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Brain asymmetry varies across individuals. However, genetic factors contributing to this

normal variation are largely unknown. Here we studied variation of cortical surface area

asymmetry in a large sample of subjects. We performed principal component analysis

(PCA) to capture correlated asymmetry variation across cortical regions. We found that

caudal and rostral anterior cingulate together account for a substantial part of asymmetry

variation among individuals. To find SNPs associated with this subset of brain asymmetry

variation we performed a genome-wide association study followed by replication in

an independent cohort. We identified one SNP (rs11691187) that had genome-wide

significant association (PCombined = 2.40e-08). The rs11691187 is in the first intron of

VIT. In a follow-up analysis, we found that VIT gene expression is associated with brain

asymmetry in six donors of the Allen Human Brain Atlas. Based on these findings we

suggest that VIT contributes to normal brain asymmetry variation. Our results can shed

light on disorders associated with altered brain asymmetry.

Keywords: asymmetry, genome-wide association study, surface area, lateralization, imaging genetics

INTRODUCTION

Like many other biological systems, human brain shows structural asymmetry (Geschwind and
Galaburda, 1985; Corballis, 2014). However, mechanisms underlying brain asymmetry are largely
unknown (Bishop, 2013). The contribution of genetic factors in brain asymmetry has been a matter
of debate. Recent imaging genetic studies have found genetic factors that contribute to brain
asymmetry and asymmetry variation. In a GWAS study, Guadalupe et al. (2015) reported that genes
involved in steroid hormone biology might influence population variance in planum temporale
asymmetry. In a twin study, Jahanshad et al. (2010) showed that genetic factors havemoderate effect
in accounting for asymmetry variance in several white matter tracts. On the other hand, in a twin
study Eyler et al. (2014) found high genetic correlations between the two hemispheres for cortical
surface and thickness and thus suggested that genetic factors might play low to moderate role in
asymmetry between two hemispheres. In all likelihood no single gene can account for all observed
brain asymmetry variation. In a study of asymmetries in brain’s intrinsic activity fluctuations at rest,
Liu et al. (2009) showed thatmultiple independent factors capture the variation in brain asymmetry.
This suggests that a single gene might only explain a subset of brain asymmetry variation across
individuals.
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Recently, large-scale genetic studies have been combined
with brain imaging to unravel genetic variants associated with
anatomical and functional brain characteristics (Marenco and
Radulescu, 2010; Bakken et al., 2012; Stein et al., 2012; Jahanshad
et al., 2013; Cai et al., 2014; Roussotte et al., 2014; Ramanan
et al., 2015) and neurological and neuropsychiatric disorders
(Callicott et al., 2005; Potkin et al., 2009). In this study, we aimed
to find genetic correlates associated with variation of cortical
surface area asymmetry among individuals. Anatomical brain
asymmetry can be measured using morphological features such
as cortical volume, cortical thickness and cortical surface area
(Hutsler et al., 1998; Luders et al., 2006; Lyttelton et al., 2009;
Koelkebeck et al., 2014; Meyer et al., 2014; Takaya et al., 2015).
We used cortical surface area asymmetry as it has been shown
that brain asymmetry is more prominent in cortical surface area
(Koelkebeck et al., 2014). We computed lateralization index for
34 cortical regions across the cerebral cortex. Distinct brain
regions might covary in structural brain asymmetry and it is
reasonable to presume that increased asymmetry of one area
might be accompanied by increased or decreased asymmetry of
other areas. Genetic factors that modulate brain asymmetry in
one region might influence extent of brain asymmetry in other
regions. Therefore, instead of using brain asymmetry measures
from individual regions, we performed principal component
analysis (PCA) to compute an asymmetry measure that captures
most variance in brain asymmetry across individuals. After
identifying the component that explained a substantial amount
of asymmetry variation, we designed a two-stage genome wide
association study (GWAS; Satagopan et al., 2004; Skol et al.,
2006). In the first phase, we performed a GWAS to find SNPs
that were associated with this asymmetry measure. Subsequently,
we tested our top SNP and were able to replicate our finding in a
separate dataset.

METHODS

Subjects
In order to study brain asymmetry variation among subjects,
we studied 706 right-handed subjects [Healthy controls (CN) =
209, Late Mild Cognitive Impairment (LMCI)= 320, Alzheimer’s
Disease (AD)= 177] from ADNI-1 cohort. To replicate PC1 and
its reliability across time, we used 119 healthy participants from
ADNI-2/GO that had been imaged at four different time points
(screening time, month 6, 12, 24). For GWAS, we restricted our
study to non-Hispanic Caucasian subjects. We replicated our top
SNP in an independent population of non-Hispanic Caucasian
right-handed participants that had been genotyped in ADNI-
2/GO cohort (CN = 108, Early-Mild Cognitive Impairment
(EMCI)= 168, LMCI= 55).

The ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and non-profit
organizations, as a $60 million, 5-year public- private
partnership. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early
AD. Determination of sensitive and specific markers of very
early AD progression is critical to aid researchers and clinicians
to develop new treatments and monitor their effectiveness,
and to reduce the time and cost of clinical trials. The Principal
Investigator of this initiative is Michael, W. Weiner, M. D, VA
Medical Center and University of California, San Francisco.
ADNI is the result of efforts of many co-investigators from a
broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across
the U.S. and Canada. The initial goal of ADNI was to recruit
800 subjects but ADNI has been followed by ADNI-GO and
ADNI-2. To date these three protocols have recruited over 1500
adults, ages 55–90, to participate in the research, consisting of
cognitively normal older individuals, people with early or late
MCI (EMCI or LMCI), and people with early AD. The follow
up duration of each group is specified in the protocols for
ADNI-1, ADNI-2, and ADNI-GO. Subjects originally recruited
for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. Thousands of longitudinal imaging scans, performance
on neuropsychological and clinical assessments, and biological
samples were collected at baseline and at follow-up visits for all
or a subset of participants. Genome-wide genotyping data are
available on the full ADNI sample. For up-to-date information,
see www.adni-info.org.

Genotyping
Genome-wide genotype data were collected using the Illumina
Human610-Quad BeadChip (620901 markers) for ADNI-1
cohort. 505853 autosomal SNPs and 490 subjects (CN = 155,
LMCI= 210, AD= 125) passed quality control filters (sample call
rate > 95%, SNP call rate > 99%, minor allele frequency > 5%,
Hardy–Weinberg disequilibrium P < 1e-6). For replication
study, we studied 331 non-Hispanic Caucasian subjects from
ADNI2/GO cohort who had been genotyped using the Illumina
HumanOmniExpress BeadChip (730525 markers). 599425 SNPs
and 330 subjects passed quality control filters same as above.

Image Acquisition
High-resolution structural brain MR images from the baseline
visit were collected from ADNI-1 cohort. Structural MRI scans
in the ADNI-1 study were obtained using a standardized protocol
to maximize consistency across 58 image acquisition sites, using
1.5 Tesla MRI scanners. A T1-weighted 3D MPRAGE sequence
was used (TR/TE = 2400/1000 ms; flip angle = 8◦; FOV = 24
cm; with a final voxel resolution= 0.9375∗0.9375∗1.2 mm3). We
also used processed images of ADNI-2/GO subjects downloaded
from ida.loni.usc.edu.

Cortical Surface Area and Lateralization
Index
Cortical reconstruction was performed with the
Freesurfer image analysis suite (Version 5.3.0), which
is documented and freely available for download online
(http://surfer.nmr.mgh.harvard.edu/). In brief, the processing
stream includes a Talairach transform of each participant’s native
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brain, removal of non-brain tissue, and segmentation of gray
matter (GM)/white matter (WM) tissue. The GM/WM boundary
was tessellated to generate multiple vertices across the whole
brain. The cortical surface of each hemisphere was inflated to
a sphere to locate the pial surface and the GM/WM boundary.
After the creation of cortical representations, all vertices were
assigned neuroanatomical labels on a cortical surface model
based on the automated labeling system, and the entire cortex of
each hemisphere was parcellated into 34 brain regions based on
Desikan-Killiany atlas (Desikan et al., 2006). The inner surface
area of a region was computed by summing up the area of the
vertices in that region. After calculating the cortical surface area
for each brain region and each hemisphere, the lateralization
index was computed as a standardized asymmetry index (Left
region – Right region)/(Left region+ Right region).

Statistical Analysis and Genome-Wide
Association Study
Statistical analyses were performed using R and Python. We
performed PCA after centering asymmetry scores for each region
without scaling. For first part of our study, we performed PCA in
CN, LMCI, and AD group separately. We used the first principal
component (PC1) for our later analysis. To compare PC1 across
groups, we ran two different analyses. In the first analysis, we
calculated the correlation between the PC1 loadings from the CN
group with the PC1 from the AD and LMCI groups. In the second
analysis, we projected the individual asymmetry scores from the
LMCI and AD groups onto the PC1 of the CN group to calculate
projected PC1 (PC1p) for each individual. We then correlated the
PC1p scores with the original PC1 scores from each group. As
PC1 was highly similar between groups, we used PC1 from CN
group as the reference axis to compute PC1 scores for subsequent
analyses.

We tested each SNP for association using PLINK (Purcell
et al., 2007) to fit an additive linearmodel withminor allele count,
age, gender, and diagnosis as predictors of PC1 score. Genomic
inflation (λGC) was estimated in the standard way by dividing
the median observed χ2 statistic from the GWAS by 0.456, the
approximate median of a χ2 distribution with one degree of
freedom (Devlin et al., 2001). We tested association of our top
SNP (rs11691187) in an independent dataset fitting a same linear
model.

Allen Human Brain Atlas
The Allen Human Brain Atlas (AHBA) is a publicly available
online resource of gene expression information in the adult
human brain (Allen Institute for Brain Science1; Hawrylycz et al.,
2012). To construct the AHBA, samples were collected from 6
donors, four of whom only donated their left hemispheres and
two donated both hemispheres. Approximately 500 samples were
collected per hemisphere. To enable comparison across brains,
microarray normalization was applied to the gene expression
values both within and across brains (Allen Institute for Brain
Science, 2013). All brains underwent structural MRI before
dissection, and were normalized to MNI space.

1Allen Institute for Brain Science Allen Human Brain Atlas. Available online at:

http://human.brain-map.org.

VIT was sampled by two probes. We chose the probe whose
average expression across all regions was larger (A_23_P56578).
Log2 VIT gene expressions were obtained for all samples taken
from left anterior cingulate cortex. We only focused on the
samples from the left hemisphere, as all donors had samples from
this hemisphere. We then calculated both mean and median VIT
gene expression across samples for each individual, and used
these values to determine the relationship between the PC1 scores
and VIT gene expression in left anterior cingulate cortex.

T1-weighted MRIs from all six subjects were analyzed using
Freesurfer. Cortical surface areas for 34 regions were extracted as
stated previously. Lateralization index was calculated and brain
asymmetry scores were projected onto PC1 from CN group to
get PC1 score for each subject.

RESULTS

Brain Asymmetry
We studied asymmetry of cortical surface area in a sample of 706
subjects fromADNI-1 cohort. Subjects were grouped into healthy
control (CN), late-mild cognitive impairment (LMCI), and
Alzheimer’s disease (AD) based on initial evaluation at screening
time. For each subject, cortical surface area was measured for
34 regions in each hemisphere. Standardized lateralization index
was computed as (left cortical surface area– right cortical surface
area)/(left cortical surface area+ right cortical surface area).

Similar to previous studies, most brain regions showed
significant cortical surface area asymmetry (Koelkebeck et al.,
2014; Supplementary Figure 1). Cortical surface area brain
asymmetry was compared between three groups. Cortical surface
area asymmetry was different between three groups in two areas
(frontal pole and pars orbitalis) (One-way ANOVA, F < 3.2,
P < 0.05) but none passed Bonferroni correction (0.05/34 =

0.0014; See Supplementary Table 1).
We performed PCA on brain asymmetry scores to capture

correlated variation for CN, LMCI and AD subjects separately.
PCA decomposes brain asymmetry into orthogonal components
each accounting for part of observed brain asymmetry variation
(Habeck, 2010). The first principal component (PC1) explained
∼13% of brain asymmetry variation in all three groups. The
first 22 principal components explain around 90% of brain
asymmetry variation (Supplementary Figure 2). For the rest
of the study, we only focused on PC1 as a subset of brain
asymmetry variation among individuals. A more detailed look
at the weights of the PC1 loadings showed that caudal anterior
cingulate cortex (cACC) and rostral anterior cingulate cortex
(rACC) had the largest weights in all three groups (Figure 1).
CACC and rACC had rightward and leftward asymmetry,
respectively (Supplementary Figure 1; See Supplementary Figure
3 for loadings of first six principal components).

PC1 loadings were highly correlated between groups. PC1 in
the CN group was highly correlated with both the AD group
(r= 0.89) and the LMCI group (r= 0.88). Similarly the PC1 from
the LMCI group was highly correlated with the AD group (r =
0.92). PC1 scores were not different between groups [One way
ANOVA, F(2, 703) = 1.103, P = 0.332]. In another analysis we
projected brain asymmetry scores of AD and LMCI individuals
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FIGURE 1 | Principal component analysis of cortical surface area

asymmetry in CN group. (A) In all three groups (CN, LMCI, AD), first

principal component explains around 13% of variation. First principal

component loadings show that areas 2 and 27 (caudal anterior cingulate and

rostral anterior cingulate) have the largest weights. Dashed line represents two

standard deviations from the mean of weights. (B) First principal component

loadings on average cortical surface.

onto PC1 of CN group to calculate the new projected PC1
(PC1p) for the two groups. PC1p scores were highly correlated
with the original PC1 scores in both AD (r = 0.95) and LMCI
(r = 0.94) groups (Supplementary Figure 4 and see Methods).
These analyses confirmed that the PC1 was highly reliable across
groups.

We then tested the stability of PC1 over time. To do so,
brain asymmetry was computed for another group of healthy
participants (from ADNI-2/GO cohort) that had been imaged
at 4 different time points [screening time (m0), month 6 (m6),
month 12 (m12), and month 24 (m24)] (n = 119). Computed
PC1 scores at m6, m12, and m24 were highly correlated to PC1
scores at m0 (rm0−m6 = 0.92, rm0−m12 = 0.91, rm0−m24 = 0.92)
(see Methods; Figure 2; See Supplementary Figure 5 for stability
of all PCs across time). These results confirmed that PC1 was
highly stable across groups and time. These tests allowed for
combination of the three groups for the subsequent GWAS.

Genome-Wide Association Study
We hypothesized that normal variation in PC1 scores is partly
related to genetic differences between individuals. Therefore,
we tested SNPs genome-wide for their association with PC1
scores. Given the stability of PC1 across groups, we combined
individuals from the three groups to increase power. We
only included non-Hispanic Caucasian participants for GWAS.
Particularly, we tested each SNP’s strength to predict score of PC1
while controlling for age, gender, and diagnosis.

One SNP (rs11691187, minor allele frequency= 0.39) showed
strong association with PC1 scores (P = 5.69e-8, beta= 0.04511,
SE = 0.0081) that passed Bonferroni threshold (P = 9.8e-8) and
reached near genome-wide significance (P < 5e-08; Figures 3, 4).
Q-Q plot of the distribution of P-values showed that the
association statistics were approximately normally distributed
(Supplementary Figure 6). Genomic inflation (λGC) was 1, which
indicated that the distribution of P-values was unbiased and

FIGURE 2 | PC1 stability over time. PC1 was computed for healthy

individuals that have been imaged at four different time points (screening time,

month 6, 12, and 24). PC1 scores are highly correlated over time.

FIGURE 3 | Manhattan plot. The dashed line shows genome wide

significance threshold and the dotted line shows Bonferroni threshold for this

study. The rs11691187 passed Bonferroni threshold and is near genome-wide

significance threshold. It passed genome-wide significance threshold after

combining with replication dataset (P = 2.40e-08).

that the results were not likely to be attributable to population
stratification. In the previous analysis, wemerged all three groups
to increase our sample size. To ascertain that the effect was
present with the same trend in the CN group, we tested the
association between PC1 and rs11691187 only including the CN
subjects (209 subjects). The observed association was in the same
direction as our previous analysis (beta= 0.04, P = 0.0008).

We then replicated the rs11691187 in an independent
dataset. We used 331 right-handed subjects from ADNI-
2/GO cohort in which rs11691187 had been genotyped. The
subjects were non-Hispanic Caucasian healthy controls or
diagnosed with early or late mild cognitive impairment. We
tested association of rs11691187 with the computed PC1 scores
while controlling for age, gender, and diagnosis (see methods).
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FIGURE 4 | The rs11691187 regional association plot. Plot is centered on

rs11691187, drawn using LocusZoom software (Pruim et al., 2010). All SNPs

are plotted with their association P-values against their genomic position. The

color of the dots represents the LD between SNPs. The light blue line

represents the estimated recombination rates. Genes and exons are shown as

dark blue arrows and vertical lines, respectively. The rs11691187 is in the first

intron of VIT.

The rs11691187 was significantly associated with PC1 (P =

0.02, beta = 0.0219, SE = 0.0095, n = 331). No genomic
inflation was observed (λGC = 1). We also tested whether the
trend could be observed only in CN group (108 subjects). The
observed association was in the same direction as our previous
analysis (beta = 0.02, P = 0.10). The combined P-value for
rs11691187 reached genome-wide significance (Pcombined =

2.40e-08) based on inverse variance-weighted z-score
(de Bakker et al., 2008).

Allen Human Brain Atlas
The rs11691187 is in the first intron of the VIT gene. We
hypothesized that VIT gene expression is associated with brain
asymmetry along PC1. In order to test this hypothesis, we
used publicly available Allen Human Brain Atlas (AHBA). We
obtained normalized log2 VIT expression of samples taken from
left anterior cingulate cortex (both caudal and rostral parts) (see
Methods) as this region displayed highest weight in PC1 loadings.
We used both median and mean VIT gene expression for
samples taken from each individual. T1-weighted image for each
subject was obtained and analyzed to get cortical surface areas
of 34 regions as described previously. VIT expression showed
positive correlation with computed PC1 scores (see Methods)
(P = 0.03 for mean, P = 0.05 for median) (Figure 5). This
finding further supports the role of VIT in brain asymmetry
variation.

FIGURE 5 | VIT expression is associated with PC1. VIT gene expression in

left anterior cingulate cortex is correlated with PC1 score (P = 0.03). For each

individual, log2 VIT expression from all samples taken from left anterior

cingulate cortex is averaged. PC1 score for each individual is computed by

projecting asymmetry scores of each individual onto PC1 from CN group.

DISCUSSION

In this study, we aimed to find genetic variants associated with
a subset of brain asymmetry variation across individuals. To
do so, we computed cortical surface area asymmetry for 34
regions throughout cerebral cortex. We then used PCA to find
an axis that captures the most brain asymmetry variation among
individuals. The first principal component (PC1) explained
around 13% of brain asymmetry variation. We replicated PC1
in a separate dataset and showed that PC1 was highly stable
across time and groups. We hypothesized that genetic factors
account for part of the variation along PC1 axis. We performed
a GWAS to find genetic variants that are associated with the
PC1 scores and identified one SNP (rs11691187) that showed
strong association (P = 5.69e-08). We replicated this finding in a
separate cohort with a combined P-value that was genome-wide
significant (P = 2.40e-08).

Biological mechanisms underlying brain asymmetry are
largely unknown. In 1964, Mariane Annet (Annett, 1964)
proposed Right-shift theory which holds that a single gene
with 2 alleles control brain asymmetry and cerebral dominance.
Although no gene has been identified, prior studies have
proposed genetic loci that influence brain asymmetry. Deviations
of brain asymmetry in sex chromosome aneuploidies have led
some researchers to candidate loci within sex chromosomes
(Rezaie et al., 2009). In particular, protocadherin 11X/Y
(PCDH11X/Y) within Xq21.3/Yp11.2 human specific homology
region has been claimed as a potential candidate for brain
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asymmetry (Priddle and Crow, 2013). PCDH11X/Y encodes
cell adhesion molecules and has been subject to accelerated
evolution following the separation of the human and chimpanzee
lineages (Williams et al., 2006). Several other genes including
FOXP2(Ocklenburg et al., 2013b), LRRTM1(Francks et al., 2007),
AR (Medland et al., 2005), CCKAR (Ocklenburg et al., 2013a),
and GRIN2B (Ocklenburg et al., 2011) have been proposed as
potential candidates; however, they require further validation.
On the other hand, other hypotheses have recognized the
multifactorial nature of brain asymmetry. In their influential
hypothesis, Geschwind and Galaburda (1985) claimed that the
intrauterine circulating levels of testosterone contribute to brain
asymmetry. Recent studies using brain intrinsic activity at rest
have shown that brain asymmetry can be decomposed into
several independent factors (Liu et al., 2009). Thus it has been
argued that one single gene or environmental factor can only
explain a part of asymmetry variation among individuals. Here,
we have extended this idea to anatomical brain asymmetry
variation using PCA to decompose structural brain asymmetry
into orthogonal components. The use of this technique enabled
us to capture correlated variation in asymmetry, which in turn
increased the power to detect genetic variants associated with
these correlated variations.

PCA revealed that several components contribute to cortical
surface area asymmetry variation. The first few components
are heavily loaded on a few specific areas (See Supplementary
Figure 3). These components are also generally stable over time
in healthy subjects (Supplementary Figure 5). We focused our
analysis on the first principal component. We did so as the
first principal component captures the highest variation and is
stable across time and groups. Among the 34 regions, cACC, and
rACC showed the largest weights in PC1. Several studies have
demonstrated structural and functional asymmetries of ACC
(Gong et al., 2005; Huster et al., 2007; Yan et al., 2009; Wang
et al., 2013). In line with previous studies we found that cACC
and rACC have rightward and leftward surface area asymmetries,
respectively (Koelkebeck et al., 2014). Altered asymmetry of
ACC has been noted in subjects at high genetic risk for
psychosis and schizophrenia (Park et al., 2013). Understanding
genetic factors that modulate ACC brain asymmetry can shed
light on schizophrenia and other neuropsychological disorders
as well.

The SNP that was highly associated with PC1 in this study is
located in the first intron of VIT. We explored the association
of VIT gene expression with PC1 in six donors of AHBA. We
found a significant association between VIT gene expression in
left anterior cingulate cortex and extent of brain asymmetry along
PC1. However, given the small sample size in AHBA, future
study with a larger sample size is necessary to confirm these
findings.

VIT is widely expressed throughout cerebral cortex (Allen
Institute for Brain Science1). VIT encodes an extracellular matrix
(ECM) protein, vitrin. Vitrin was originally isolated from the
vitreous of bovine eye (Mayne et al., 1999) and contains a
single LCCL domain (named after Limulus factor C, Coch-
5b2 and Lgl1 protein) followed by two von Willebrand A
(VWA) domains. Majority of VWA-containing proteins are

extracellular and participate in biological processes such as cell
adhesion and migration (Colombatti et al., 1993; Whittaker
and Hynes, 2002). Also vitrin displays high homology and
structural similarity to Akhirin and cochlin (Ahsan et al.,
2005). Both Akhirin and cochlin are involved in neural
development and extracellular matrix integrity (Zhang et al.,
2013; Bae et al., 2014; Abdulhaleem et al., 2015). These
structural similarities suggest the possible role of vitrin in
matrix assembly, cell adhesion, and migration, processes that are
crucial for neural development. Furthermore, VIT is expressed
highly in lateral and caudal ganglionic eminences during neural
development in humans (Allen Institute for Brain Science1).
These structures are responsible for neural migration (Nadarajah
and Parnavelas, 2002), which suggests possible role of vitrin in
neural development. Prior studies have suggested that individual
differences in brain asymmetry probably arise from factors that
exert their functions early in development (Sun et al., 2005;
Francks, 2015). Moreover, cell adhesion molecules have been
proposed as potential candidates for brain asymmetry (Priddle
and Crow, 2013; Francks, 2015). Further, studies are needed
to elucidate the mechanisms by which VIT influences brain
asymmetry.

The present study has limitations that should be addressed
in future studies. In our study, we merged three groups of AD,
LMCI, and CN for the interest of increased sample size. Although
we showed that PC1 is a stable component across groups and
time, which allowed us to combine three groups for subsequent
GWAS study, it would be appropriate to test this variant in larger
normal sample sizes. Furthermore, VIT gene expression showed
significant correlation with brain asymmetry along the PC1 axis.
Due to small sample size in the Allen Human Brain Atlas, this
result should be validated in future studies.

In conclusion, we have found a common genetic variant that is
associated with cortical surface area asymmetry variation among
individuals. This variant resides within VIT gene. VIT is known
to play a role in neural development. Our findings provide
evidence that genetic variants can modulate brain asymmetry.
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