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Introduction

The diabetes pandemic and cardiovascular 
disease
Diabetes mellitus (DM) is a major global health 
concern. Recent estimates suggest that there are 
currently 451 million people with diabetes world-
wide and this figure is projected to increase to 
693 million by 2045.1 Importantly, estimates sug-
gest that almost half (49.7%) of people living with 
diabetes remain undiagnosed.1

The vast majority (90%) of people with diabetes 
have type 2 diabetes (T2D), which is linked to 
increased sedentary behaviour and obesity and is 
largely preventable. Whereas T2D was once rare 
in young people, increasingly we are seeing the 

condition diagnosed in children, adolescents and 
adults under the age of 30 years.2,3 Globally, there 
are now more obese than underweight people4 
and this dramatic rise in obesity and sedentary 
lifestyles, particularly in younger age groups, has 
resulted in up to a 10-fold increase in the preva-
lence of T2D in younger adults.5

Diabetes mellitus and heart failure. The most del-
eterious consequence of developing T2D is a sub-
stantially elevated risk of cardiovascular disease 
(CVD). The risk of cardiovascular complications 
is two to two-and-a-half times greater in people 
with T2D compared with the nondiabetic popula-
tion. In a meta-analysis combing data from 
4,549,481 people with T2D, almost one third 
(32.7%) suffered from CVD and half of all deaths 
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were attributable to CVD.6 Atherosclerotic dis-
eases (angina, myocardial infarction and stroke) 
have typically been regarded as the predominant 
manifestations of CVD in T2D. However, recent 
data from the United Kingdom National Diabe-
tes Audit 2015–2016, which includes data on over 
2.7 million patients with diabetes, showed that 
heart failure (HF) is the commonest cardiovascu-
lar complication of T2D and a major cause of pre-
mature mortality.7 While the risk of death, 
myocardial infarction and stroke can be mitigated 
with strict risk-factor control in T2D, the excess 
risk of HF persists, in spite of good cardiovascular 
risk-factor management.8

Patients with DM have up to a 74% increased 
risk of developing HF, and diabetic patients with 
HF are four times more likely to die than those 
without HF.9 Importantly, unrecognized HF is 
highly prevalent in T2D, with over one quarter 
(27.7%) of over 60s having previously undiag-
nosed HF in one report.10 There is a high preva-
lence of diabetes in patients with both common 
forms of HF: impaired systolic left ventricular 
(LV) function and HF with preserved ejection 
fraction. Conversely, a high proportion (almost 
one third) of patients with DM have undiagnosed 
LV dysfunction.10

Diabetic cardiomyopathy
Large, population-based studies have shown that 
the occurrence of HF in diabetes cannot be 
accounted for solely by the increased atheroscle-
rotic risk11–13 or the prevalence of other traditional 
risk factors, such as age, sex, hypertension, coro-
nary artery disease (CAD) and dyslipidaemia that 
are inherent in diabetic subjects. Even after 
adjustment for these factors, diabetes still confers 
a two- to five-fold added risk for HF develop-
ment.11–13 This has led to the identification of dia-
betes as an independent risk factor for HF and 
the recognition of the distinct clinical entity of 
‘diabetic cardiomyopathy’,14 a term originally 
coined by Lundbaek in 1954.15

Diabetic cardiomyopathy is defined as myocardial 
disease in patients with diabetes, not attributable 
to hypertension, CAD or other cardiac disease.14 
Four stages of diabetic cardiomyopathy are 
described, and there is overlap with the HF  
classifications of both the American College of 
Cardiology/American Heart Association Stage and 
New York Heart Association Class (Table 1).14 

Patients in stage 2 have annual mortality rates up 
to 20%16 and are twice as likely to be hospitalized 
for HF than nondiabetics with HF with preserved 
ejection fraction.17 Over the past 2 decades, the 
rapid evolution of advanced non-invasive cardiac 
imaging techniques has enabled detailed evalua-
tion of heart structure and function in vivo. 
Application of these techniques to the study of dia-
betic cardiomyopathy have provided key insights 
to the relationship between T2D and HF.

Clinical factors associated with HF development 
in T2D
Specific to diabetes populations, increased age, 
increasing glycosylated haemoglobin (HbA1c), 
increased body mass index, hypertension, CAD, 
longer duration of diabetes and the presence of 
microvascular complications are associated with 
HF development.18 The UK National Diabetes 
Audit 2015–2016 showed that the association of 
HF with HbA1c level was relatively weak but con-
siderably stronger for hypertension.19 Although 
females with T2D have a higher risk for cardiovas-
cular complications than males,20 there are scarce 
data in relation to HF.18

Morphological changes in the diabetic heart
The occurrence of structural changes of the dia-
betic myocardium were first observed by Rubler 
et  al. in 1972. In four postmortem specimens 
from diabetic patients free from hypertension, 
CAD or valvular heart disease, Rubler and col-
leagues described findings of left ventricular (LV) 
hypertrophy and diffuse myocardial fibrosis.21 
There is now an abundance of data to support 
Rubler and coworkers’ initial findings and dem-
onstrate that diabetes is associated with several 
alterations in LV geometry.

Alterations in left-ventricular mass and vol-
umes. Increased LV mass is independently asso-
ciated with diabetes in many (but not all) 
echocardiographic22–24 and cardiovascular mag-
netic resonance imaging (CMR) studies.25–27 A 
1% rise in HbA1c level was associated with a 3.0 
g [95% confidence interval (CI) 1.5–4.6 g] 
increase in LV mass in one report.23 While these 
changes in LV mass are modest, increased LV 
mass is a recognized predictor of cardiovascular 
morbidity and mortality,28,29 and is likely to be a 
key contributor to HF development in T2D. 
When the increased LV mass is indexed for body 
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surface area, however, the differences between 
diabetics and controls become inconsistent. These 
inconsistencies arise because adjustment of LV 
mass for body surface area inherently ‘permits’ 
obese individuals to have higher LV mass;30 this is 
why indexing of LV mass/height is advocated.31,32

Other markers of LV remodelling are also apparent 
in diabetes; LV mass/volume,26,33 relative wall 
thickness,23,34–36 and septal thickness36,37 are all 
increased in diabetes. LV mass may be increased 
as a consequence of increased ventricular wall 
thickness or from chamber dilatation, that is, the 
spectrum of LV hypertrophy ranges from concen-
tric to eccentric hypertrophy. While there is varia-
tion in both the degree and pattern of hypertrophy 
observed in patients with diabetes, concentric LV 
hypertrophy represents the main structural charac-
teristic of diabetic cardiomyopathy. Concentric LV 
remodelling is associated with an increased risk of 
developing HF and other adverse cardiac events 

and appears to be the predominant remodelling 
pattern in diabetes.38,39 However, LV geometry is 
also altered by sex,40 ethnicity,41 obesity42 and 
hypertension,43 common confounders in diabetes, 
and controlling for these confounders may in fact 
prevent the development of LV remodelling.44 The 
lack of standardization in reported markers of LV 
remodelling makes comparisons between studies 
difficult45 and limits knowledge of LV remodelling 
patterns in diabetes.

Functional impairments in the diabetic heart
Cardiac dysfunction in diabetes is thought to lie 
on a continuum (Table 1), ranging from asymp-
tomatic diastolic dysfunction through subclinical 
systolic dysfunction and then overt HF with 
reduced ejection fraction.14

Diastolic dysfunction. It is often stated that dia-
stolic dysfunction is the earliest functional change 

Table 1. Classification of diabetic cardiomyopathy.

Diabetic 
cardiomyopathy stage

Stage 1 Stage 2 Stage 3 Stage 4

Diastolic HF with 
normal ejection 
fraction

Symptomatic HF 
with combined 
systolic and 
diastolic 
dysfunction

Symptomatic 
HF to which 
hypertension, 
microvascular 
disease or viral 
disease have 
contributed
No coronary 
artery disease

Symptomatic HF, 
with contribution 
from multiple 
confounders 
including 
coronary artery 
disease

NYHA functional 
class

Class 1 Class 2 Class 3 Class 4

 Asymptomatic, 
no limitation of 
physical activity

Slight limitation 
during ordinary 
physical activity, 
with fatigue, 
palpitation, 
dyspnoea or angina

Marked 
limitation, with 
symptoms 
occurring during 
minimal physical 
activity

Symptoms 
present at rest
Unable to carry 
out any physical 
activity without 
discomfort

ACC/AHA HF stage Stage A Stage B Stage C Stage D

 At risk of HF, but 
no structural 
heart disease or 
symptoms

Asymptomatic 
structural heart 
disease

Symptomatic HF 
with structural 
heart disease

Refractory 
HF requiring 
specialist 
interventions

Classification of diabetic cardiomyopathy, using the New York Heart Association (NYHA) Functional Class and American 
College of Cardiology/American Heart Association (ACC/AHA) HF stages. There is considerable overlap across the three 
classification schemes.
HF, heart failure.
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occurring in diabetic cardiomyopathy. Observa-
tional studies have found an increased frequency 
of diastolic dysfunction in T2D by echo and 
CMR. The prevalence and severity of diastolic 
dysfunction was shown to be directly proportional 
to HbA1c level in one study of 1810 people with 
T2D.46 Despite controlling metabolic risk factors 
in T2D [e.g. elevated HbA1c, hypertension, 
raised body mass index (BMI), dyslipidaemia, 
albuminuria], diastolic dysfunction persists in the 
absence of LV remodelling or systolic impair-
ment.44 There are, however, inconsistencies in the 
prevalence of diastolic dysfunction found in 
asymptomatic subjects with T2D. Reported prev-
alence rates vary from 15% to 78%47–50 and differ 
according to the technique used for diagnosis.47

Systolic dysfunction. Despite the association of 
T2D with HF, few studies have shown that T2D 
causes a reduction in global LV ejection fraction, 
which remains the most utilized measure of LV 
systolic performance. Using myocardial strain 
and strain-rate measurement, subclinical impair-
ments in systolic function with normal ejection 
fraction are now frequently reported in T2D. Tis-
sue Doppler imaging,35,51,52 speckle tracking 
echocardiography23,53 and CMR33 data confirm 
systolic LV global longitudinal strain is lower in 
T2D than in nondiabetics. These impairments in 
global longitudinal strain worsen with time54 and 
vary across the glycaemic spectrum (e.g. one 
study found global longitudinal strain in controls 
was −18.5 ± 2.3%; in subjects with prediabetes it 
was −18.1 ± 2.5% versus −17.8 ± 2.4% in those 
with T2D).23 These subclinical abnormalities in 
contractility are widely considered a precursor to 
the onset of clinical HF in diabetes. Indeed, lon-
gitudinal studies have found global longitudinal 
strain to be an independent predictor of cardio-
vascular events and may provide incremental 
prognostic value in asymptomatic people with 
T2D.55,56 However, in the first of these studies, 
the sample size was modest and there was signifi-
cant risk of overfitting of the multivariable regres-
sion model,55 and in the second study, only 
echocardiographic parameters as predictors of 
outcomes were explored with no mention of clini-
cal predictors.56 Importantly, the majority of  
cardiovascular events in these studies were ath-
erosclerotic (myocardial infarction and stroke) 
and not HF-related events and it remains unclear 
why reductions in global longitudinal strain would 
predict atherothrombotic events independent of 
other clinical risk factors.

Combined systolic and diastolic dysfunction. The 
vast majority of studies that have examined both 
have shown that impaired systolic strain is asso-
ciated with diastolic dysfunction.23,36,50,52,53,57–60 
A small number have, however, reported reduced 
systolic strain without diastolic dysfunction.33,61,62 
This could indicate that diastolic dysfunction is 
not the earliest functional change in the diabetic 
heart and is in fact preceded by impaired sys-
tolic strain. In most of these studies, diastolic 
function was determined by tissue Doppler 
velocities and not strain analyses, likely reduc-
ing the sensitivity of identifying diastolic impair-
ments.61,62 Furthermore, it is acknowledged that 
different guidelines for grading diastolic dys-
function by echocardiography yield inconsistent 
results and may only be accurate for identifying 
the most severe cases.63 Assessment of diastolic 
strain rate may be a more sensitive measure of 
early diastolic impairment.26 Only one CMR 
study33 reported reduced LV systolic global lon-
gitudinal strain (controls −11.4 ± 2.8 versus 
T2D −9.6 ± 2.9, p = 0.049) and preserved dia-
stolic strain rate (controls 0.65 ± 0.13 versus 
0.62 ± 0.26 s−1, p = 0.749), but these values are 
much lower than those seen in the prevailing 
echo and CMR literature where they are typi-
cally ~20% and 1.5–2.0 s−1, respectively, in 
controls.

Biomarkers in diabetic cardiomyopathy. Several 
studies have investigated the role of natriuretic 
peptides in asymptomatic patients with T2D.64 
Serum N-terminal pro-B-type natriuretic pep-
tide levels are higher in asymptomatic T2D 
with isolated diastolic dysfunction compared 
with controls.65,66 At present B-type natriuretic 
peptide is often used in routine practice, how-
ever natriuretic peptide levels can be influenced 
by many other factors, several of which are 
more prevalent in diabetes, including obesity, 
increasing age, use of renin–angiotensin–aldos-
terone-system inhibitors and renal dysfunc-
tion.67 And diabetes itself is associated with 
elevated natriuretic peptide levels.67 Numerous 
other biomarkers are being evaluated in HF64 
and specifically, diabetic HF. In one study 
comparing biomarker profiles between diabetic 
and nondiabetic patients with HF with pre-
served ejection fraction, endothelin-1 (a potent 
vasoconstrictor), galectin-3 and carboxy-termi-
nal telopeptide of collagen type 1 (profibrotic 
biomarkers) were higher in patients with diabe-
tes.17 Of more interest, is a biomarker analysis 
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of the ADVANCE trial, which assessed the pre-
diction of new and worsening HF in a nested 
case-control analysis.68 This study demon-
strated that measurement of N-terminal pro-B-
type natriuretic peptide gave a similar predictive 
accuracy as clinical risk factors and was of addi-
tive value, although the effects were attenuated 
when patients with levels > 400 pg/ml (in the 
HF diagnostic range) were excluded. Markers 
of inflammation [interleukin 6, high-sensitivity 
C-reactive protein (IL-6, hsCRP)] and myocar-
dial damage (troponin) were not of added 
value.68 The identification of plasma biomark-
ers in HF is an area of intense research interest 
and may impact on clinical management in the 
future.64

Aetiological factors in the development of LV 
dysfunction
The mechanisms contributing to the develop-
ment of diabetic cardiomyopathy have been 
extensively explored in animal models.69 These 
include myocardial lipotoxicity and glucotoxicity, 
damage from glycated end products and reactive 
oxygen species, impaired calcium homeostasis, 
mitochondrial dysfunction, activation of the 
renin–angiotensin–aldosterone system, altered 
myocardial substrate utilization, and cardiac 
autonomic neuropathy (Figure 1).70

Several inverse correlations with diastolic dysfunc-
tion in T2D have been identified: HbA1c level,57 
age,48 aortic stiffness,26 duration of DM,26 micro-
vascular dysfunction71 and myocardial triglyceride 
content.72–74 Similarly, multiple associations with 
LV systolic strain are reported; these include 
BMI,75 waist circumference,75 HbA1c,76 blood 
pressure (BP),60 sex,34 presence of microalbumi-
nuria,34,77 LV relative wall thickness,34,77 CAD78 
and, again, myocardial triglyceride.33 Importantly, 
these findings were made on the basis of multi-
variate analyses, which have been limited by small 
sample sizes (seldom greater than 100 subjects) 
and incomplete datasets, with significant risk of 
overfitting the regression models.79

Myocardial energy metabolism
Impaired myocardial substrate utilization and 
altered energy metabolism have recently been 
described in T2D and are likely to be contribute 
to the development of cardiac impairment. The 
normal heart derives 70% of its energy from free-
fatty-acid metabolism and 30% from glucose 
metabolism.80 In T2D, there is a shift toward 
increased free-fatty-acid utilization by the myo-
cardium in T2D due to increased free-fatty-acid 
availability. This is less energy efficient with lower 
adenosine triphosphate (ATP) yield81 and leads 
to metabolic inefficiency in the diabetic heart.82

Figure 1. Local and systemic perturbations involved in the pathophysiology of diabetic cardiomyopathy.
RAAS, renin–angiotensin–aldosterone system; CAD, coronary artery disease; LV, left ventricle.
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Myocardial energetics can now be assessed non-
invasively by phosphorus magnetic resonance 
spectroscopy. This enables assessment of the 
myocardial creatine phosphate (PCr)/ATP ratio, 
which is a sensitive index of the energetic state of 
the myocardium.83 Decreased myocardial PCr/
ATP ratios have been demonstrated in T2D and 
suggest that myocardial energetic impairment is a 
key component in the pathophysiology of diabetic 
cardiomyopathy.84–86 Impairment in myocardial 
energetics has also been exacerbated by exercise86 
and may reflect metabolic inflexibility in the dia-
betic heart. Importantly, a decreased PCr/ATP 
ratio has been linked to contractile dysfunction 
and is a predictor of mortality, although this was 
in patients with dilated cardiomyopathy.87

Myocardial steatosis
Metabolic dysregulation is central to the patho-
genesis of DM. Insulin resistance results in 
decreased availability of glucose in the myocar-
dium.88 There is an increased supply of free fatty 
acids and a shift towards fatty-acid oxidation in 

the myocyte.89 The supply of fatty acids, how-
ever, exceeds the oxidative capacity of the heart 
and nonoxidative lipid metabolism ensues.90 
Products of nonoxidative lipid metabolism 
include ceramide and diacylglycerol, which are 
toxic to cardiomyocytes and can induce myocar-
dial dysfunction, apoptosis and fibrosis (Figure 
2).91 Excessive myocardial triglyceride accumula-
tion (steatosis) was first demonstrated in mouse 
models of DM92 and has emerged as a contribu-
tor to development of diabetic cardiomyopathy. 
Myocardial steatosis is mediated by microribonu-
cleic acid (microRNA) dysregulation (such as 
miR-451 and miR-494-3p) and was linked with 
LV dysfunction in recent animal models of T2D 
and obesity,93,94 supporting a central role for 
microRNAs in the pathogenesis of diabetic 
cardiomyopathy.

Magnetic resonance spectroscopy also allows the 
detection of myocardial steatosis in vivo, and sev-
eral studies have confirmed elevated myocardial 
triglyceride content in T2D (Table 2).33,72,74,95 
Steatosis has been significantly correlated with 

Figure 2. Myocyte energy metabolism and alterations that contribute to lipotoxicity and glucotoxicity.
CoA, coenzyme A; CD36, cluster of differentiation 36; FACS, ; FFAs, free fatty acids; CPT, carnitine palmitoyltransferase; 
FADH2, flavine adenine dinucleotide; GLUT 4, glucose transporter type 4; MPC, mitochondrial pyruvate carrier; NADH, 
nicotinamide adenine dinucleotide; TCA, tricarboxylic acid; ETC, electron-transport chain; ATP, adenosine triphosphate.
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diastolic strain rate on speckle tracking echocardi-
ography73 and on CMR,74 and was also an inde-
pendent predictor of systolic strain in a small 
study with 66 patients.33 However, all studies to 
date have involved small numbers. If confirmed 
in a larger sample size with appropriate adjust-
ment for confounders, it will likely play a central 
mechanistic role in the pathophysiology of dia-
betic heart disease.

Coronary microvascular dysfunction. Abnormali-
ties of vascular function are well described in T2D, 
including endothelial dysfunction. Impaired coro-
nary microvascular function has been demon-
strated in older,25,35,74 but not younger patients26 
with T2D. The mechanisms contributing to coro-
nary microvascular dysfunction include: endothe-
lial dysfunction, increased myocardial mass with 
reduced capillary density, myocardial fibrosis and 
reduced transmyocardial perfusion gradient due 
to increased LV diastolic pressure.97 Impaired 

myocardial performance index, a marker of overall 
systolic and diastolic function, has also shown 
association with microvascular dysfunction in 
T2D.98 However, evidence of this relationship 
between microvascular dysfunction and diastolic 
impairment in T2D is conflicting. CMR studies 
have failed to identify an association,26,74 whereas 
an echo study using tissue Doppler indices found 
significant associations.71 However, none of these 
studies angiographically excluded epicardial CAD. 
The potential link between coronary microvascu-
lar dysfunction and diastolic impairment in T2D 
is, therefore, unclear. Moreover, microvascular 
dysfunction may coexist with and potentiate the 
effects of epicardial CAD on cardiac dysfunction.

Myocardial fibrosis. Myocardial fibrosis is thought 
to be mediated by damage from advanced glyca-
tion end products99 and apoptosis caused by  
lipotoxicity.74 CMR techniques now allow the 
non-invasive detection of replacement myocardial 

Table 2. Summary of magnetic resonance spectroscopy studies evaluating myocardial triglyceride content in 
T2D.

Study Patients n Mean age 
(years)

M/F Mean BMI 
(kg/m2)

Key outcomes

McGavock96 Lean 
controls

15 35 ± 3 7/8 23 ± 2 Myocardial TG elevated in 
IGT and T2D versus controls 
(0.95 ± 0.60 versus 1.06 ± 
0.62 versus 0.46 ± 0.30 fat/
water, p < 0.05)

Obese 21 36 ± 12 10/11 32 ± 5

IGT 20 49 ± 9 5/15 31 ± 6

T2D 78 47 ± 10 37/41 34 ± 7

Rijzewijk 
et al.72

Controls 28 54 ± 1 28/0 26.9 ± 0.5 Myocardial TG increased in 
T2D versus controls (0.96 ± 
0.07% versus 0.65 ± 0.05%, 
p < 0.05)

T2D 38 57 ± 1 38/0 28.1 ± 0.6

Korosoglou 
et al.74 

Controls 16 62 ± 3 10/6 23.9 ± 2.5 Myocardial TG in T2D 0.86 
± 0.14
Association between TG and 
mean diastolic strain rate (r 
= −0.71, p < 0.001) and peak 
systolic strain rate (r = 0.41, 
p = 0.02)

T2D 42 62 ± 6 26/16 31.6 ± 4.8

Levelt 
et al.33

Controls 20 54 ± 10 9/11 28.6 ± 2.8 Elevated myocardial TG in 
T2D (1.13 ± 0.78 versus 0.64 
± 0.52, p = 0.017)
Negative correlation between 
TG and systolic strain (r = 
−0.40, p = 0.003)

T2D 46 55 ± 9 24/22 29.6 ± 5.7

BMI, body mass index; IGT, impaired glucose tolerance; TG, triglyceride; T2D, type 2 diabetes.
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fibrosis (late gadolinium enhancement) and an 
estimate of diffuse interstitial fibrosis using T1 
mapping and calculation of myocardial extracel-
lular volume.100 Patients with diabetes have 
shorter global contrast-enhanced myocardial T1 
times compared with controls, indicative of a 
higher burden of diffuse interstitial myocardial 
fibrosis.101 This is independently associated with 
myocardial systolic101 and diastolic function.99,101 
Subjects with T2D have a higher extracellular vol-
ume fraction than controls,102,103 although the 
differences found are small (1–2%),103 and there 
is a large degree of overlap when control subjects 
are well matched to those with diabetes.33 Ele-
vated extracellular volume fraction is associated 
with increased admissions for HF and mortality, 
but this was in patients already referred for a clini-
cal CMR with inevitable selection bias.103

Arterial stiffness. The aorta is a conduit for the 
delivery of blood to peripheral tissues. In addi-
tion, the elastic properties of the aorta act to 
dampen the sudden fluctuations in BP generated 
by blood ejected from the LV during each cardiac 
cycle. This transforms the pulsatile stroke volume 
into continuous blood flow through the periph-
eral arterial tree.104 This buffering capacity of the 
thoracic aorta is essential for maintaining normal 
LV structure and function. Aortic stiffening is an 
increase in the elastic resistance of the aorta to 
deformation and naturally occurs with ageing but 
is additionally accelerated by the traditional car-
diovascular risk factors.105,106 Increased aortic 
stiffness is a strong predictor of adverse cardiovas-
cular events in several cohorts,107–109 including 
T2D.110,111 Our group has previously shown a 
modest but significant correlation exists between 
mean aortic distensibility and peak early diastolic 
strain rate (r = 0.564, p = 0.023) in young adults 
with T2D.26 This suggests that increased aortic 
stiffness is an early change in diabetes, which con-
tributes to subclinical cardiac dysfunction in 
T2D, independent of age and BP.

Poorer blood-glucose control is associated with 
accelerated aortic stiffness, particularly in younger 
adults with T2D.112 Reducing HbA1c levels may 
attenuate the progression of aortic stiffness and 
some studies have shown that aortic stiffness is 
modifiable by diabetes treatment.113–116

Despite the recognition that aortic stiffening is a 
key determinant of LV dysfunction in several dis-
eases, the precise mechanisms linking aortic 

stiffness with adverse cardiovascular outcomes 
are unclear. The most prominent hypothesis for 
the pathophysiological basis linking aortic stiff-
ness with adverse cardiovascular events in T2D is 
the development of LV remodelling.117 Aortic 
stiffening disturbs the arterial–ventricular interac-
tion, augmenting ventricular afterload and sup-
plementing the development of LVH. This results 
in increased LV filling pressures and impairment 
in the passive flow of blood from the left atrium to 
the LV in early diastole. Aortic stiffness therefore 
likely mediates the development of diabetic car-
diomyopathy by stimulating LVH. We have 
recently confirmed this in a cross-sectional study 
of 80 young adults with T2D, where we have 
demonstrated that aortic stiffness is an independ-
ent predictor of concentric LV remodelling.118 
Given that aortic stiffening is potentially reversi-
ble with aggressive BP reduction,119 this may 
yield a potential therapeutic strategy for prevent-
ing or treating diabetic cardiomyopathy.

Pharmacological interventions to reverse 
cardiovascular dysfunction in T2D

Glycaemic control
The majority of previous, large, multicentre, 
randomized-controlled trials such as UKPDS,120 
ADVANCE,121 ACCORD122 and VADT123 did 
not demonstrate an improvement in macrovas-
cular outcomes with tight blood-glucose con-
trol. A meta-analysis of these four large trials, 
comprising over 27,000 patients assigned to 
more-intensive versus less-intensive blood-glu-
cose control showed only modest reduction in 
major adverse cardiovascular events [hazard 
ratio (HR) 0.91; 95% CI 0.84–0.99].124 This 
was primarily driven by a reduction in myocar-
dial infarction, with no overall benefit on all-
cause or cardiovascular death.124 Similarly, a 
meta-analysis of data from eight randomized tri-
als comprising 37,229 people with T2D revealed 
no observed benefit of intensive glycaemic con-
trol on HF-related outcomes.125 Even with 
intensive glucose control, underlying epigenetic 
alterations that promote oxidative stress, myo-
cardial inflammation and LV dysfunction per-
sisted in a mouse model of diabetes. This may 
be a key mechanism driving the persistence of 
cardiac dysfunction in the context of tight gly-
caemic control; and targeting epigenetic net-
works has been proposed as a novel strategy to 
ameliorate LV dysfunction in T2D.126
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Recently, new classes of glucose-lowering thera-
pies, such as glucagon-like peptide-1 (GLP-1) 
agonists,127 and inhibitors of sodium–glucose 
cotransporter 2 (SGLT2 inhibitors)128 have shown 
exciting results with improved glycaemic control, 
as well as reduced cardiovascular mortality in 
patients with T2D.129 However, these recent  
trials were designed to assess the safety and  
tolerability of these novel drugs, and therefore  
the mechanisms behind the observed cardiovas-
cular benefits are speculative. Nevertheless, the 
increased use of these agents has been advocated 
in recent guidelines of management of hypergly-
caemia in T2D.

GLP-1 agonists
GLP-1 agonists exert their effects by suppressing 
appetite, glucagon secretion and gastric empty-
ing, and by stimulating the release of insulin.130  
In the randomized-controlled LEADER trial, 
patients with T2D and high cardiovascular risk 
treated with liraglutide had lower rates of cardio-
vascular death compared with those having pla-
cebo.127 Similarly, in high-risk T2D patients, 
cardiovascular event rates (death, nonfatal myo-
cardial infarction and nonfatal stroke) were found 
to be significantly lower with semaglutide131 and 
albiglutide than for placebo.132 However, in the 
EXSCEL trial of the GLP-1, exenatide versus pla-
cebo, there was no overall cardiovascular risk 
benefit with the study drug, although this study 
included patients with or without a prior history 
of CVD133 (Table 3). In the PIONEER-6 study, 
the cardiovascular safety and efficacy of the first 
oral formulation of a GLP-1 agonist (semaglu-
tide) will be compared with placebo in over 3000 
high-risk patients with T2D.134 Although the 
complete results of this trial are yet to published, 
early data indicate a 51% relative risk reduction in 
cardiovascular death and a 49% relative risk 
reduction in all-cause mortality with semaglutide, 
but no difference in the risk of nonfatal myocar-
dial infarction or stroke compared with pla-
cebo.135 Treatment with semaglutide was also 
associated with a 13.8% reduction in weight in 
obese people in a phase II clinical trial.136 Notably, 
the beneficial effects of GLP-1 agonists appear to 
be on atherosclerotic CVD, rather than lowering 
the risk of HF development. Agents with costim-
ulatory effects on GLP-1 and glucose-dependent 
insulinotropic polypeptide receptors have recently 
emerged, which have demonstrated superior glu-
cose and weight-lowering properties than GLP-1 

analogues alone.137 The cardiovascular benefits of 
these drugs have yet to be demonstrated.

SGLT2 inhibitors
SGLT2 inhibitors have emerged as glucose-low-
ering therapies showing improved cardiovascular 
outcomes in T2D (Table 3). In the first of these, 
the EMPA-REG OUTCOME138 and CANVAS139 
studies, there was a relative risk reduction in car-
diovascular mortality and hospitalization for HF 
in patients with T2D and established, or at high 
risk of, CVD. More recently, in the largest of the 
SGLT2 inhibitor trials with the longest follow-up 
duration, the DECLARE-TIMI 58, a study of the 
SGLT2 inhibitor dapagliflozin versus placebo, 
reduced rates of hospitalization for HF were also 
observed in lower-risk subjects with T2D.140 
Furthermore, when participants of the EMPA-
REG OUTCOME were stratified according to 
risk of HF development at baseline, the beneficial 
effects of empagliflozin on reducing incident 
HF-related events were observed in patients at 
low, intermediate and high risk of HF.141 These 
latter studies suggest a potential role for SGLT2 
inhibitors in the prevention of HF development 
in low-risk patients with T2D.

SGLT2 inhibitors lower blood-glucose levels by 
promoting urinary glucose excretion. Secondary 
effects include weight loss, a modest diuretic 
effect and BP reduction.142 The precise mecha-
nisms linking SGLT2 inhibitors to lower risk of 
HF and favourable cardiovascular outcomes are 
unclear. The most popular hypothesis is that the 
increased fluid losses (driven by urinary glucose 
and sodium excretion) lead to a reduction in 
intravascular volume and systolic BP. This in 
turn reduces preload and afterload, leading to 
improvements in myocardial oxygen supply and 
vascular function.142 A mediation analysis of the 
EMPA-REG OUTCOME trial has indeed dem-
onstrated that changes in plasma volume are cen-
tral to the CV risk benefits observed with 
empagliflozin.143 Furthermore, in a randomized 
trial of empagliflozin versus placebo in patients 
with T2D and uncontrolled nocturnal hyperten-
sion, empagliflozin was associated with significant 
24 h ambulatory BP reductions compared with 
placebo (−10.0 versus −2.4 mmHg, respectively, 
over 12 weeks, p < 0.001).144 Others suggest that 
SGLT2 inhibitors, through a shift in myocardial 
metabolism towards ketones, have favourable 
effects on cardiac energetics.145 The results of 
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Table 3. Cardiovascular outcome trials of sodium–glucose cotransporter-2 inhibitors and glucagon-like peptide–receptor 
analogues.

Study Agent Sample 
size, n

Key 
inclusion 
criteria

Mean 
age, 
years

Median follow-
up duration, 
years

Key findings

Sodium–glucose-cotransporter-2 inhibitors

EMPA-REG 
OUTCOME138

Empagliflozin Total: 7020
Drug: 4687
Placebo: 
2333

T2D and 
CVD, HbA1c 
7–10%

63.2 3.1 14%  in primary outcome, 
38%  CV death, 13%  MI, 
24%  stroke, 35%  heart-
failure hospitalization

CANVAS139 Canagliflozin Total: 10,142
Drug: 5795
Placebo: 
4347

T2D and 
history of or 
high risk for 
CVD, HbA1c 
7–10.5%

63.3 2.4 14%  in primary outcome, 
13%  CV death, 15%  MI, 
10%  stroke, 33%  heart-
failure hospitalization

DECLARE-TIMI 
58140

Dapagliflozin Total: 17160
Drug: 8582
Placebo: 
8578

T2D with 
and without 
history of 
CVD, HbA1c

64.0 4.2 7%  in primary outcome, 
17%  CV death, 11%  
MI, 27%  heart-failure 
hospitalization

Glucagon-like peptide–receptor analogues

LEADER127 Liraglutide Total: 9340
Drug: 4668
Placebo: 
4672

T2D and 
CVD, HbA1c 
⩾ 7.0%

64.3 3.8 13%  in primary outcome, 
22%  CV death, 12%  MI, 
11%  stroke, 13%  heart-
failure hospitalization

SUSTAIN-6131 Semaglutide Total: 3297
Drug: 1648
Placebo: 
1649

T2D and 
CVD, HbA1c 
⩾7.0%

64.5 2.1 26%  in primary outcome, 
2%  CV death, 26%  MI, 
39%  stroke, 11%  heart-
failure hospitalization

EXSCEL133 Exenatide Total: 14752
Drug: 7356
Placebo: 
7396

T2D, 70% 
with CVD 
and 30% 
without, 
HbA1c 
6.5–10%

62.0 3.2 Non-inferior but not 
superior to placebo for 
primary outcome
No significant difference 
in rates of CV death, MI, 
stroke or heart-failure 
hospitalization between 
groups

HARMONY 
OUTCOMES132

Albiglutide Total: 9463
Drug: 4731
Placebo: 
4732

T2D and 
CVD, HbA1c 
>7%

64.1 1.5 22%  in primary outcome, 
7%  CV death, 25%  MI, 
14%  stroke

CV, cardiovascular; CVD, cardiovascular disease; HbA1c, glycosylated haemoglobin; MI, myocardial infarction; T2D, type 2 diabetes.

these studies, while promising, should be viewed 
with a degree of caution. HF risk reduction was 
not the primary endpoint of either study and was 
based on investigator-reported HF events rather 
than objective measures (such as echocardiogra-
phy or measurement of B-type natriuretic peptide 
levels). Nevertheless, several mechanistic studies 
are now underway to identify the specific cardio-
vascular effects of SGLT2 inhibitors. Whether 

the same cardiovascular benefits of SGLT2 
inhibitors are seen in earlier stages of diabetic car-
diomyopathy remains to be established.

Blood pressure reduction
Patients with diabetes are twice as likely to suffer from 
hypertension than nondiabetics.146 Coexistence 
of these two conditions confers a greater risk of 
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CVD, including CAD, LV hypertrophy, stroke 
and HF, compared with either diabetes or hyper-
tension in isolation.147 Despite the high preva-
lence of hypertension in diabetes, there are 
inconsistencies in the recommended BP targets 
in these patients.148–150 Previous recommenda-
tions favoured an intensive approach to BP man-
agement in diabetes given the high CVD risk 
profile of these patients. Indeed, in nondiabetic 
patients at high risk of CVD, intensive BP lower-
ing (to a systolic BP < 120 mmHg) dramatically 
lowers cardiovascular risk and all-cause mortal-
ity.151 It has therefore been suggested that tighter 
BP control be targeted in patients with T2D,152 
although there are limited data to support this 
strategy as a means of overall cardiovascular risk 
reduction.

In the ACCORD BP study, which specifically 
addressed the issue of intensive BP lowering  
in T2D, there was no demonstrable survival  
benefit with intensive BP reduction (systolic BP 
< 120 mmHg) compared with a standard BP 
reduction target (<140 mmHg) over a median 
follow-up period of 4.7 years in 4733 patients 
with T2D.153 The annual incidence of all-cause 
mortality was similar with either BP target (1.28 
and 1.19%, respectively; HR 1.07; 95% CI 
0.85–1.35, p = 0.52). Intensive BP treatment 
was in fact harmful and led to increased inci-
dence of syncope and hyperkalaemia.154 Even 
after longer-term follow up (median duration 
8.8 years) was carried out for 3957 patients from 
the ACCORD study, there remained no reduc-
tion in the rate of a composite of fatal and non-
fatal major cardiovascular events or mortality 
with intensive versus standard BP control.154 
Similarly, patients with T2D and a history of 
CAD do not appear to benefit from an intensive 
BP-lowering-treatment strategy.155 Recent data 
suggest a U-shaped relationship between BP 
and cardiovascular outcomes in T2D, where sys-
tolic BP over 150 mmHg or less than 110 mmHg 
portends a poorer prognosis.156 Maintenance of 
BP within this range appears to be the most 
appropriate strategy in T2D. In view of these 
and other large prospective studies evaluating 
BP-lowering targets in DM, current National 
Institute for Health and Care Excellence 
(NG28) recommendations are that BP be main-
tained below 140/80 mmHg in uncomplicated 
T2D or below 130/80 mmHg if there is a history 
of kidney, eye or cerebrovascular disease.148

Lifestyle interventions to reverse 
cardiovascular dysfunction
Weight loss. T2D has long been regarded as a 
chronic condition capable of being ameliorated 
but not cured. However, proof that T2D is a 
reversible condition has been firmly established in 
patients undergoing bariatric surgery157,158 and in 
a primary-care-led administration of a 825–853 
kcal/day meal-replacement diet.159 The extent of 
weight loss is strongly linked to reversal of T2D. 
Insulin use, diabetes duration and high HbA1c 
levels reduce the chances of reversal.158 None of 
these reports, however, have assessed changes in 
cardiovascular function.

In obese subjects without T2D, sustained weight 
loss, either with diet or after surgery, has resulted 
in favourable reductions in CMR-measured LV 
mass, volumes, arterial stiffness and diastolic 
function.160 Improved diastolic function follow-
ing weight loss in obesity has been associated with 
improved energetics161 and with reduced myocar-
dial triglyceride content.162

In patients with insulin-treated T2D, a 471 kcal/day 
very-low-energy diet has also been shown to reduce 
myocardial steatosis (0.88 ± 0.12% to 0.64 ± 0.14%, 
p = 0.02) in a small (n = 12) single-group study and 
was associated with improved diastolic filling on 
CMR.163 Interestingly, a recent brief report from 
the same group, suggests that in the first few days 
after commencing a very-low-energy diet, there may 
actually be an increase in steatosis and reduced dias-
tolic mitral filling.164 However, it should be noted 
that there was a dramatic decrease in ventricular 
volumes, with a nonsignificant decrease in esti-
mated filling pressure, which are both likely to have 
affected the diastolic filling rate.

Recently, the selective-serotonin-2C-receptor ago-
nist lorcaserin, which suppresses appetite, has 
been shown to cause sustained weight loss, reduce 
hyperglycaemia and reduce the risk of microvas-
cular complications in high-risk overweight and 
obese patients with and without diabetes.165,166 
Whether this leads to lower macrovascular com-
plications remains to be demonstrated. Alter-
natively Lorcarserin may be used as an adjunct to 
surgical or dietary strategies as a means to supple-
ment or maintain weight reduction.

Exercise programmes. Large cohort studies have 
shown that increased aerobic exercise capacity is 
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associated with significantly lower cardiovascular 
and overall mortality in men167 and women168 
with DM. Peak exercise capacity (maximal vol-
ume of oxygen uptake) is a recognized prognostic 
marker in subjects with CVD169 and in T2D.170 In 
a small study (n = 19), exercise capacity was sig-
nificantly reduced in subjects with T2D having 
diastolic dysfunction compared with those having 
normal diastolic function.171 This suggests that 
improvements in exercise capacity may yield 
improvements in cardiac dysfunction in T2D; at 
the very least, in the early stages of diabetic car-
diomyopathy. This is supported by a recent posi-
tion paper from the European Association of 
Preventive Cardiology, which advocates the pro-
motion of individualized exercise training pro-
grammes in people with T2D to improve both 
cardiovascular and metabolic function.172

Intervention studies have demonstrated a strong 
causal link between exercise training and glycaemic 
control in those with T2D. Exercise training has 
consistently been found to lower HbA1c by 0.6–
0.7%, with greater effects seen with higher volumes 
of exercise.173,174 Importantly, these substantial 
benefits are maintained when exercise training does 
not result in weight loss.173,174 This is consistent 
with experimental studies that have elucidated key 
insulin-dependent and insulin-independent path-
ways linking physical activity to improved glucose 
regulation that do not act through adiposity.175,176

While the benefits of exercise training on glycae-
mic control are well established, the effects on 
diastolic function are less well known, primarily 
due to insufficient data, differences in measure-
ment and poor study design. However, encourag-
ing data are starting to emerge in those with 
obesity and chronic disease. For example, an 
8-week exercise training programme in obese 
men improved diastolic function to levels seen in 
lean controls, despite no weight loss.177 Similarly, 
just 4 weeks of exercise training has been shown 
to improve diastolic function in those with HF 
with similar improvements also observed in a 
matched cohort without HF.178

Only two studies have been conducted in T2D 
assessing the effects of exercise training on diastolic 
function. In a small pilot study, 3 months of aerobic 
exercise training reversed diastolic dysfunction in 
almost half (45%) of individuals with T2D and 
grade 1 diastolic dysfunction,179 while another study 
found no overall effect.180 However in the latter 

study, a post hoc analysis revealed that change in 
moderate-intensity physical activity was significantly 
associated with change in myocardial strain rate, 
although it is unclear whether this was systolic, dias-
tolic or both.180 This mirrors the wider evidence 
where light-to-moderate aerobic exercise training 
has repeatedly been demonstrated to improve dias-
tolic function across a number of groups.177,179 The 
effectiveness of vigorous-intensity exercise or com-
bined aerobic and resistance training is less well 
established, with at least one study showing the lat-
ter approach is not effective.181 Given this evidence 
base, it is important the efficacy of aerobic exercise 
training is investigated further.

Finally, in the randomized-controlled LookAHEAD 
trial, the effects of intensive-lifestyle intervention 
(which included a combined dietary weight loss 
and exercise programme) versus a diabetes support 
programme were evaluated in 5145 overweight or 
obese (mean age 58.7 years, BMI 36 kg/m2) people 
with T2D over a median follow-up duration of 
9.6 years. Disappointingly, there was no difference 
in the rate of cardiovascular events in the intensive-
lifestyle-intervention arm, despite a greater extent 
of weight loss, increased fitness and improved gly-
caemic control.182 However, the mean weight loss 
achieved in the intensive-lifestyle-intervention arm 
was only 6% by the end of the trial, and both study 
groups had intensive medical management of car-
diovascular risk factors, which may have limited the 
treatment effect in the intervention arm.

Conclusions
The rapid increase in prevalence of T2D now 
represents a global pandemic. These patients  
are at high risk of developing HF and dying  
prematurely, but the prevalence of subclinical 
cardiac dysfunction and the causes are uncertain. 
Improved glycaemic control per se does not  
reduce the risk of developing HF, but newer 
pharmacologic agents reduce CV complications 
and SGLT2 inhibitors have been shown to decrease 
HF-related hospitalizations. Weight loss, either 
with low-calorie diets or bariatric surgery, is also 
an attractive option for reversing diabetes and the 
risk of HF, but further studies are needed.
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