerating tissue-cell phenotype. However, cell subpopulations
expressing genes related to stress response and inflammation, organization of the cytoskele-
ton and cell cycle regulation were distributed at the end of the trajectory corroborating with
the phenotype of cells in degenerating tissues.

Changes in gene expression related to IVD degeneration were observed in both cell
types in IVDs of the same individual. An interesting finding was the variable expression of
the same gene within clusters of NP and iAF cells in comparison to degeneration. Many
genes displayed a similar expression pattern shared between NP and iAF cells. As an
example, vimentin, UPP1, ADIRF, FRZB and MT2A exhibit a similar expression in the cell
types, while SOD2, C2ORF40, SLPI, CTGF, SYF2 and MSMP expression showed an opposite
distribution pattern in the cell types (Table S24). A higher expression of genes involved in
extracellular matrix organisation and collagen catabolism such as uridine phosphorylase
protein 1 (UPP1) and human articular chondrocytes differentiation (S100A2) was observed,
while genes including SPTSSB, SLPI and CAPS, playing roles in inflammatory responses
and preventing tissue damage, had a lower expression [67,68,102]. UPP1 expression was
reported to be elevated in synovial fibroblasts in rheumatoid arthritis when compared with
cells from individuals not suffering from rheumatoid arthritis specifically in hypoxia. In
addition, the protein UPP1 altered vimentin distribution in fibroblasts from Alzheimer’s
patients [103,104]. SPTSSB (serine palmitoyl transferase small subunit-b), which increased
serine palmitoyltransferase isoenzymes affinity, was also associated with neurodegener-
ation [105]. Among the candidate genes in disc cells, CD44 and Fibronectin1 (FN1) were
found to be highly expressed in NP and iAF cells of degenerating IVDs with a higher
expression in NP compared with iAF. The membrane receptors for hyaluronan CD44 play
important roles in cartilage homeostasis [106,107]. In fact, increasing CD44 expression has
previously been correlated with matrix synthesis in NP cells of degenerating IVDs [108].
FN1 is a glycoprotein present at the cell surface and in the extracellular matrix that increases
with disc degeneration [109]. The expected high expression of CD44 and FN1 was observed
in most of the clusters (9–14) in both cell types of degenerating IVDs. The present study
uncovered several different pathophysiological aspects of iAF and NP degeneration at
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the molecular level, enhancing the current knowledge of the molecular mechanisms of
disc degeneration.

3.4. Molecular Functions and Biological Processes

GO term analysis discovered differences in biological processes and molecular func-
tions between NP and iAF cells. We found a higher activation of biological processes such
as actin cytoskeleton organization, cell death in response to oxidative stress, collagen fibril
organization, fibroblasts proliferation and interleukin 8 production in NPnD compared to
iAFnD. Differences in molecular functions between iAFnD and NPnD related to cytokine
activity and cytokine receptor binding were observed in five clusters. One cluster showed
a higher activation of collagen binding, ECM binding and ECM structural constituent
molecular functions in NPnD.

We focused the analysis on biological process such as inflammatory response, cell
response to oxidative stress, ECM organization and cell-cycle regulation to determine
differences linked to degeneration. We observed differences in matrix and cell-cycle regu-
lation mostly in clusters 10 and 4. Processes involved in innate immune response, actin
cytoskeleton organization, apoptotic cell clearance and cell-cycle arrest were found to be
higher in most NPD clusters as compared with iAFD. Our results were in accordance
with the previous literature [110–112]. However, activation of cartilage development,
chondrocyte differentiation and collagen fibril organization pathways were cell-type and
clusters-specific. As an example, a cartilage development pathway was upregulated in
8/14 of iAFD clusters, while only cluster 2 showed higher activation of the same pathway
in NPD when compared to the respective nD tissue.

GO term results comparing the differences in molecular functions between iAFnD
and NPnD to iAFD and NPD, respectively, identified antioxidant activity, collagen binding,
cytokine activity, ECM binding, ECM structural constituent, metallopeptidases activity
and metal ion binding as the common pathways upregulated with degeneration in both
cell types. Collagen binding, ECM binding and structural ECM functions were previ-
ously reported following analysis of candidate marker genes of chondrocytes in human
osteoarthritis reporting an enrichment of the molecular function of collagen binding. It has
also previously been suggested that the integrin-binding sialoprotein (IBSP) interacts with
collagen and appears to modulate cell-matrix interactions [113,114].

Finally, KEGG analyses confirmed the GO term results. In fact, p53 and toll-like
receptor signalling pathways showed higher activation in NPnD compared with iAFnD.
When NPD was compared to iAFD, more pathways (cell cycle, calcium and chemokine
signalling, ECM receptor interaction and actin cytoskeleton regulation) were activated and a
higher number of clusters highlighted these cell-type differences. KEGG analysis evaluating
the effect of degeneration in each cell type revealed common enriched pathways between
NP and iAF cells. We observed a higher activation of the cell-type specific signalling
pathways (p53 and toll-like receptor) involving a majority of NPD and iAFD cell clusters.
We also report, in both cell types, a higher activation of apoptosis, cytokine–cytokine
receptor interaction, ECM receptor interaction and wnt signalling pathways that can be
linked only to degeneration. Recently, enrichment of the cytokine activity pathways was
identified by scRNA-seq in human NP cells [54]. Altogether, the results of GO and KEGG
analysis suggest similar processes of disc degeneration in iAF and NP cells. However, some
differences were observed between the two cell types, highlighting the heterogeneity and
the function specificity of IVD cells.

3.5. RT-qPCR

Currently, RT-qPCR is considered the gold standard for validating and confirming the
presence of transcripts in bulk RNA samples [115–118]. The high number of discovered
DEGs and the high expression variability observed between cell types, cell clusters and
degeneration state limit the number of genes that can be validated by RT-qPCR. We selected
33 genes from scRNA-seq to evaluate their potential as biomarkers in bulk RNA sequencing
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in biological replicates. The first selection criterion was biomarkers in human IVD that had
not been discussed in this context before. In addition, genes were selected according to the
number of clusters they were expressed in. This was done to determine if the difference or
opposite expression within clusters would translate in bulk RT-qPCR. Within the selected
genes, mRNA expression levels of genes between NP and iAF cells in non-degenerating
and degenerating IVDs revealed potential biomarkers such as SYF2(p29), MT1F and TAF1D.
RT-qPCR could confirm the degenerative biomarkers detected by scRNA-seq in iAF (SOD2,
MGST1, ADIRF and VIM) and NP cells (S100A1, VIM, S100A2, MT2A and TAF1D). However,
RT-qPCR analysis of UPP1, PRG4, MT1G, EPYC, CHI3L2, PLA2G2A, FRZB, CAPS, MT-
ND2, MT-CYB, CTGF, FGFBP2, MT1F, HMGA1, MSMP, TNRSF11B, SPTSSB, SYF2 (p29),
CLEC3A, COL2A1, S100B, SLPI, IGFFBP3, FBXO2 and C2orf40 failed to reproduce scRNA-
seq findings. Surprisingly, no correlation was observed between the genes that could
not be confirmed and the number of clusters they were expressed in. The degenerative
marker vimentin was validated for both cell types. Observed alterations in the expression
of extracellular matrix and inflammatory genes are consistent with their important role in
the pathogenesis of IVD degeneration [119,120]. Of interest, 30% (10/33) of the selected
genes discovered by scRNA-seq analysis showed a significant mRNA expression difference
and were validated by bulk RT-qPCR. DEGs that failed to translate in mRNA expression
were either expressed by few cells or may be specific to the individual included in our
scRNA-seq analysis. RT-qPCR samples were also expanded whereas scRNA samples came
straight from digestion, presenting a technical limitation that could explain some of the
observed difference between the methods. Moreover, cell pooling-based transcription
analysis such as RT-qPCR might mask an entire population as positive even if few cells
actively transcribe a gene within a population of otherwise negative cells. Thus, identified
biomarkers, validated by qPCR, need further confirmation at the protein level.

3.6. Immunohistology and Western Blot

Despite the limitations of GO term and RT-qPCR analysis, proteomic analysis still
validates transcriptional results, and it may provide novel targets that aid in understanding
the pathophysiology of IVD degeneration. Quantitative immunofluorescence and Western
blotting were performed for selected proteins including SOD2, vimentin, p29 (SYF2) and
MGST to validate if they are expressed with the same pattern at the protein level. ECM
metabolism is associated with the redox state of the IVD [121]. SOD2 is a mitochondrial
protein that binds to the superoxide by-products of oxidative phosphorylation, convert-
ing them to hydrogen peroxide and then to water and oxygen [122]. High expression of
SOD2 has been suggested to reduce oxidative stress and attenuated inflammation [123]
and could potentially have a therapeutic effect in IVD degeneration [124]. In accordance
with scRNA-seq and RT-qPCR, immunohistochemistry and Western Blot results confirmed
a higher SOD2 expression in degenerating NP and iAF cells. This finding is in accor-
dance with previous studies [125–127] where increased GAG and COL2 expression and
reduced inflammation and oxidative stress were found in mouse and rat models of IVD
degeneration [124,128,129].

Vimentin, a type III intermediate filament protein, is one of the main compounds of
the cytoskeleton. It is both a player and a target in tissue damage and repair [130]. Highly
expressed in fibroblasts [131], vimentin plays a fundamental role in cell mechanics [72] and
in a range of other physiological functions [132]. Here, a lower level of vimentin expression
was found in both cell types of degenerating IVDs, and the results were in accordance with
the transcriptomic and proteomic level [133]. Similar results were reported previously with
few vimentin-positive NP and iAF cells in human degenerate and aged disc tissue and a
stronger immunopositivity was observed in regenerative clones [71].

Human p29 protein, also known as SYF2, is associated with chromatin and is involved
in DNA damage response, cell-cycle arrest, pre-mRNA splicing [134–137] and cell senes-
cence [138]. In our study, immunohistochemistry and Western Blot results confirmed the
specific increase in NP cells from degenerating IVDs. Although both cell types exhibit a
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higher expression linked to degeneration in scRNA-seq, RT-qPCR and Western Blot results
for p29 could only be confirmed for NP cells. This could be explained by sc-RNA-seq
results at the cluster level where p29 expression was lower in one cluster (cluster 8) for NP
cells from degenerating tissue, while it was lower in three clusters (4, 5 and 8) for iAF cells.
To our knowledge no previous studies linked p29 expression specifically to human NP cells
in degenerating IVDs.

MGST1 (Microsomal Glutathione S-Transferase 1) is an enzyme with a wide substrate
specificity that protects the endoplasmic reticulum and outer mitochondrial membrane from
oxidative stress. ScRNA-seq showed an opposite expression of MGST1 in the identified
clusters with no significant UMAP enrichment in NP or iAF cells. However, we observed a
significant higher protein expression in cells from degenerating discs by Western Blot and
immunohistochemistry. This could be explained by the higher number of clusters (12/14)
showing higher expression at the single cell level. MGST-1 has previously been identified
as a hub gene in the pathological process of osteoarthritis [139], and the mRNA was shown
to be highly expressed in human iAF cells from degenerating IVDs [140].

In summary, we have shown that scRNA-seq provides information of IVD degen-
eration, that is sometimes lost in bulk analysis. Interestingly, we could not identify any
specific cell clusters found only in cells from the NP or iAF region of an adult human disc.
Our findings support the heterogeneity of disc cells with specific changes linked to disc
degeneration. A better understanding of molecular differences between the cell clusters
could reveal novel pathways, relevant processes and downstream molecules critical for
health and disease of the human IVD.

4. Materials and Methods
4.1. Cell Isolation and Culture

Briefly, human lumbar IVDs were retrieved from spines obtained with familial consent
(IRB#s: A04-M53-08B and Tissue Biobank 2019-4896) through the Transplant Quebec Organ
Donation Program. Discs dissected from the spinal column were graded according to
Thompson grading system [80] and used for tissue and cell isolation. NP and iAF cells
were isolated separately from degenerating and non-degenerating discs excluding outer AF
as described previously [50,141]. Supplemental Table S26 provides an overview of donor
demographics and a detailed description of IVDs included in each assay.

4.2. Single-Cell RNA-Sequencing

We collected 500,000 NP or iAF cells from degenerating or non-degenerating discs by
centrifugation, and immediately applied sc-RNA-seq analysis (Supplemental Figure S1A).
Unbiased transcriptome-wide scRNA-seq analysis and computational analysis were per-
formed, and raw sequencing data for each sample was converted to matrices of expression
counts using the Cell Ranger software 10X Chromium Single Cell 3 provided by 10X
Genomics. Briefly, raw BCL files from the Illumina HiSeq4000 were demultiplexed into
paired-end, gzip-compressed FASTQ files using Cell Ranger’s mkfastq. Using Cell Ranger’s
count, reads were aligned to the GRCh38 human reference genome, and transcript counts
were quantified for each annotated gene within every cell. The resulting UMI count matri-
ces (genes × cells) were then provided as input to Seurat suite (version 3.2.3) [51,52]. To
filter out low-quality cells, we defined a window of a minimum of 500 and a maximum
of 5000 detected genes per cell. Cells with more than 5% of the transcript counts derived
from mitochondrial-encoded genes were further removed. The iAF and NP datasets were
integrated using Seurat’s alignment procedure. Briefly, canonical correlation analysis
(CCA) was performed to identify shared sources of variation to produce anchors across
the datasets, following SCTransform normalization. Clustering and visualization of the
integrated dataset were performed using Uniform Manifold Approximation and Projection
(UMAP), an unsupervised nonlinear dimensionality reduction technique, based on the first
20 principal components with a resolution of 0.3 (FindClusters and RunUMAP functions
in Seurat).
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4.3. Cell-Cycle Analysis

A cell-cycle gene set with G1/S and G2/M genes was used in the cell-cycle anal-
ysis [142,143]. We defined the approximate cell-cycle status according to the average
expression levels of these two gene types. If the expression of both G1/S and G2/M genes
is less than 1.5, the corresponding cell will be classified as the quiescent cell; otherwise,
it is classified as the proliferative cell [144]. For proliferative cells, if the expression of
G1/S genes is less than that of G2/M genes, the corresponding cell is in the G2/M state;
otherwise, it is in the G1/S state. For cells in the G1/S state, if the expression of G2/M
genes is more than 1.5, the corresponding cell is in the S state; otherwise, it is in the G1 state
(Supplemental Figure S1B–D).

4.4. Identification of Differentially Expressed Genes among Clusters

Differentially expressed genes (DEGs) were identified with the Seurat R package [51].
Differential expression analysis between cells was performed using FindAllMarkers. Differ-
entially expressed genes were identified using the cut-off of: |log fold-change| > 0.25 and
Bonferroni adjusted p-value < 0.05. Cluster-specific marker genes were identified using
similar cut-off (FindAllMarkers function; up-regulated genes only). Pearson correlation
coefficients between iAF and NP were calculated using the log fold-change of genes that
are differentially expressed in either cell type.

4.5. Gene Ontology (GO) Functional Enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) Analysis of DEGs

In order to identify disturbed biological functions in IDD and to understand the impor-
tance of genes, GO classification was performed, which included the following categories:
BP (biological process) and MF (molecular functions). Gene ontology (GO) provides a com-
prehensive set of functional annotation tools for the investigation of the biological context
of large lists of genes. GO functional enrichment analysis was conducted for identified
DEGs using Enrichr [145] with default parameters. KEGG pathway enrichment analysis
identified significantly enriched metabolic pathways or signal transduction pathways in
differentially expressed genes. For GO and KEGG clusters analysis, the distribution of
expression of each cluster was demonstrated by using a heatmap.

4.6. RT-qPCR

Total RNA, from NP and iAF cells from non-degenerating and degenerating IVDs
of five additional individuals was isolated, and reverse transcribed as previously de-
scribed [50,141]. Target genes were selected and analyzed (Tables S24 and S25). Custom
TaqMan Array 96-Well Fast Plates (Applied Biosystems, Foster City, CA, USA) were de-
signed to analyze the selected genes using the primers described in Table S23. The expres-
sion of mRNAs was determined using TaqMan Master Mix (2×), and qPCR data analysed
from cDNA arrays by the 2−DDCT method [146] was used to validate candidate genes
identified through scRNA-Seq and the validation by protein analysis.

4.7. Immunohistochemistry

Pellet cultures were cryopreserved in OTC and 5 µm sections were cut for immunos-
taining. Sections were fixed in 4% buffered paraformaldehyde and blocked at room tem-
perature for 1 h with 1% goat or donkey serum. After washing with PBS, sections were
incubated with rabbit-anti SOD2 (ab68155), rabbit-anti vimentin (ab92547), rabbit-anti
MGST1 (ab131059) and mouse-anti SYF2 (ab236417) antibodies purchased from ©Abcam
plc. (Biomedical Campus, Discovery Drive, Trumpington, Cambridge, CB2 0AX, UK). Sec-
tions were then washed and incubated with the appropriate secondary antibodies. Using
confocal microscopy, IHC staining was detected, and the stained sections were analyzed
for fluorescence intensity blindly.
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4.8. Western Blot

Protein lysate of pellet cultures was mixed with lammelli buffer, then heated for 5 min
at 95 ◦C, cooled down and vortexed before loading to gel (4–20% Criterion TGX Precast
Midi Protein Gel, Bio-Rad Laboratories, Hercules, CA, USA). We loaded 15µg of protein
per well. Gels were run in 1x Tris/Glycine/SDS running buffer for 1h at 80V and protein
transfer for 2h at 0.45A using a transfer system (Bio-Rad Laboratories, USA). Following the
transfer, the nitro cellulose membrane was rinsed with Tris Buffered Saline with Tween 20
(TBST) (0.05% Tween) and blocked with TBST (0.5% Tween 20) + 5% dry milk (or BSA) in
for 60 min. The membranes were incubated with primary antibodies towards described
above (SOD2, vimentin, MGST1 and SYF2). HRP-conjugated secondary antibodies were
used to detect the proteins with Clarity Western ECL Substrate 1:1 (Bio-Rad Laboratories,
USA), and chemiluminescence signal was measured using Image Quant LAS 4000 CCD
imager and software (GE Healthcare, Life Sciences, Chicago, IL, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23073993/s1.
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